EP1443275B1 - Combustion chamber - Google Patents
Combustion chamber Download PDFInfo
- Publication number
- EP1443275B1 EP1443275B1 EP03001890A EP03001890A EP1443275B1 EP 1443275 B1 EP1443275 B1 EP 1443275B1 EP 03001890 A EP03001890 A EP 03001890A EP 03001890 A EP03001890 A EP 03001890A EP 1443275 B1 EP1443275 B1 EP 1443275B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- combustion chamber
- wall
- cooling medium
- coolant
- heat shield
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 129
- 239000002826 coolant Substances 0.000 claims description 68
- 210000003746 feather Anatomy 0.000 claims description 3
- 238000001816 cooling Methods 0.000 description 36
- 239000000306 component Substances 0.000 description 13
- 238000012423 maintenance Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 230000008439 repair process Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012533 medium component Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/60—Support structures; Attaching or mounting means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/005—Combined with pressure or heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/007—Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/50—Combustion chambers comprising an annular flame tube within an annular casing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/03044—Impingement cooled combustion chamber walls or subassemblies
Definitions
- the invention relates to a combustion chamber for a gas turbine whose combustion chamber is bounded by an annular outer wall on the one hand and an annular inner wall arranged therein on the other hand.
- the combustion chamber walls are provided on the inside with a lining formed by a number of heat shield elements, wherein the or each heat shield element forms an interior that can be acted upon by a coolant.
- the invention further relates to a gas turbine with such a combustion chamber.
- Combustion chambers are part of gas turbines that are used in many areas to drive generators or work machines.
- the energy content of a fuel is used to generate a rotational movement of a turbine shaft.
- the fuel is burned to burners in their downstream combustion chambers, wherein compressed air is supplied by an air compressor.
- the combustion of the fuel produces a high pressure working fluid at a high temperature. This working fluid is fed into a turbine unit downstream of the combustion chambers, where it relaxes to perform work.
- each burner can be assigned a separate combustion chamber, wherein the working medium flowing out of the combustion chambers can be brought together before or in the turbine unit.
- the combustion chamber can also be designed in a so-called annular combustion chamber design, in which a plurality, in particular all, of the burner open into a common, usually annular combustion chamber.
- the turbine unit adjoining the combustion chamber in the flow direction of the working medium usually comprises a turbine shaft which is provided with a number of rotatable blades connected, forming the annular blade rows.
- the turbine unit comprises a number of stationary vanes, which are also fixed in a ring shape with the formation of rows of vanes on the inner casing of the turbine.
- the blades serve to drive the turbine shaft by momentum transfer of the working fluid flowing through the turbine unit, while the guide vanes serve to guide the flow of the working medium between two successive blade rows or blade rows seen in the flow direction of the working medium.
- the rotational movement of the turbine shaft is generally used to drive the air compressor upstream of the combustion chamber, it is extended beyond the turbine unit so that in the area of the annular combustion chamber upstream of the turbine, the turbine shaft is surrounded in a toroidal manner by the annular combustion chamber.
- the combustion chamber is bounded by an annular outer wall on the one hand and an annular inner wall arranged therein on the other hand.
- the inner wall of the combustion chamber consists of two or more individual parts, which are screwed together on their side facing the turbine shaft.
- the combustion chamber wall can be lined on its inside with heat shield elements, which can be provided with particularly heat-resistant protective layers, and which are cooled by the actual combustion chamber wall therethrough.
- a cooling method also known as "impingement cooling” can be used.
- impingement cooling a coolant, as a rule cooling air, is supplied to the heat shield elements through a plurality of bores in the combustion chamber wall, so that the coolant bounces substantially perpendicularly onto its outer surface facing the combustion chamber wall.
- the coolant heated by the cooling process is then removed from the interior, which forms the combustion chamber wall with the heat shield elements.
- Such a configuration is made DE-A-1980568 known.
- the above-described structure of the annular combustion chamber also has some other disadvantages with respect to maintenance work.
- maintenance and repair work parts of the combustion chamber such as the heat shield elements or the cooling system used and in particular also components of the downstream turbine unit must be repaired or replaced due to the high thermal and mechanical stress.
- a disadvantage of the construction of the combustion chamber is that the turbine shaft is not accessible from the combustion chamber during maintenance. Thus, for maintenance work on the turbine shaft in the region of the annular combustion chamber or for repairs to the first guide vanes and rotor blades directly adjoining the combustion chamber, generally all the adjoining vanes and guide vanes of the turbine unit must be removed.
- the invention is therefore based on the object to provide a combustion chamber of the type mentioned above, which is suitable for comparatively simple construction for a particularly high system efficiency and in which the inner wall of the combustion chamber is comparatively quickly and easily disassembled.
- the object is achieved according to the invention by arranging a number of coolant distributors in the respective heat shield element associated with each interior space, and by forming the inner wall of the combustion chamber from a number of wall elements fastened on a supporting structure of the inner wall, wherein the support structure of a Number of pieces abutting on a horizontal parting line sections is formed, which are connected to each other in the region of the parting line via a number of obliquely aligned with the inner wall surface screw.
- the invention is based on the consideration that for a particularly high system efficiency, a reliable and in particular comprehensive coverage of the heat shield elements should be ensured with coolant. Even with consistent compliance with this requirement, the expenditure on equipment and in particular the production cost can be kept low by the variety of hitherto provided coolant holes are replaced by a simplified system.
- the invention is based on the consideration that the attachment of the various wall elements of the combustion chamber inner wall to each other should be accessible from the combustion chamber and the combustion chamber inner wall is therefore also to be dismantled therefrom.
- the various support structure elements of the combustion chamber inner wall which abut each other at their horizontal parting line, should be connected to each other by a fastening, which by a vertical force on the parting line connects with each other.
- each threaded connection is expediently assigned a key.
- the feather key avoids that the support structure elements bolted to one another on the horizontal parting line are displaced relative to one another by the horizontal force component of the screw connection.
- the feather key advantageously runs along the horizontal parting line and is fitted snugly into grooves of the abutting support structure elements, so that they can not move against each other, and preferably only the vertical force component of the screw connection on the horizontal parting line required for fastening the screw connection occurs.
- a coolant supply line is connected in each case via a coolant distributor to a number of coolant outlet openings.
- the heat shields located directly in front of the coolant distributors can be cooled by impingement cooling.
- the outlet openings of the coolant distributor are expediently dimensioned such that the sum of their cross-sectional areas of all outlet openings is smaller than the cross section of the coolant supply line.
- the coolant heated after the cooling process is expediently discharged through bores in the combustion chamber wall from the interior space between the heat shields and the combustion chamber wall into a coolant discharge system. Due to the shape and a suitable arrangement of the coolant manifold, which ensures a sufficient distance of the coolant manifolds from each other, the heated cooling air can flow through the spaces between the coolant manifolds through to the located on the combustion chamber wall openings of the holes.
- the return bores are preferably uniformly distributed over the entire length of the combustion chamber in constant proportion to the number of coolant distributors, so that the coolant can be uniformly discharged in all return bores with an approximately equal return temperature.
- heat shield elements are preferably formed at their edges in such a way that, through a double bend, they form an anchorage in the combustion chamber, which can be anchored in a recess of the combustion chamber wall which forms the groove and thus fastened.
- the recess in the combustion chamber wall is summarized for adjacent heat shield elements, so that adjacent heat shield elements abut each other at their, resulting from the bending end face, and thus constitute a seal for the combustion chamber and the working medium flowing therein.
- the abovementioned combustion chamber is preferably part of a gas turbine.
- the advantages achieved by the invention are in particular that a large-scale and comprehensive loading of the heat shield elements with coolant is made possible by the use of coolant manifolds even with low production costs.
- the coolant pressure loss can be kept low during the cooling of the combustion chamber, so that thus increases the system efficiency of the combustion chamber.
- the low coolant pressure loss can also be achieved, in particular, because the cooling air distributors require only a few supply bores in the combustion chamber wall.
- the use of a number of coolant distributors can ensure uniform cooling with low coolant pressure loss, since in the case of coolant supply via a coolant distributor, the coolant branches off from a larger coolant supply line into a plurality of smaller coolant outlet openings only shortly before impingement cooling at the heat shield elements. This ensures that the coolant flows through only a short distance with a relatively small cross-section, so that the coolant pressure loss is limited.
- the abovementioned combustion chamber is preferably part of a gas turbine.
- the gas turbine 1 has a compressor 2 for combustion air, a combustion chamber 4 and a turbine 6 for driving the compressor 2 and a generator, not shown, or a working machine.
- the turbine 6 and the compressor 2 are arranged on a common, also called turbine rotor turbine shaft 8, with which the generator or the working machine is connected, and which is rotatably mounted about its central axis 9.
- the running in the manner of an annular combustion chamber 4 is equipped with a number of burners 10 for the combustion of a liquid or gaseous fuel.
- the turbine 6 has a number of rotatable blades 12 connected to the turbine shaft 8.
- the blades 12 are arranged in a ring on the turbine shaft 8 and thus form a number of blade rows.
- the turbine 6 comprises a number of fixed vanes 14, which are also fixed in a ring shape with the formation of rows of vanes on an inner casing 16 of the turbine 6.
- the blades 12 serve to drive the turbine shaft 8 by momentum transfer from the turbine 6 flowing through the working medium M.
- the vanes 14, however, serve to guide the flow of the working medium M between two seen in the flow direction of the working medium M consecutive blade rows or blade rings.
- a successive pair of a ring of vanes 14 or a row of vanes and a ring of blades 12 or a blade row is also referred to as a turbine stage.
- Each vane 14 has a platform 18, also referred to as a blade root, which is arranged to fix the respective vane 14 on the inner housing 16 of the turbine 6 as a wall element.
- the platform 18 is a thermally comparatively heavily loaded component which forms the outer boundary of a heating gas channel for the working medium M flowing through the turbine 6.
- Each blade 12 is attached to the turbine shaft 8 in an analogous manner via a platform 20, also referred to as a blade root.
- each guide ring 21 on the inner housing 16 of the turbine 6 is arranged between the spaced-apart platforms 18 of the guide vanes 14 of two adjacent rows of guide vanes.
- the outer surface of each guide ring 21 is also exposed to the hot, the turbine 6 flowing through the working medium M and spaced in the radial direction from the outer end 22 of the blade 12 opposite him through a gap.
- the arranged between adjacent rows of guide blades guide rings 21st serve in particular as cover elements, which protects the inner wall or other housing-mounting parts from thermal overload by the hot working medium M flowing through the turbine 6.
- the combustion chamber 4 is designed in the embodiment as a so-called annular combustion chamber, in which a plurality of circumferentially around the turbine shaft 8 arranged around burners 10 open into a common combustion chamber space.
- the combustion chamber 4 is configured in its entirety as an annular structure which is positioned around the turbine shaft 8 around.
- combustion chamber 4 shown in section, which continues toroidally around the turbine shaft 8 around.
- the combustion chamber 4 has an initial or inflow section, into which the outlet of the respective associated burner 10 terminates.
- Viewed in the flow direction of the working medium M then narrows the cross section of the combustion chamber 4, wherein the self-adjusting flow profile of the working medium M is taken into account in this space area.
- the combustion chamber 24 of the combustion chamber 4 is bounded by a combustion chamber wall 25 which is formed on the one hand by an annular combustion chamber outer wall 26 and on the other hand by an annular combustion chamber inner wall 28 disposed therein.
- the combustion chamber 4 is designed to be able to remove the combustion chamber inner wall 28 in a particularly simple manner, for example for maintenance work, in order to gain access to the combustion chamber inner wall 28 surrounded turbine shaft 8 and the combustion chamber 4 immediately adjacent blades 12 and vanes 14 of the turbine 6 to receive.
- the combustion chamber inner wall 28 consists of two wall elements 30, which are joined together to form a substantially horizontally extending parting line 31 to the combustion chamber inner wall 28.
- the combustion chamber 4 is in particular designed to be able to disassemble the wall elements 30 of the combustion chamber inner wall 28 from the combustion chamber 24. These are, as in FIG. 4 is shown in section, the wall elements 30 connected to the horizontal parting line 31 formed by them with obliquely to the inner surface of the combustion chamber inner wall 28 extending screw 32.
- each screw connection 32 comprises a screw 33 guided essentially obliquely to the surface formed by the combustion chamber inner wall 28, which cooperates with a thread 34 incorporated in one of the wall elements 30.
- the wall elements 30 do not move against each other by the resulting due to the oblique to the combustion chamber inner wall 28 screws 33 horizontal force component, the screw 32 is assigned a key 35. This extends in a position close to the respective screw connection 32 along the horizontal parting line 31 of the wall elements 30 and is fitted in grooves of the wall elements 30 of the combustion chamber inner wall 28.
- the combustion chamber 4 is designed for a comparatively high temperature of the working medium M of about 1200 ° C to 1500 ° C.
- the combustion chamber wall 25, as in FIG. 5 illustrated provided on its side facing the working medium M side with a lining formed from heat shield elements 38.
- Each heat shield element 38 is working medium side with a particularly heat-resistant protective layer. Due to the high temperatures inside the combustion chamber 4, a cooling system is also provided for the heat shield elements 38.
- the cooling system is based on the principle of impingement cooling, in which cooling air K is blown as coolant under sufficiently high pressure at a plurality of points to the component to be cooled.
- the cooling system is designed with a simple structure for a reliable, full coverage of the heat shield elements 38 with cooling air and also for a particularly low coolant pressure loss.
- the heat shield elements 38 are cooled from their outside by the cooling air K, which is passed through a number of arranged in the respective heat shield element 38 and the combustion chamber wall 25 interior 40 arranged coolant manifolds 42 on the surface of the respective heat shield element 38.
- FIG. 5 a section of the combustion chamber wall 25 is shown.
- a number of the coolant distributors 42 are distributed over the entire surface of the respective heat shield element 38 in order to ensure a uniform cooling.
- the coolant K flows through an associateddestoffzuclasstechnisch 44 in the respective coolant distributor 42.
- the coolant K is passed through a number of coolant outlet openings 46 on the surface of the heat shield element 38 where it is cooled by the coolant K by impingement cooling.
- the heat shield elements 38 are attached to the combustion chamber wall 28 in a space-saving manner for the attached cooling system and the partial joint connection.
- a system with tongue and groove is used.
- the heat shield elements 38 are formed at their edges in such a way that, through a double bend, they form an anchorage in the direction of the combustion chamber, which can be anchored in a recess in the combustion chamber wall 25 which forms the groove and fastened therewith.
- adjacent heat shield elements 38 are attached to combined grooves that they touch each other and so seal the combustion chamber 24 of the combustion chamber 4.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
Die Erfindung bezieht sich auf eine Brennkammer für eine Gasturbine, deren Brennraum von einer ringförmigen Außenwand einerseits und einer darin angeordneten ringförmigen Innenwand andererseits begrenzt ist. Die Brennkammerwände sind innenseitig mit einer von einer Anzahl von Hitzeschildelementen gebildeten Auskleidung versehen, wobei das oder jedes Hitzeschildelement einen mit einem Kühlmittel beaufschlagbaren Innenraum bildet. Die Erfindung betrifft weiterhin eine Gasturbine mit einer derartigen Brennkammer.The invention relates to a combustion chamber for a gas turbine whose combustion chamber is bounded by an annular outer wall on the one hand and an annular inner wall arranged therein on the other hand. The combustion chamber walls are provided on the inside with a lining formed by a number of heat shield elements, wherein the or each heat shield element forms an interior that can be acted upon by a coolant. The invention further relates to a gas turbine with such a combustion chamber.
Brennkammern sind Bestandteil von Gasturbinen, die in vielen Bereichen zum Antrieb von Generatoren oder von Arbeitsmaschinen eingesetzt werden. Dabei wird der Energieinhalt eines Brennstoffs zur Erzeugung einer Rotationsbewegung einer Turbinenwelle genutzt. Der Brennstoff wird dazu von Brennern in den ihnen nachgeschalteten Brennkammern verbrannt, wobei von einem Luftverdichter verdichtete Luft zugeführt wird. Durch die Verbrennung des Brennstoffs wird ein unter hohem Druck stehendes Arbeitsmedium mit einer hohen Temperatur erzeugt. Dieses Arbeitsmedium wird in eine den Brennkammern nachgeschaltete Turbineneinheit geführt, wo es sich arbeitsleistend entspannt.Combustion chambers are part of gas turbines that are used in many areas to drive generators or work machines. In this case, the energy content of a fuel is used to generate a rotational movement of a turbine shaft. The fuel is burned to burners in their downstream combustion chambers, wherein compressed air is supplied by an air compressor. The combustion of the fuel produces a high pressure working fluid at a high temperature. This working fluid is fed into a turbine unit downstream of the combustion chambers, where it relaxes to perform work.
Dabei kann jedem Brenner eine separate Brennkammer zugeordnet sein, wobei das aus den Brennkammern abströmende Arbeitsmedium vor oder in der Turbineneinheit zusammengeführt sein kann. Alternativ kann die Brennkammer aber auch in einer so genannten Ringbrennkammer-Bauweise ausgeführt sein, bei der eine Mehrzahl, insbesondere alle, der Brenner in eine gemeinsame, üblicherweise ringförmige Brennkammer münden. Die sich der Brennkammer in Strömungsrichtung des Arbeitsmediums anschließende Turbineneinheit umfasst üblicherweise eine Turbinenwelle, die mit einer Anzahl von rotierbaren Laufschaufeln verbunden ist, die kranzförmige Laufschaufelreihen bilden. Weiterhin umfasst die Turbineneinheit eine Anzahl von feststehenden Leitschaufeln, die ebenfalls kranzförmig unter der Bildung von Leitschaufelreihen an dem Innengehäuse der Turbine befestigt sind. Die Laufschaufeln dienen dabei zum Antrieb der Turbinenwelle durch Impulsübertrag des die Turbineneinheit durchströmenden Arbeitsmediums, während die Leitschaufeln zur Strömungsführung des Arbeitsmediums zwischen jeweils zwei in Strömungsrichtung des Arbeitsmediums gesehen aufeinanderfolgenden Laufschaufelreihen oder Laufschaufelkränzen dienen.In this case, each burner can be assigned a separate combustion chamber, wherein the working medium flowing out of the combustion chambers can be brought together before or in the turbine unit. Alternatively, however, the combustion chamber can also be designed in a so-called annular combustion chamber design, in which a plurality, in particular all, of the burner open into a common, usually annular combustion chamber. The turbine unit adjoining the combustion chamber in the flow direction of the working medium usually comprises a turbine shaft which is provided with a number of rotatable blades connected, forming the annular blade rows. Furthermore, the turbine unit comprises a number of stationary vanes, which are also fixed in a ring shape with the formation of rows of vanes on the inner casing of the turbine. The blades serve to drive the turbine shaft by momentum transfer of the working fluid flowing through the turbine unit, while the guide vanes serve to guide the flow of the working medium between two successive blade rows or blade rows seen in the flow direction of the working medium.
Da die Rotationsbewegung der Turbinenwelle in der Regel zum Antrieb des der Brennkammer vorgeschalteten Luftverdichters genutzt wird, ist diese über die Turbineneinheit hinaus verlängert, so dass im Bereich der der Turbine vorgeschalteten Ringbrennkammer die Turbinenwelle torusartig von dem ringförmigen Brennraum umgeben ist. Der Brennraum ist dabei von einer ringförmigen Außenwand einerseits und einer darin angeordneten ringförmigen Innenwand andererseits begrenzt. Die Innenwand der Brennkammer besteht dazu in der Regel aus zwei oder mehreren Einzelteilen, die auf ihrer der Turbinenwelle zugewandten Seite miteinander verschraubt sind.Since the rotational movement of the turbine shaft is generally used to drive the air compressor upstream of the combustion chamber, it is extended beyond the turbine unit so that in the area of the annular combustion chamber upstream of the turbine, the turbine shaft is surrounded in a toroidal manner by the annular combustion chamber. The combustion chamber is bounded by an annular outer wall on the one hand and an annular inner wall arranged therein on the other hand. As a rule, the inner wall of the combustion chamber consists of two or more individual parts, which are screwed together on their side facing the turbine shaft.
Bei der Auslegung derartiger Gasturbinen ist zusätzlich zur erreichbaren Leistung üblicherweise ein besonders hoher Wirkungsgrad ein Auslegungsziel. Eine Erhöhung des Wirkungsgrades lässt sich dabei aus thermodynamischen Gründen grundsätzlich durch eine Erhöhung der Austrittstemperatur erreichen, mit der das Arbeitsmedium von der Brennkammer ab- und in die Turbineneinheit einströmt. Daher werden Temperaturen von etwa 1200 °C bis 1500 °C für derartige Gasturbinen angestrebt und auch erreicht.In the design of such gas turbines in addition to the achievable power usually a particularly high efficiency is a design target. An increase in the efficiency can be achieved for thermodynamic reasons basically by increasing the outlet temperature at which the working fluid from the combustion chamber and flows into the turbine unit. Therefore, temperatures of about 1200 ° C to 1500 ° C are sought for such gas turbines and achieved.
Bei derartig hohen Temperaturen des Arbeitsmediums sind jedoch die diesem Medium ausgesetzten Komponenten und Bauteile hohen thermischen Belastungen ausgesetzt. Um dennoch bei hoher Zuverlässigkeit eine vergleichsweise lange Lebensdauer der betroffenen Komponenten zu gewährleisten, ist üblicherweise eine Ausgestaltung mit besonders hitzebeständigen Materialien und eine Kühlung der betroffenen Komponenten, insbesondere der Brennkammer, nötig. Um thermische Verspannungen des Materials zu verhindern, welche die Lebensdauer der Komponenten begrenzt, wird in der Regel angestrebt, eine möglichst gleichmäßige Kühlung der Komponenten zu erreichen.At such high temperatures of the working medium, however, exposed to this medium components and components are exposed to high thermal loads. Nevertheless, at high Reliability to ensure a comparatively long life of the affected components, is usually a design with particularly heat-resistant materials and cooling of the affected components, in particular the combustion chamber, necessary. In order to prevent thermal stresses of the material, which limits the life of the components, the aim is generally to achieve the most uniform possible cooling of the components.
Die Brennkammerwand kann dazu auf ihrer Innenseite mit Hitzeschildelementen ausgekleidet sein, die mit besonders hitzebeständigen Schutzschichten versehen werden können, und die durch die eigentliche Brennkammerwand hindurch gekühlt werden. Dazu kann ein auch als "Prallkühlung" bezeichnetes Kühlverfahren eingesetzt werden. Bei der Prallkühlung wird ein Kühlmittel, in der Regel Kühlluft, durch eine Vielzahl von Bohrungen in der Brennkammerwand den Hitzeschildelementen zugeführt, so dass das Kühlmittel im Wesentlichen senkrecht auf ihre der Brennkammerwand zugewandte, außen liegende Fläche prallt. Das durch den Kühlprozess aufgeheizte Kühlmittel wird anschließend aus dem Innenraum, den die Brennkammerwand mit den Hitzeschildelementen bildet, abgeführt. Eine derartige Ausgestaltung ist aus
Die Herstellung eines solchen Kühlsystems kann jedoch sehr aufwendig sein, da zur Realisierung einer möglichst gleichmäßigen Kühlung der Hitzeschilde sehr viele Bohrungen in der Brennkammerwand mit einem vergleichsweise kleinen Querschnitt benötigt werden, was sehr zeit- und kostenintensiv sein kann. Insbesondere sind die Anforderungen an die zur Fertigung der Bohrungen benötigten Werkzeuge sehr hoch, da die Kühlluftbohrungen im Vergleich zu ihrem Querschnitt relativ lang sind, da die Wandung der Brennkammerwand aus Stabilitätsgründen eine ausreichend große Stärke aufweisen muss. Weiterhin kann es bei einer großen Anzahl von Kühlluftbohrungen, die in ihrer Summe eine hohe Oberfläche aufweisen, zu Reibung und Verwirbelungen bei der Zufuhr des Kühlmittels kommen. Dies führt zu einem erhöhten Kühlmitteldruckverlust im Kühlmittelkreislauf, der sich nachteilig auf den Wirkungsgrad der Brennkammer auswirkt.However, the production of such a cooling system can be very complicated, since to achieve the most uniform cooling of the heat shields very many holes in the combustion chamber wall with a comparatively small cross-section are needed, which can be very time consuming and costly. In particular, the requirements for the tools required for the production of bores are very high, since the cooling air bores are relatively long in comparison to their cross-section, since the wall of the combustion chamber wall for reasons of stability must have a sufficiently large thickness. Furthermore, in the case of a large number of cooling air holes, which in their sum have a high surface area, friction and turbulence may occur in the supply of the coolant. This leads to an increased coolant pressure loss in the coolant circuit, which adversely affects the efficiency of the combustion chamber.
Der oben beschriebene Aufbau der Ringbrennkammer weist außerdem bezüglich anfallender Wartungsarbeiten einige weitere Nachteile auf. Bei diesen in der Regel regelmäßig durchgeführten Wartungs- und Reparaturarbeiten müssen aufgrund der hohen thermischen und mechanischen Belastung Teile der Brennkammer wie beispielsweise die Hitzeschildelemente oder das eingesetzte Kühlsystem sowie insbesondere auch Bauteile der nachgeschalteten Turbineneinheit repariert bzw. ausgewechselt werden. Nachteilig am Aufbau der Brennkammer ist, dass die Turbinenwelle bei Wartungsarbeiten nicht von der Brennkammer aus zugänglich ist. So müssen für Wartungsarbeiten an der Turbinenwelle im Bereich der Ringbrennkammer oder für Reparaturen an den sich an die Brennkammer unmittelbar anschließenden ersten Leit- und Laufschaufeln in der Regel alle sich anschließenden Leit- und Leitschaufeln der Turbineneinheit entfernt werden. Erst nach der Demontage sämtlicher Leit- und Laufschaufeln der Turbine ist es möglich über die der Turbinenwelle zugewandten Verschraubung die Innenwand der Brennkammer zu entfernen und so Zugang zur Turbinenwelle zu erhalten. Die Montagearbeiten sind daher sehr arbeits- und zeitintensiv. Durch den vergleichsweise langen Betriebsausfall der Gasturbine, entstehen zusätzlich zu den Montagekosten der Gasturbine Betriebsausfallskosten, die zu vergleichsweise sehr hohen Gesamtkosten von Wartungs- und Reparaturarbeiten der Gasturbine führen.The above-described structure of the annular combustion chamber also has some other disadvantages with respect to maintenance work. In these usually regularly performed maintenance and repair work parts of the combustion chamber such as the heat shield elements or the cooling system used and in particular also components of the downstream turbine unit must be repaired or replaced due to the high thermal and mechanical stress. A disadvantage of the construction of the combustion chamber is that the turbine shaft is not accessible from the combustion chamber during maintenance. Thus, for maintenance work on the turbine shaft in the region of the annular combustion chamber or for repairs to the first guide vanes and rotor blades directly adjoining the combustion chamber, generally all the adjoining vanes and guide vanes of the turbine unit must be removed. Only after the disassembly of all guide vanes and blades of the turbine, it is possible to remove the inner wall of the combustion chamber via the gland facing the turbine shaft and thus to gain access to the turbine shaft. The assembly work is therefore very laborious and time consuming. Due to the comparatively long operating failure of the gas turbine, in addition to the installation costs of the gas turbine, operating costs incurred, which lead to comparatively very high total costs of maintenance and repair of the gas turbine.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Brennkammer der oben genannten Art anzugeben, die bei vergleichsweise einfacher Bauweise für einen besonders hohen Anlagenwirkungsgrad geeignet ist und bei der die Innenwand der Brennkammer vergleichsweise schnell und einfach demontierbar ist.The invention is therefore based on the object to provide a combustion chamber of the type mentioned above, which is suitable for comparatively simple construction for a particularly high system efficiency and in which the inner wall of the combustion chamber is comparatively quickly and easily disassembled.
Weiterhin soll eine Gasturbine mit der oben genannten Brennkammer angegeben werden.Furthermore, a gas turbine to be specified with the above-mentioned combustion chamber.
Bezüglich der Brennkammer wird die Aufgabe erfindungsgemäß gelöst, indem in dem dem jeweiligen Hitzeschildelement zugeordneten Innenraum jeweils eine Anzahl von Kühlmittelverteilern angeordnet ist, und indem die Innenwand der Brennkammer aus einer Anzahl von auf einer Tragstruktur der Innenwand befestigten Wandelementen gebildet ist, wobei die Tragstruktur von einer Anzahl von an einer horizontalen Teilfuge aneinander stoßenden Teilstücke gebildet wird, die im Bereich der Teilfuge über eine Anzahl von schräg zur Innenwandfläche ausgerichteten Schraubverbindungen miteinander verbunden sind.With regard to the combustion chamber, the object is achieved according to the invention by arranging a number of coolant distributors in the respective heat shield element associated with each interior space, and by forming the inner wall of the combustion chamber from a number of wall elements fastened on a supporting structure of the inner wall, wherein the support structure of a Number of pieces abutting on a horizontal parting line sections is formed, which are connected to each other in the region of the parting line via a number of obliquely aligned with the inner wall surface screw.
Die Erfindung geht dabei von der Überlegung aus, dass für einen besonders hohen Anlagenwirkungsgrad eine zuverlässige und insbesondere flächendeckende Beaufschlagung der Hitzeschildelemente mit Kühlmittel gewährleistet sein sollte. Auch bei konsequenter Einhaltung dieser Vorgabe kann der apparative Aufwand und insbesondere der Herstellungsaufwand gering gehalten werden, indem die Vielzahl der bislang vorgesehenen Kühlmittelbohrungen durch ein vereinfachtes System ersetzt werden. Um dabei einerseits die Kühlwirkung unverändert hoch aufrechtzuerhalten und andererseits die Zufuhr zu vereinfachen, ist eine Aufteilung des Kühlmittel-Strömungspfads in individuelle Teilpfade erst möglichst nahe beim zu kühlenden Hitzeschildelement, also besonders weit am Ende des Strömungspfads, vorgesehen. Diese Funktionen erfüllen die Kühlmittelverteiler. Bezüglich der Wartungsarbeiten geht die Erfindung von der Überlegung aus, dass die Befestigung der verschiedenen Wandelemente der Brennkammerinnenwand aneinander von dem Brennraum aus zugänglich sein sollte und die Brennkammerinnenwand damit auch von diesem aus zu demontieren ist. Gleichzeitig sollten die verschiedenen Tragstrukturelemente der Brennkammerinnenwand, die an ihrer horizontalen Teilfuge aneinanderstoßen, durch eine Befestigung miteinander verbunden werden, die diese durch eine vertikale Kraft an der Teilfuge miteinander verbindet. Diese beiden Funktionen werden durch die schräg zur Innenwandfläche ausgerichteten Schraubverbindungen erfüllt, die neben der Zugänglichkeit von der Brennkammer aus eine ausreichend große vertikale Kraftkomponente zur Befestigung zweier an der horizontalen Teilfuge aneinanderstoßenden Tragstrukturelemente aufweist.The invention is based on the consideration that for a particularly high system efficiency, a reliable and in particular comprehensive coverage of the heat shield elements should be ensured with coolant. Even with consistent compliance with this requirement, the expenditure on equipment and in particular the production cost can be kept low by the variety of hitherto provided coolant holes are replaced by a simplified system. In order to maintain the cooling effect on the one hand unchanged high and on the other hand to simplify the supply, a division of the coolant flow path in individual sub-paths as close as possible to be cooled heat shield element, ie particularly far at the end of the flow path provided. These functions are fulfilled by the coolant distributors. With regard to the maintenance work, the invention is based on the consideration that the attachment of the various wall elements of the combustion chamber inner wall to each other should be accessible from the combustion chamber and the combustion chamber inner wall is therefore also to be dismantled therefrom. At the same time, the various support structure elements of the combustion chamber inner wall, which abut each other at their horizontal parting line, should be connected to each other by a fastening, which by a vertical force on the parting line connects with each other. These two functions are fulfilled by the obliquely oriented to the inner wall surface screw, which has in addition to the accessibility of the combustion chamber of a sufficiently large vertical force component for fastening two adjacent to the horizontal parting support structure elements.
Um die durch die schräg zur Innenwandfläche ausgerichtete Schraubverbindung entstehende horizontale Kraftkomponente zweier durch die Schraubverbindung miteinander verbundener Tragstrukturelemente zu kompensieren, ist jeder Schraubverbindung zweckmäßigerweise eine Passfeder zugeordnet. Die Passfeder vermeidet, dass sich die miteinander verschraubten Tragstrukturelemente an der horizontalen Teilfuge durch die horizontale Kraftkomponente der Schraubverbindung zueinander verschieben. Die Passfeder verläuft hierfür vorteilhafterweise längs der horizontalen Teilfuge und ist jeweils in Nuten der aneinanderstoßenden Tragstrukturelemente passgenau eingepasst, so dass diese sich nicht gegeneinander verschieben können, und vorzugsweise lediglich die für die Befestigung der Schraubverbindung benötigte vertikale Kraftkomponente der Schraubverbindung an der horizontalen Teilfuge auftritt.In order to compensate for the horizontal force component produced by the screw connection aligned obliquely to the inner wall surface of two support structure elements connected to one another by the screw connection, each threaded connection is expediently assigned a key. The feather key avoids that the support structure elements bolted to one another on the horizontal parting line are displaced relative to one another by the horizontal force component of the screw connection. For this purpose, the feather key advantageously runs along the horizontal parting line and is fitted snugly into grooves of the abutting support structure elements, so that they can not move against each other, and preferably only the vertical force component of the screw connection on the horizontal parting line required for fastening the screw connection occurs.
Zweckmäßigerweise ist über einen Kühlmittelverteiler jeweils eine Kühlmittelzuführleitung mit einer Anzahl von Kühlmittelaustrittsöffnungen verbunden. Dadurch können die sich unmittelbar vor den Kühlmittelverteilern befindlichen Hitzeschilde durch Prallkühlung gekühlt werden.Expediently, a coolant supply line is connected in each case via a coolant distributor to a number of coolant outlet openings. As a result, the heat shields located directly in front of the coolant distributors can be cooled by impingement cooling.
Um die Wirkung der Prallkühlung bei Verwendung der Kühlmittelverteiler zu erhöhen, sind die Austrittsöffnungen der Kühlmittelverteiler zweckmäßigerweise derart dimensioniert, dass die Summe ihrer Querschnittsflächen aller Austrittsöffnungen kleiner ist als der Querschnitt der Kühlmittelzuführleitung. Durch diese Querschnittsverkleinerung in Kühlmittelflussrichtung kommt es vorteilhafterweise zu einem Düseneffekt, bei dem sich die Austrittsgeschwindigkeit des Kühlmittels an den Austrittsöffnungen erhöht und sich damit auch die Wirkung der Prallkühlung an den Hitzeschildelementen verbessert.In order to increase the effect of impingement cooling when using the coolant distributor, the outlet openings of the coolant distributor are expediently dimensioned such that the sum of their cross-sectional areas of all outlet openings is smaller than the cross section of the coolant supply line. By this reduction in cross-section in the direction of coolant flow, there is advantageously a nozzle effect, in which the exit velocity of the coolant increases at the outlet openings and thus also improves the effect of the impingement cooling on the heat shield elements.
Das nach dem Kühlprozess aufgeheizte Kühlmittel wird zweckmäßigerweise durch Bohrungen in der Brennkammerwand aus dem Innenraum zwischen den Hitzeschilden und der Brennkammerwand in ein Kühlmittelabführsystem abgeleitet. Durch die Form und eine geeignete Anordnung der Kühlmittelverteiler, die einen ausreichenden Abstand der Kühlmittelverteiler voneinander gewährleistet, kann die aufgeheizte Kühlluft durch die Zwischenräume zwischen den Kühlmittelverteilern hindurch zu den sich an der Brennkammerwand befindlichen Öffnungen der Bohrungen strömen. Um eine gleichmäßige Kühlung der Brennkammer zu gewährleisten, sind die Rückführbohrungen im gleichbleibenden Verhältnis zur Anzahl der Kühlmittelverteiler über die gesamte Länge der Brennkammer vorzugsweise gleichmäßig verteilt, so dass das Kühlmittel in allen Rückführbohrungen gleichmäßig mit einer annähernd gleichen Rückführtemperatur abgeleitet werden kann.The coolant heated after the cooling process is expediently discharged through bores in the combustion chamber wall from the interior space between the heat shields and the combustion chamber wall into a coolant discharge system. Due to the shape and a suitable arrangement of the coolant manifold, which ensures a sufficient distance of the coolant manifolds from each other, the heated cooling air can flow through the spaces between the coolant manifolds through to the located on the combustion chamber wall openings of the holes. In order to ensure a uniform cooling of the combustion chamber, the return bores are preferably uniformly distributed over the entire length of the combustion chamber in constant proportion to the number of coolant distributors, so that the coolant can be uniformly discharged in all return bores with an approximately equal return temperature.
Um die Hitzeschilde flächenabdeckend an der Innenwand über denen sich an der Wand befindenden Kühlmittelverteilern, den Rückführbohrungen sowie den Teilfugenverschraubungen zu positionieren, sind diese zweckmäßigerweise über ein System mit Nut und Feder an der Innenwand der Brennkammer befestigt. Dabei sind Hitzeschildelemente an ihren Rändern vorzugsweise derart geformt, dass sie durch eine zweifache Biegung brennkammerwärts eine Verankerung ausbilden, die sich in einer Aussparung der Brennkammerwand, welche die Nut bildet, verankern und damit befestigen lässt. Zweckmäßigerweise ist die Aussparung in der Brennkammerwand für aneinanderliegende Hitzeschildelemente zusammengefasst, so dass aneinanderliegende Hitzeschildelemente an ihrer, durch die Biegung entstehenden Stirnseite, aneinander stoßen und so eine Abdichtung für die Brennkammer und des darin strömenden Arbeitsmediums darstellen.In order to position the heat shields covering the surface on the inner wall above those located on the wall coolant distributors, the return bores and the Teilfugenverschraubungen, these are conveniently attached via a system with tongue and groove on the inner wall of the combustion chamber. In this case, heat shield elements are preferably formed at their edges in such a way that, through a double bend, they form an anchorage in the combustion chamber, which can be anchored in a recess of the combustion chamber wall which forms the groove and thus fastened. Conveniently, the recess in the combustion chamber wall is summarized for adjacent heat shield elements, so that adjacent heat shield elements abut each other at their, resulting from the bending end face, and thus constitute a seal for the combustion chamber and the working medium flowing therein.
Die oben genannte Brennkammer ist vorzugsweise Bestandteil einer Gasturbine.The abovementioned combustion chamber is preferably part of a gas turbine.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die Verwendung von Kühlmittelverteilern auch bei nur geringem Herstellungsaufwand eine großflächige und umfassende Beaufschlagung der Hitzeschildelemente mit Kühlmittel ermöglicht ist. Zudem kann der Kühlmitteldruckverlust bei der Kühlung der Brennkammer gering gehalten werden, so dass sich damit der Anlagenwirkungsgrad der Brennkammer erhöht. Der geringe Kühlmitteldruckverlust kann insbesondere auch erreicht werden, weil die Kühlluftverteiler nur wenige Zuführbohrungen in der Brennkammerwand benötigen. Die Verwendung einer Anzahl von Kühlmittelverteilern kann eine gleichmäßige Kühlung bei geringem Kühlmitteldruckverlust gewährleisten, da bei der Kühlmittelzufuhr über einen Kühlmittelverteiler das Kühlmittel sich erst kurz vor der Prallkühlung an den Hitzeschildelementen von einer größeren Kühlmittelzuführleitung in mehrere kleinere Kühlmittelaustrittsöffnungen verzweigt. Dadurch ist gewährleistet, dass das Kühlmittel nur eine kurze Strecke mit einem relativ geringen Querschnitt durchströmt, so dass der Kühlmitteldruckverlust begrenzt ist.The advantages achieved by the invention are in particular that a large-scale and comprehensive loading of the heat shield elements with coolant is made possible by the use of coolant manifolds even with low production costs. In addition, the coolant pressure loss can be kept low during the cooling of the combustion chamber, so that thus increases the system efficiency of the combustion chamber. The low coolant pressure loss can also be achieved, in particular, because the cooling air distributors require only a few supply bores in the combustion chamber wall. The use of a number of coolant distributors can ensure uniform cooling with low coolant pressure loss, since in the case of coolant supply via a coolant distributor, the coolant branches off from a larger coolant supply line into a plurality of smaller coolant outlet openings only shortly before impingement cooling at the heat shield elements. This ensures that the coolant flows through only a short distance with a relatively small cross-section, so that the coolant pressure loss is limited.
Durch die Teilfugenverschraubung der Brennkammerwände ist eine vergleichsweise einfache und schnelle Montage der Brennkammerwände möglich. Insbesondere die Möglichkeit, die Innenwand der Brennkammer zu entfernen, ermöglicht einen schnellen Zugang zur Turbinenwelle und den sich der Brennkammer unmittelbar anschließenden Lauf- und Leitschaufeln der Turbineneinheit zwecks Wartungs- und Reparaturarbeiten. Eine zeitaufwendige Entfernung der sich im weiteren Verlauf der Turbineneinheit befindlichen Lauf- und Leitschaufeln kann durch den ermöglichten Zugang vom Brennkammerinnenraum daher entfallen, so dass Wartungsarbeiten vergleichsweise einfach und zeitsparend durchführbar sind.Due to the Teilfugenverschraubung the combustion chamber walls a comparatively simple and quick installation of the combustion chamber walls is possible. In particular, the possibility to remove the inner wall of the combustion chamber, allows rapid access to the turbine shaft and the turbine chamber immediately adjacent blades and vanes of the turbine unit for maintenance and repair work. A time-consuming removal of the runners and guide vanes located in the further course of the turbine unit can therefore be dispensed with by the access made possible by the combustion chamber interior, so that maintenance work can be carried out comparatively easily and in a time-saving manner.
Durch die Befestigung der Hitzeschildelemente mit einem Nut/Feder-System wird bei einer ausreichenden Abdichtung des Brennkammerinnenraums zugleich genug Raum für das sich unter den Hitzeschilden befindliche Kühlsystem sowie die Teilfugenverschraubung geschaffen.By attaching the heat shield elements with a tongue and groove system is at the same time enough space for the located under the heat shields cooling system and the Teilfugenverschraubung created with a sufficient seal of the combustion chamber interior.
Die oben genannte Brennkammer ist vorzugsweise Bestandteil einer Gasturbine.The abovementioned combustion chamber is preferably part of a gas turbine.
Ein Ausführungsbeispiel wird anhand einer Zeichnung näher erläutert. Darin zeigen:
- FIG 1
- einen Halbschnitt durch eine Gasturbine,
- FIG 2
- einen Schnitt durch eine Brennkammer,
- FIG 3
- eine Seitenansicht der Ringbrennkammer,
- FIG 4
- im Schnitt eine Schraubverbindung der Wandelemente der Brennkammerinnenwand, und
- FIG 5
- im Schnitt einen Ausschnitt der Brennkammerwand.
- FIG. 1
- a half-section through a gas turbine,
- FIG. 2
- a section through a combustion chamber,
- FIG. 3
- a side view of the annular combustion chamber,
- FIG. 4
- in section, a screw connection of the wall elements of the combustion chamber inner wall, and
- FIG. 5
- in section a section of the combustion chamber wall.
Die Gasturbine 1 gemäß
Die Turbine 6 weist eine Anzahl von mit der Turbinenwelle 8 verbundenen, rotierbaren Laufschaufeln 12 auf. Die Laufschaufeln 12 sind kranzförmig an der Turbinenwelle 8 angeordnet und bilden somit eine Anzahl von Laufschaufelreihen. Weiterhin umfasst die Turbine 6 eine Anzahl von feststehenden Leitschaufeln 14, die ebenfalls kranzförmig unter der Bildung von Leitschaufelreihen an einem Innengehäuse 16 der Turbine 6 befestigt sind. Die Laufschaufeln 12 dienen dabei zum Antrieb der Turbinenwelle 8 durch Impulsübertrag vom die Turbine 6 durchströmenden Arbeitsmedium M. Die Leitschaufeln 14 dienen hingegen zur Strömungsführung des Arbeitsmediums M zwischen jeweils zwei in Strömungsrichtung des Arbeitsmediums M gesehen aufeinanderfolgenden Laufschaufelreihen oder Laufschaufelkränzen. Ein aufeinanderfolgendes Paar aus einem Kranz von Leitschaufeln 14 oder einer Leitschaufelreihe und aus einem Kranz von Laufschaufeln 12 oder einer Laufschaufelreihe wird dabei auch als Turbinenstufe bezeichnet.The turbine 6 has a number of
Jede Leitschaufel 14 weist eine auch als Schaufelfuß bezeichnete Plattform 18 auf, die zur Fixierung der jeweiligen Leitschaufel 14 am Innengehäuse 16 der Turbine 6 als Wandelement angeordnet ist. Die Plattform 18 ist dabei ein thermisch vergleichsweise stark belastetes Bauteil, das die äußere Begrenzung eines Heizgaskanals für das die Turbine 6 durchströmende Arbeitsmedium M bildet. Jede Laufschaufel 12 ist in analoger Weise über eine auch als Schaufelfuß bezeichnete Plattform 20 an der Turbinenwelle 8 befestigt.Each vane 14 has a
Zwischen den beabstandet voneinander angeordneten Plattformen 18 der Leitschaufeln 14 zweier benachbarter Leitschaufelreihen ist jeweils ein Führungsring 21 am Innengehäuse 16 der Turbine 6 angeordnet. Die äußere Oberfläche jedes Führungsrings 21 ist dabei ebenfalls dem heißen, die Turbine 6 durchströmenden Arbeitsmedium M ausgesetzt und in radialer Richtung vom äußeren Ende 22 der ihm gegenüber liegenden Laufschaufel 12 durch einen Spalt beabstandet. Die zwischen benachbarten Leitschaufelreihen angeordneten Führungsringe 21 dienen dabei insbesondere als Abdeckelemente, die die Innenwand oder andere Gehäuse-Einbauteile vor einer thermischen Überbeanspruchung durch das die Turbine 6 durchströmende heiße Arbeitsmedium M schützt.Between the spaced-
Die Brennkammer 4 ist im Ausführungsbeispiel als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Umfangsrichtung um die Turbinenwelle 8 herum angeordneten Brennern 10 in einen gemeinsamen Brennkammerraum münden. Dazu ist die Brennkammer 4 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Turbinenwelle 8 herum positioniert ist.The
Zur weiteren Verdeutlichung der Ausführung der Brennkammer 4 ist in
Wie in der Darstellung nach
Die Brennkammer 4 ist insbesondere dazu ausgelegt, die Wandelemente 30 der Brennkammerinnenwand 28 von dem Brennraum 24 aus demontieren zu können. Dazu sind, wie in
Damit sich die Wandelemente 30 durch die infolge der schräg zur Brennkammerinnenwand 28 verlaufenden Schrauben 33 entstehende horizontale Kraftkomponente nicht gegeneinander verschieben, ist der Schraubverbindung 32 eine Passfeder 35 zugeordnet. Diese verläuft in einer Position nahe zur jeweiligen Schraubverbindung 32 längs der horizontalen Teilfuge 31 der Wandelemente 30 und ist in Nuten der Wandelemente 30 der Brennkammmerinnenwand 28 eingepasst.Thus, the
Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 4 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1200 °C bis 1500 °C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermöglichen, ist die Brennkammerwand 25, wie in
Das Kühlsystem ist bei einem einfachen Aufbau für eine zuverlässige, flächendeckende Beaufschlagung der Hitzeschildelemente 38 mit Kühlluft und zudem für einen besonders geringen Kühlmitteldruckverlust ausgelegt. Dazu werden die Hitzeschildelemente 38 von ihrer Außenseite durch die Kühlluft K gekühlt, die durch eine Anzahl von im vom jeweiligen Hitzeschildelement 38 und der Brennkammerwand 25 gebildeten Innenraum 40 angeordneten Kühlmittelverteilern 42 auf die Oberfläche des jeweiligen Hitzeschildelements 38 geleitet wird.The cooling system is designed with a simple structure for a reliable, full coverage of the
Zur weiteren Verdeutlichung der Ausführung der Kühlung für die Hitzeschildelemente 38 ist in
Wie in der Darstellung nach
Wie in
Claims (7)
- Combustion chamber (4) for a gas turbine (1), the combustion space (24) of which is bounded by an annular combustion chamber inner wall (28) and an annular combustion chamber outer wall (26) which are provided on their inside with a lining formed from a plurality of heat shield elements (38), wherein the or each heat shield element (38) forms together with the combustion chamber wall an inner space (40) to which a cooling medium (K) can be applied and in which there is disposed a cooling medium distributor (42) and wherein the combustion chamber inner wall (28) is formed from a plurality of wall elements (30) abutting each other at a horizontal parting joint (31), characterised in that the wall elements (30) are connected to each other in the area of the parting joint (31) by means of a plurality of screw connections (32) oriented at an angle to the inner wall surface.
- Combustion chamber (4) according to claim 1, wherein a feather key (35) is assigned to the or each screw connection (32).
- Combustion chamber (4) according to claim 1, wherein a cooling medium supply line (44) is connected to a plurality of cooling medium exit openings (46) via a cooling medium distributor (42).
- Combustion chamber (4) according to claims 1 to 3, wherein the cooling medium exit openings (46) are dimensioned such that the sum total of the cross-sectional areas of all the cooling medium exit openings (46) of a cooling medium distributor (42) is less than the cross-sectional area of the assigned cooling medium supply line (44).
- Combustion chamber (4) according to one of claims 1 to 4, wherein the or each inner space (40) is connected to a cooling medium discharge system via a plurality of holes.
- Combustion chamber (4) according to claim 1, wherein the heat shield elements (38) are fixed to the combustion chamber inner wall (28) or to the combustion chamber outer wall (26) via a tongue and groove system.
- Gas turbine (1) with a combustion chamber (4) according to one of claims 1 to 5.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE50310313T DE50310313D1 (en) | 2003-01-29 | 2003-01-29 | combustion chamber |
ES03001890T ES2307834T3 (en) | 2003-01-29 | 2003-01-29 | COMBUSTION CHAMBER. |
EP03001890A EP1443275B1 (en) | 2003-01-29 | 2003-01-29 | Combustion chamber |
CNB2004100020853A CN100393997C (en) | 2003-01-29 | 2004-01-12 | Combustion chamber |
JP2004013771A JP2004340564A (en) | 2003-01-29 | 2004-01-22 | Combustor |
US10/767,677 US7082771B2 (en) | 2003-01-29 | 2004-01-29 | Combustion chamber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03001890A EP1443275B1 (en) | 2003-01-29 | 2003-01-29 | Combustion chamber |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1443275A1 EP1443275A1 (en) | 2004-08-04 |
EP1443275B1 true EP1443275B1 (en) | 2008-08-13 |
Family
ID=32605266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03001890A Expired - Lifetime EP1443275B1 (en) | 2003-01-29 | 2003-01-29 | Combustion chamber |
Country Status (6)
Country | Link |
---|---|
US (1) | US7082771B2 (en) |
EP (1) | EP1443275B1 (en) |
JP (1) | JP2004340564A (en) |
CN (1) | CN100393997C (en) |
DE (1) | DE50310313D1 (en) |
ES (1) | ES2307834T3 (en) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1398569A1 (en) * | 2002-09-13 | 2004-03-17 | Siemens Aktiengesellschaft | Gas turbine |
EP1507116A1 (en) * | 2003-08-13 | 2005-02-16 | Siemens Aktiengesellschaft | Heat shield arrangement for a high temperature gas conveying component, in particular for a gas turbine combustion chamber |
EP1701095B1 (en) * | 2005-02-07 | 2012-01-18 | Siemens Aktiengesellschaft | Heat shield |
EP2049840B1 (en) * | 2006-08-07 | 2018-04-11 | Ansaldo Energia IP UK Limited | Combustion chamber of a combustion installation |
WO2008017551A2 (en) * | 2006-08-07 | 2008-02-14 | Alstom Technology Ltd | Combustion chamber of a combustion plant |
EP2119966A1 (en) * | 2008-05-15 | 2009-11-18 | ALSTOM Technology Ltd | Combustor with reduced carbon monoxide emissions |
EP2119964B1 (en) | 2008-05-15 | 2018-10-31 | Ansaldo Energia IP UK Limited | Method for reducing emissons from a combustor |
IT1391548B1 (en) | 2008-11-05 | 2012-01-11 | Enel Produzione Spa | TURBOGAS WITH SINGLE-CHANNEL COMBUSTOR AND BIFORCATED SMOKE CONVEYOR WITH DIFFERENTIATED FLOW OF DILUTION AIR |
EP2282124A1 (en) * | 2009-08-03 | 2011-02-09 | Alstom Technology Ltd | Method for retrofitting a combustion chamber of a gas turbine |
CN202250397U (en) * | 2011-06-02 | 2012-05-30 | 马鞍山科达洁能股份有限公司 | Gas and steam turbine system |
US20130086920A1 (en) * | 2011-10-05 | 2013-04-11 | General Electric Company | Combustor and method for supplying flow to a combustor |
CN103115381B (en) * | 2011-11-17 | 2015-04-01 | 中航商用航空发动机有限责任公司 | Cylinder wall structure of flame tube |
EP2642203A1 (en) * | 2012-03-20 | 2013-09-25 | Alstom Technology Ltd | Annular Helmholtz damper |
EP2728255A1 (en) * | 2012-10-31 | 2014-05-07 | Alstom Technology Ltd | Hot gas segment arrangement |
WO2014149108A1 (en) | 2013-03-15 | 2014-09-25 | Graves Charles B | Shell and tiled liner arrangement for a combustor |
WO2015036430A1 (en) * | 2013-09-11 | 2015-03-19 | Siemens Aktiengesellschaft | Wedge-shaped ceramic heat shield of a gas turbine combustion chamber |
JP6210810B2 (en) * | 2013-09-20 | 2017-10-11 | 三菱日立パワーシステムズ株式会社 | Dual fuel fired gas turbine combustor |
DE102014204468A1 (en) * | 2014-03-11 | 2015-10-01 | Rolls-Royce Deutschland Ltd & Co Kg | Gas turbine combustor and method for its production |
DE102014221225A1 (en) * | 2014-10-20 | 2016-04-21 | Siemens Aktiengesellschaft | Heat shield element and method for its production |
US10830433B2 (en) | 2016-11-10 | 2020-11-10 | Raytheon Technologies Corporation | Axial non-linear interface for combustor liner panels in a gas turbine combustor |
US10935236B2 (en) | 2016-11-10 | 2021-03-02 | Raytheon Technologies Corporation | Non-planar combustor liner panel for a gas turbine engine combustor |
US10655853B2 (en) | 2016-11-10 | 2020-05-19 | United Technologies Corporation | Combustor liner panel with non-linear circumferential edge for a gas turbine engine combustor |
US10935235B2 (en) | 2016-11-10 | 2021-03-02 | Raytheon Technologies Corporation | Non-planar combustor liner panel for a gas turbine engine combustor |
US10739001B2 (en) * | 2017-02-14 | 2020-08-11 | Raytheon Technologies Corporation | Combustor liner panel shell interface for a gas turbine engine combustor |
US10677462B2 (en) | 2017-02-23 | 2020-06-09 | Raytheon Technologies Corporation | Combustor liner panel end rail angled cooling interface passage for a gas turbine engine combustor |
US10718521B2 (en) | 2017-02-23 | 2020-07-21 | Raytheon Technologies Corporation | Combustor liner panel end rail cooling interface passage for a gas turbine engine combustor |
US10823411B2 (en) | 2017-02-23 | 2020-11-03 | Raytheon Technologies Corporation | Combustor liner panel end rail cooling enhancement features for a gas turbine engine combustor |
US10830434B2 (en) | 2017-02-23 | 2020-11-10 | Raytheon Technologies Corporation | Combustor liner panel end rail with curved interface passage for a gas turbine engine combustor |
US10941937B2 (en) | 2017-03-20 | 2021-03-09 | Raytheon Technologies Corporation | Combustor liner with gasket for gas turbine engine |
US10533747B2 (en) * | 2017-03-30 | 2020-01-14 | General Electric Company | Additively manufactured mechanical fastener with cooling fluid passageways |
DE102017212575A1 (en) * | 2017-07-21 | 2019-01-24 | Siemens Aktiengesellschaft | Method for increasing the power of a gas turbine |
DE102020203017A1 (en) * | 2020-03-10 | 2021-09-16 | Siemens Aktiengesellschaft | Combustion chamber with ceramic heat shield and seal |
SE544235C2 (en) * | 2020-07-09 | 2022-03-08 | Valmet Oy | Cooling shield for a liquor injection pipe, a liquor gun system and a method for cooling a liquor injection pipe |
CN112050255B (en) * | 2020-09-18 | 2022-04-22 | 中国航发四川燃气涡轮研究院 | Flame tube adopting clearance rotational flow cooling |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4480436A (en) * | 1972-12-19 | 1984-11-06 | General Electric Company | Combustion chamber construction |
US4555901A (en) * | 1972-12-19 | 1985-12-03 | General Electric Company | Combustion chamber construction |
US4158949A (en) * | 1977-11-25 | 1979-06-26 | General Motors Corporation | Segmented annular combustor |
DE4114768A1 (en) * | 1990-05-17 | 1991-11-21 | Siemens Ag | Ceramic heat shield for gas turbine flame tube - comprises number of blocks arranged next to one another clamped on cold side of holder |
US5233822A (en) * | 1991-01-31 | 1993-08-10 | General Electric Company | Method and system for the disassembly of an annular combustor |
EP0591565B1 (en) * | 1992-10-05 | 1996-01-24 | Asea Brown Boveri Ag | Stator blade fastening for axial through-flow turbomachines |
DE4244302C2 (en) * | 1992-12-28 | 2002-08-29 | Alstom | Impact cooling device |
JP3415663B2 (en) * | 1992-12-28 | 2003-06-09 | アルストム | Equipment for cooling the cooling surface in an impact manner |
WO1998013645A1 (en) * | 1996-09-26 | 1998-04-02 | Siemens Aktiengesellschaft | Thermal shield component with cooling fluid recirculation and heat shield arrangement for a component circulating hot gas |
DE19805678A1 (en) * | 1997-05-09 | 1998-11-12 | Viktor Matern | Internal combustion engine |
DE29714742U1 (en) * | 1997-08-18 | 1998-12-17 | Siemens AG, 80333 München | Heat shield component with cooling fluid return and heat shield arrangement for a hot gas-carrying component |
DE19809568A1 (en) * | 1998-03-05 | 1999-08-19 | Siemens Ag | Ring-shaped combustion chamber arrangement |
EP1429077B1 (en) * | 2002-12-10 | 2008-07-30 | Siemens Aktiengesellschaft | Gas turbine |
-
2003
- 2003-01-29 EP EP03001890A patent/EP1443275B1/en not_active Expired - Lifetime
- 2003-01-29 ES ES03001890T patent/ES2307834T3/en not_active Expired - Lifetime
- 2003-01-29 DE DE50310313T patent/DE50310313D1/en not_active Expired - Fee Related
-
2004
- 2004-01-12 CN CNB2004100020853A patent/CN100393997C/en not_active Expired - Fee Related
- 2004-01-22 JP JP2004013771A patent/JP2004340564A/en not_active Abandoned
- 2004-01-29 US US10/767,677 patent/US7082771B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004340564A (en) | 2004-12-02 |
US7082771B2 (en) | 2006-08-01 |
ES2307834T3 (en) | 2008-12-01 |
DE50310313D1 (en) | 2008-09-25 |
EP1443275A1 (en) | 2004-08-04 |
US20040182085A1 (en) | 2004-09-23 |
CN1519507A (en) | 2004-08-11 |
CN100393997C (en) | 2008-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1443275B1 (en) | Combustion chamber | |
EP1834066B1 (en) | Turbine blade for a gas turbine, use of a turbine blade and method for cooling a turbine blade | |
EP1636526B1 (en) | Combustion chamber | |
EP2342427B1 (en) | Axial segmented vane support for a gas turbine | |
EP2084368B1 (en) | Turbine blade | |
EP1904717B1 (en) | Hot gas-conducting housing element, protective shaft jacket, and gas turbine system | |
EP1614859A1 (en) | Film cooled turbine blade | |
EP1947293A1 (en) | Guide vane for a gas turbine | |
EP1724526A1 (en) | Shell for a Combustion Chamber, Gas Turbine and Method for Powering up and down a Gas Turbine. | |
EP3017253A1 (en) | Wedge-shaped ceramic heat shield of a gas turbine combustion chamber | |
EP2347101B1 (en) | Gas turbine and corresponding gas or steam turbine plant | |
EP2206885A1 (en) | Gas turbine | |
EP1429077B1 (en) | Gas turbine | |
EP2347100B1 (en) | Gas turbine having cooling insert | |
EP1731715A1 (en) | Transition between a combustion chamber and a turbine | |
WO2004090423A1 (en) | Heat shield element | |
EP2324208B1 (en) | Turbine lead rotor holder for a gas turbine | |
WO2004031656A1 (en) | Gas turbine | |
WO2006072528A1 (en) | Gas turbine comprising a prerotation generator and method for operating a gas turbine | |
EP2218882A1 (en) | Stator vane carrier system | |
EP2024684B1 (en) | Gas turbine comprising armor-plated machine components | |
EP3004741B1 (en) | Tubular combustion chamber with a flame tube end area and gas turbine | |
DE102006010863B4 (en) | Turbomachine, in particular compressor | |
WO2004068035A2 (en) | Heat shield element, combustion chamber and gas turbine | |
EP1420208A1 (en) | Combustion chamber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
17P | Request for examination filed |
Effective date: 20040906 |
|
AKX | Designation fees paid |
Designated state(s): DE ES FR GB IT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50310313 Country of ref document: DE Date of ref document: 20080925 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2307834 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090514 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080813 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20091030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090129 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090202 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090130 |