EP1005620B1 - Thermal shield component with recirculation of cooling fluid - Google Patents

Thermal shield component with recirculation of cooling fluid Download PDF

Info

Publication number
EP1005620B1
EP1005620B1 EP98948745A EP98948745A EP1005620B1 EP 1005620 B1 EP1005620 B1 EP 1005620B1 EP 98948745 A EP98948745 A EP 98948745A EP 98948745 A EP98948745 A EP 98948745A EP 1005620 B1 EP1005620 B1 EP 1005620B1
Authority
EP
European Patent Office
Prior art keywords
hollow body
heat
insert
cooling fluid
shield component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98948745A
Other languages
German (de)
French (fr)
Other versions
EP1005620A1 (en
Inventor
Heinrich Pütz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1005620A1 publication Critical patent/EP1005620A1/en
Application granted granted Critical
Publication of EP1005620B1 publication Critical patent/EP1005620B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/02Casings; Linings; Walls characterised by the shape of the bricks or blocks used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/205Cooling fluid recirculation, i.e. after having cooled one or more components the cooling fluid is recovered and used elsewhere for other purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/221Improvement of heat transfer
    • F05B2260/224Improvement of heat transfer by increasing the heat transfer surface
    • F05B2260/2241Improvement of heat transfer by increasing the heat transfer surface using fins or ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00012Details of sealing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies

Definitions

  • the invention relates to a heat shield component, the part a hot gas wall to be cooled. Furthermore concerns the Invention a heat shield arrangement which has a hot gas space, in particular a combustion chamber of a gas turbine plant and has a plurality of heat shield components.
  • combustion chambers are also located above the front and middle Area of the combustion chamber distributes a second type of channels, through the air coming from the combustion chamber exterior through the Combustion chamber housing and the layer panels in the combustion chamber arrives.
  • EP 0 224 817 B1 describes a heat shield arrangement, in particular for structural parts of gas turbine systems.
  • the heat shield arrangement has an inner lining heat-resistant material, which is assembled across the board is made of heat shield elements anchored to the supporting structure. These heat shield elements are left in place of columns for the flow of cooling fluid side by side arranged and moveable.
  • Each of these heat shield elements has a hat part and a mushroom type Shaft part on.
  • the hat part is a flat or spatial, polygonal plate body with straight or curved edge lines.
  • the shaft part connects the central area of the Panel body with the support structure.
  • the hat part preferably has a triangular shape, thanks to identical hat parts an inner lining of almost any geometry can be produced is.
  • the hat parts and any other parts of the Heat shield elements are made of a highly heat-resistant material, especially a steel.
  • the supporting structure has holes through which a cooling fluid, in particular air, in flow in between the hat part and the support structure can and from there through the column to flow through the Cooling fluids in one surrounded by the heat shield elements Area, for example a combustion chamber of a gas turbine system, can flow in. This cooling fluid flow diminishes the penetration of hot gas into the gap.
  • DE 35 42 532 A1 describes a wall, in particular for gas turbine plants described, which has cooling fluid channels.
  • the wall is preferably between one in gas turbine plants Hot room and a cooling fluid room arranged. she is off individual wall elements put together, each of the wall elements a plate body made of heat-resistant material is. Each plate body has its base distributed, parallel cooling channels on one end with the cooling fluid space and at the other end with the hot space communicate. The flowing into the hot room through the cooling fluid channels guided cooling fluid forms on the Hot room facing surface of the wall element and / or adjacent wall elements a cooling fluid film.
  • all of these heat shield assemblies are in particular the principle underlying gas turbine combustion chambers, that compressor air as a cooling medium for the combustion chamber and its Lining, as well as sealing air is used.
  • the cooling and Seal air enters the combustion chamber without being burned to have participated. This cold air mixes up yourself with the hot gas. As a result, the temperature at the combustion chamber outlet drops. Therefore, the performance of the gas turbine and decreases the efficiency of the thermodynamic process. A compensation can be done in part by a higher Flame temperature is set. However, this results Then there are material problems and higher emission values to be accepted. Also disadvantageous to the The instructions given are that by entering of the cooling fluid into the combustion chamber at that supplied to the burner Air pressure drops result.
  • WO 98/13645 A1 In post-published WO 98/13645 A1 is a heat shield component with cooling fluid return with one to be cooled Hot gas wall, an inlet channel for cooling fluid and one Outlet channel for the cooling fluid described, the inlet channel is executed towards the hot gas wall and turns towards extended to the hot gas wall.
  • the inlet duct is largely from Surround exhaust duct.
  • the supporting structure is a two-wall structure formed with an outer wall and one parallel to this arranged, leaving an intermediate space adjacent Interior wall.
  • the heat shield component has a fastening part on the outlet duct with which the outlet duct is placed on the outer wall and attached to it. Inside the exhaust duct the outer wall has an opening through which the inlet channel is carried out leaving a gap.
  • the Inner wall has a further opening into which the inlet channel is inserted over a short length. Via the inlet duct cooling fluid can be supplied to the heat shield component, which can be removed via the outlet channel.
  • the inlet duct is covered with a cover wall, the impingement cooling openings having. Through the baffle cooling opening from the inlet channel supplied cooling fluid impact against the hot gas wall, whereby this is cooled.
  • the object of the invention is for a hot gas room of a system a heat shield component using a cooling fluid is coolable, and a heat shield arrangement with heat shield components specify the economic operation of the facility allows.
  • a support structure can be attached, with an outer hollow body one insert with one between the outer hollow body and encloses the space formed, wherein the outer hollow body has a first bottom side that can be attached to a hot gas and has side walls and wherein the insert side walls and a second bottom side with a plurality of Has openings for the passage of cooling fluid into the intermediate space, the outer hollow body and the insert each are attachable to the support structure.
  • the heat shield component can be attached to the support structure without the Support structure be penetrated by the heat shield component got to.
  • the support structure is largely closed Surface can be designed, with smaller ones at most Openings, such as holes or the like, for example for fastening the heat shield component in the supporting structure are to be provided that are mechanically easy to attach.
  • the side walls of the insert are on the Support structure attachable that an interior is formed, the is limited by the use and the supporting structure.
  • a fluidic over the openings with the space connected interior formed in the first one Cooling fluid can be introduced, which through the openings in the Intermediate space flows and towards the first bottom side Cooling bounces.
  • the upper edges of the side walls of the hollow body are along the full circumference of the heat shield components on the support structure and cause a substantial seal the room in which the cooling fluid is located the hot gas room.
  • the side walls are advantageous of the hollow body has a geometry that enables a seal between the hollow body and the support structure.
  • the Seal can for example be designed as a press seal his. Due to the geometry of the hollow body the seal on the cold side of the heat shield component.
  • the insert is more preferably interchangeable. This is the heat shield component designed so that, if necessary the insert or the outer hollow body can be replaced alone is.
  • a first and a second outer are preferred Hollow body attachable side by side on the support structure, wherein a side wall of the first outer hollow body and one Side wall of the second outer hollow body left as it is a gap are adjacent, the side walls each have such a surface contour that the gap is tortuous is.
  • the gap forms a throttling point which only leads with difficulty outside the heat shield component Hot gas penetrate into the gap or from the heat shield component Exiting cooling fluid through the gap can. This can be done, for example, by interlocking steps or toothing of adjacent side walls of hollow bodies can be achieved. This will cause gaps in the gap Cooling fluid or hot gas deflected several times.
  • the inner bottom side of the hollow body can preferably have cooling fins or the like, whereby the cooling with a Cooling fluid can be optimized.
  • the attachment of the heat shield components to the support structure is preferably carried out via a centrally attached retaining bolt.
  • the retaining bolt can be provided with disc springs, to ensure greater compliance, when the heat shield component exceeds the allowable elongation.
  • the retaining bolt can attached to the hot side of the heat shield component become. But it is also possible that the retaining bolt on the cold side of the heat shield component is located. The latter has an advantageous effect on the corrosion properties the heat shield component.
  • the bottom of the hollow body can optionally be a triangular, square, (especially square or trapezoidal) or have a hexagonal base. Other suitable ones too Geometries are possible.
  • the typical size of the hollow body is 200 mm Edge length.
  • the wall thickness of the bottom of the hollow body is preferably less than 10 mm, particularly preferably between 3 to 5 mm. This creates a relatively small temperature difference between the inside and outside surface of the bottom side guaranteed of the hollow body. This is a high resistance to load changes of the heat shield component.
  • the heat shield component is made of a heat-resistant material, in particular a metal or a metal alloy. It is advantageous to use the heat shield component, in particular to manufacture the hollow body as an investment casting.
  • a heat shield arrangement one Plurality of arranged side by side on a support structure
  • Heat shield components comprising, a heat shield component is attachable to the support structure and an outer Has hollow body, an insert with a between the outer hollow body and the space formed insert encloses, the outer hollow body a a hot gas has removable first bottom side and side walls and wherein the use of side walls and a second bottom side a plurality of openings for the passage of cooling fluid in has the space, wherein the outer hollow body and the insert can be attached to the supporting structure and with a through the bottom sides of the heat shield components a hot gas-exposed wall of a hot gas-carrying component, in particular a combustion chamber of a gas turbine plant, is formed.
  • a hot gas-carrying component in particular a combustion chamber a gas turbine, is with such a heat shield arrangement can be lined, the heat shield arrangement supporting structure, which, for example, be a wall of the combustion chamber can protect against the effects of heat from the hot gas.
  • the individual heat shield components are closed with a Cooling fluid circuit can be cooled.
  • the support structure preferably has for the heat shield components each in a first area within the side walls of use an inlet channel for cooling fluid and one Outlet channel in the space for cooling fluid. hereby is cooling fluid through the inlet duct using a heat shield component feasible from which the cooling fluid through the Openings in the space for impact cooling of the respective first floor side occurs.
  • the cooling fluid can from the Clearance can be discharged through the outlet channel.
  • the inlet duct with a feed duct is further preferred connected which is arranged outside the hot gas space and the outlet duct is connected to a discharge duct which is also arranged outside the hot gas space. Consequently can supply cooling fluid to the inlet channel via the supply channel take place and a removal of after the impingement cooling heated cooling fluid via the outlet channel and a discharge channel respectively. As a result, cooling fluid is guided into one closed cooling fluid circuit possible.
  • the cooling fluid is preferably from a compressor, in particular a gas turbine, via the feed duct of the heat shield component feedable and is discharged via the discharge channel, in particular, it is fed to a burner.
  • the cooling fluid is thus easily removed from a compressor and after cooling, heats a burner for combustion fed. So all the compressor air is from the combustion fed.
  • the supply of the heat shield components with cooling air and the return of the heated cooling air to a burner Gas turbine system is preferably carried out via axially parallel Supply channels.
  • the channels can be set in the radial direction expand as required and their cross sections of the required Adjust cooling air quantities.
  • the flow path to the heat shield components or heated cooling air to the burner is due to its brevity with only slight pressure losses.
  • the return of the heated cooling air is preferably done via separate discharge channels that lead directly to a burner the gas turbine plant. It is also possible to use the Outlet duct of the heat shield components directly into one Main duct in which the compressor air is fed to the burner will let out. This allows the heat shield components absorbed heat again particularly cheap be fed to the gas turbine process.
  • FIG. 1 shows a gas turbine system 10, which is partially longitudinal is shown cut open.
  • the gas turbine system 10 has a shaft 26 and points one behind the other in the axial direction switched a compressor 9, an annular combustion chamber 11 and the blading (guide vanes 18, moving blades 27).
  • Combustion air is compressed and heated in the compressor 9, partially as cooling fluid 4 of a heat shield arrangement 20 is supplied.
  • the compressed air becomes a plurality supplied by burners 25, which are circular around the Annular combustion chamber 11 are arranged.
  • One in the combustion chambers 25 not shown, burned with the compressor air Fuel forms a hot gas 29 in the combustion chamber 11, which from the combustion chamber 11 into the blading of the gas turbine system 10 (guide blade 18, 27) flows in and thus one Rotation of the shaft 26 causes.
  • Heat shield components that have the shape of hollow Tiles have to be lined or from such tiles that are held on a support structure outside the combustion chamber, build.
  • a heat shield component is shown schematically in FIG.
  • the heat shield component bears the overall reference number 1. It has a hollow body 100 on its bottom side 101 is exposed to hot gas. This ("first") bottom side 101 is exposed to a hot gas stream 29. Laterally the hollow body 100 is delimited by the side walls 102. The lower edge of these side walls 102 is on the Support structure 17. A is located in the hollow body 100 another smaller hollow body than insert 110. This insert 110 has passage openings 113 on its bottom side 111. The insert 110 is laterally limited by its side walls 112. The edge of the side walls 112 is on the Support structure 17. This forms an interior space 150, which is limited by the insert 110 and the support structure 17 is.
  • an intermediate space 151 is thereby formed through the insert 110, the hollow body 100 and the supporting structure 17 is limited.
  • the Support structure 17 In the area 162, which is between the Sidewalls 112 of the insert 110, the Support structure 17 one or more inlet channels 3 through which a cooling fluid 4 can get into the interior 150.
  • the support structure 17 also has outlet channels 5 in the Gap 151 on.
  • coolant fluid 4 flows through the inlet channels 3 into the interior 150 of the insert 110 and passes through the passage openings 113 in the space 151, being against the inside 103 of the bottom side 101 bounces. That after the impact cooling heated cooling fluid is drawn from the space over the Discharge channels 5 discharged, as indicated by arrows in FIG 2 is.
  • the cooling fluid 4 is thus closed Cycle. This prevents the cooling fluid 4 reaches the hot gas space 37.
  • seals 34 By attaching seals 34, it is possible to avoid leakage flows between the support structure 17 and the one seated thereon To prevent side wall 102 of the hollow body 100.
  • the Seals 34 are designed here as press seals, wherein the side wall 102 of the hollow body 100 is a shoulder through which the seal 34 in the region of the connection point between the side wall 102 of the hollow body 100 and the support structure 17 pressed onto the support structure 17 becomes.
  • the supply of cooling fluid 4 takes place in such a way that a compressor 9 through a supply channel 12, the cooling fluid 4th the inlet channels 3 is supplied.
  • This feed channel 12 lies outside the hot gas space 37.
  • the cooling fluid 4 can be fed to the burner 25, for example become.
  • the heat shield component 1 is in the illustrated embodiment fixed on the support structure 17 by a Retaining bolt 130.
  • This retaining bolt 130 is in the middle of the shown rectangular embodiment arranged. His Axis is along the major axis 32 of the heat shield component aligned.
  • the retaining bolt is in the embodiment a thickening on the hot side of the heat shield component 1 executed and with its thinner end on the support structure 17 installed.
  • the retaining bolt cannot with here illustrated disc springs are provided to exceed the permissible thermal expansion of the heat shield component 1 to compensate.
  • the inserts can only be connected via the retaining bolt 130 are exchanged for other bets placed in the Gap 35 between the hollow body 100 and the insert 110 generate another cooling fluid flow field. This allows the cooling conditions for the bottom side 101 of the hollow body 100 are adapted to the specific requirements, resulting from the position of the heat shield component 1 in the hot gas duct result.
  • the heat shield assembly is made up of a plurality of heat shield components arranged on the support structure 17 formed, with only two heat shield components for a better overview 100 and 100A are shown, two Sidewalls 102 and 102A of two adjacent hollow bodies 100 and 100A and part of the support structure 17 can be seen. 115 and 115A are radial to the side walls 102 running cooling fins indicated on the first bottom side. The bottom sides 101 and 101A of the heat shield components 100 and 100A form with the bottom sides of those not shown Heat shield components attachable to a hot gas Wall 160.
  • the adjacent side walls 102 of the hollow body 100 have a mutually corresponding surface contour.
  • This surface contour is designed so that the side wall 102A of that shown in the drawing on the right Hollow body 100A has a shoulder 105, which is a counter shoulder 104 of the side wall 102 of the one shown on the left Hollow body 100 corresponds.
  • hollow body 100 can be produced using the precision casting process geometries such as that described do not present any manufacturing difficulties. Of course it is also possible other geometries for sidewalls 102 and 102A of FIG Hollow body 100 and 100A to choose, in which a linear Gap between hot gas space 37 and support structure 17 avoided becomes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Combustion (AREA)

Abstract

A thermal shield component (1) has an outer hollow body (100) and an insert (110) which can both be mounted on a supporting structure (17). The outer hollow body (100) encloses the insert (110) with a gap (151). The outer hollow body (100) has a first bottom side (101) which can be exposed to a hot gas. The insert (110) has a second bottom side (111) with a plurality of holes (113) through which the cooling fluid (4) flows into the gap (151) for impact-cooling the first bottom side (101). Also disclosed is a thermal shield arrangement (20).

Description

Die Erfindung betrifft eine Hitzeschildkomponente, die Teil einer zu kühlenden Heißgaswand ist. Des weiteren betrifft die Erfindung eine Hitzeschildanordnung, die einen Heißgasraum, insbesondere eine Brennkammer einer Gasturbinenanlage, auskleidet und eine Mehrzahl von Hitzeschildkomponenten aufweist.The invention relates to a heat shield component, the part a hot gas wall to be cooled. Furthermore concerns the Invention a heat shield arrangement which has a hot gas space, in particular a combustion chamber of a gas turbine plant and has a plurality of heat shield components.

Aufgrund der in Heißgaskanälen oder anderen Heißgasräumen herrschenden hohen Temperaturen ist es erforderlich, die Innenwandung eines Heißgaskanales bestmöglichst temperaturresistent zu gestalten. Hierzu bieten sich zum einen hochwarmfeste Werkstoffe, wie z.B. Keramiken an. Der Nachteil keramischer Werkstoffe liegt sowohl in ihrer starken Sprödigkeit als auch in ihrem ungünstigen Wärme- und Temperaturleitverhalten. Als Alternative zu keramischen Werkstoffen für Hitzeschilde bieten sich hochwarmfeste metallische Legierungen auf Eisen-, Chrom-, Nickel- oder Kobaldbasis an. Da die Einsatztemperatur von hochwarmfesten Metalllegierungen aber deutlich unter der maximalen Einsatztemperatur von keramischen Werkstoffen liegt, ist es erforderlich, metallische Hitzeschilde in Heißgaskanälen zu kühlen.Because of in hot gas ducts or other hot gas rooms prevailing high temperatures, it is necessary to the inner wall of a hot gas duct as temperature resistant as possible to design. On the one hand, there are highly heat-resistant ones Materials such as Ceramics. The disadvantage of ceramic Materials lie both in their strong brittleness as well as in their unfavorable heat and temperature conductance. As an alternative to ceramic materials for heat shields there are highly heat-resistant metallic alloys Iron, chrome, nickel or cobalt based. Because the operating temperature of heat-resistant metal alloys clearly below the maximum operating temperature of ceramic materials it is necessary to use metallic heat shields to cool in hot gas channels.

Eine Möglichkeit wird z.B. vorgeschlagen von Craemer in US 4,838,031 vom 13. Juni 1989. Craemer schlägt ein aus vier Komponenten bestehendes Panel vor, daß an der Innenseite eines Brennkammergehäuses zu montieren ist. Dabei besteht die obere, dem Heißgasraum zugewandte Schicht aus einem Refraktärmetall, kann aber auch von einem keramischen Werkstoff gebildet werden. Darunter schließt sich eine Schicht an aus stahlwollartigen metallischen Filamenten. Diese ruht auf einer größeren Anzahl von säulenartigen Stützen. Diese säulenartigen Stützen und die dazwischenliegenden Hohlräume bilden die dritte Schicht. Die säulenartigen Stützen sind auf einer vierten metallischen Schicht angebracht. Die stahlwollartigen metallischen Filamente der zweiten Schicht nehmen Wärmeenergie von der darüberliegenden, die innere Brennerwandung bildenden Schicht auf und geben sie an den zwischen den säulenartigen Stützen geführten Luftstrom weiter. Die Hohlräume der dritten Schicht sind dabei über Kanäle, die durch die vierte Schicht und das Brennergehäuse führen mit einem Raum außerhalb des Brenners verbunden, der über einen Verdichter mit Luft gespeist wird. Durch diese Kanäle kann die verdichtete Luft als Kühlmittel in den von den Schichten gebildeten Hohlraum gelangen.One possibility is e.g. proposed by Craemer in US 4,838,031 dated June 13, 1989. Craemer strikes one out of four Components existing panel that on the inside of a The combustion chamber housing is to be installed. There is the upper layer of a refractory metal facing the hot gas space, can also be formed from a ceramic material become. There is a layer underneath steel wool-like metallic filaments. This rests on one larger number of columnar supports. These columnar ones Support and form the cavities in between the third layer. The columnar supports are open a fourth metallic layer attached. The steel wool-like take metallic filaments of the second layer Thermal energy from the overlying one, the inner burner wall forming layer and pass it to the between the columnar supports continued air flow. The cavities The third layer is through channels that pass through the fourth layer and the burner housing lead with one Space connected outside the burner via a compressor is fed with air. Through these channels the compressed air as a coolant in the layers formed Cavity.

Darüber hinaus befinden sich über den vorderen und mittleren Bereich der Brennkammer verteilt eine zweite Art von Kanälen, durch die vom Brennkammeräußeren herrührende Luft durch das Brennkammergehäuse und die Schichtpanelen in die Brennkammer gelangt.They are also located above the front and middle Area of the combustion chamber distributes a second type of channels, through the air coming from the combustion chamber exterior through the Combustion chamber housing and the layer panels in the combustion chamber arrives.

Der Vorschlag von Craemer weist den Nachteil auf, daß über den gesamten Bereich der Brennkammer kühle Luft in die Brennkammer strömt, ohne an der Verbrennung teilgenommen zu haben. Als Folge davon sinkt die Temperatur am Ausgang der Brennkammer.Craemer's proposal has the disadvantage that over the entire area of the combustion chamber cool air into the combustion chamber flows without having participated in the combustion. As a result, the temperature at the exit of the combustion chamber drops.

In der EP 0 224 817 B1 ist eine Hitzeschildanordnung, insbesondere für Strukturteile von Gasturbinenanlagen, beschrieben. Die Hitzeschildanordnung weist eine Innenauskleidung aus hitzebeständigem Material auf, welche flächendeckend zusammengesetzt ist aus an der Tragstruktur verankerten Hitzeschildelementen. Diese Hitzeschildelemente sind unter Belassung von Spalten zur Durchströmung von Kühlfluid nebeneinander angeordnet und wärmebeweglich. Jedes dieser Hitzeschildelemente weist nach Art eines Pilzes einen Hutteil und einen Schaftteil auf. Der Hutteil ist ein ebener oder räumlicher, polygonaler Plattenkörper mit geraden oder gekrümmten Berandungslinien. Der Schaftteil verbindet den Zentralbereich des Plattenkörpers mit der Tragstruktur. Der Hutteil hat vorzugsweise eine Dreiecksform, wodurch durch identische Hutteile eine Innenauskleidung nahezu beliebiger Geometrie herstellbar ist. Die Hutteile sowie gegebenenfalls sonstige Teile der Hitzeschildelemente bestehen aus einem hochwarmfesten Werkstoff, insbesondere einem Stahl. Die Tragstruktur weist Bohrungen auf, durch welche ein Kühlfluid, insbesondere Luft, in einen Zwischenraum zwischen Hutteil und Tragstruktur einströmen kann und von dort durch die Spalte zur Durchströmung des Kühlfluids in einen von den Hitzeschildelementen umgebenen Raumbereich, beispielsweise eine Brennkammer einer Gasturbinenanlage, einströmen kann. Diese Kühlfluidströmung vermindert das Eindringen von heißem Gas in den Zwischenraum.EP 0 224 817 B1 describes a heat shield arrangement, in particular for structural parts of gas turbine systems. The heat shield arrangement has an inner lining heat-resistant material, which is assembled across the board is made of heat shield elements anchored to the supporting structure. These heat shield elements are left in place of columns for the flow of cooling fluid side by side arranged and moveable. Each of these heat shield elements has a hat part and a mushroom type Shaft part on. The hat part is a flat or spatial, polygonal plate body with straight or curved edge lines. The shaft part connects the central area of the Panel body with the support structure. The hat part preferably has a triangular shape, thanks to identical hat parts an inner lining of almost any geometry can be produced is. The hat parts and any other parts of the Heat shield elements are made of a highly heat-resistant material, especially a steel. The supporting structure has holes through which a cooling fluid, in particular air, in flow in between the hat part and the support structure can and from there through the column to flow through the Cooling fluids in one surrounded by the heat shield elements Area, for example a combustion chamber of a gas turbine system, can flow in. This cooling fluid flow diminishes the penetration of hot gas into the gap.

In der DE 35 42 532 A1 ist eine Wand, insbesondere für Gasturbinenanlagen beschrieben, die Kühlfluidkanäle aufweist. Die Wand ist vorzugsweise bei Gasturbinenanlagen zwischen einem Heißraum und einem Kühlfluidraum angeordnet. Sie ist aus einzelnen Wandelementen zusammengefügt, wobei jedes der Wandelemente ein aus hochwarmfesten Material gefertigter Plattenkörper ist. Jeder Plattenkörper weist über seine Grundfläche verteilte, parallele Kühlkanäle auf, die an einem Ende mit dem Kühlfluidraum und an dem anderen Ende mit dem Heißraum kommunizieren. Das in den Heißraum einströmende, durch die Kühlfluidkanäle geführte Kühlfluid bildet auf der dem Heißraum zugewandten Oberfläche des Wandelementes und/oder benachbarter Wandelemente einen Kühlfluidfilm.DE 35 42 532 A1 describes a wall, in particular for gas turbine plants described, which has cooling fluid channels. The wall is preferably between one in gas turbine plants Hot room and a cooling fluid room arranged. she is off individual wall elements put together, each of the wall elements a plate body made of heat-resistant material is. Each plate body has its base distributed, parallel cooling channels on one end with the cooling fluid space and at the other end with the hot space communicate. The flowing into the hot room through the cooling fluid channels guided cooling fluid forms on the Hot room facing surface of the wall element and / or adjacent wall elements a cooling fluid film.

Zusammenfassend liegt all diesen Hitzeschildanordnungen insbesondere für Gasturbinen-Brennkammern das Prinzip zugrunde, daß Verdichterluft als Kühlmedium für die Brennkammer und deren Auskleidung, sowie als Sperrluft benutzt wird. Die Kühlund Sperrluft tritt in die Brennkammer ein, ohne an der Verbrennung teilgenommen zu haben. Diese kalte Luft vermischt sich mit dem Heißgas. Dadurch sinkt die Temperatur am Brennkammerausgang. Daher sinkt die Leistung der Gasturbine und der Wirkungsgrad des thermodynamischen Prozesses. Eine Kompensation kann teilweise dadurch erfolgen, daß eine höhere Flammentemperatur eingestellt wird. Hierdurch jedoch ergeben sich sodann Werkstoffprobleme und es müssen höhere Emissionswerte in Kauf genommen werden. Ebenfalls nachteilig an den angegebenen Anordnungen ist es, daß sich durch den Eintritt des Kühlfluids in die Brennkammer bei der dem Brenner zugeführten Luft Druckverluste ergeben.In summary, all of these heat shield assemblies are in particular the principle underlying gas turbine combustion chambers, that compressor air as a cooling medium for the combustion chamber and its Lining, as well as sealing air is used. The cooling and Seal air enters the combustion chamber without being burned to have participated. This cold air mixes up yourself with the hot gas. As a result, the temperature at the combustion chamber outlet drops. Therefore, the performance of the gas turbine and decreases the efficiency of the thermodynamic process. A compensation can be done in part by a higher Flame temperature is set. However, this results Then there are material problems and higher emission values to be accepted. Also disadvantageous to the The instructions given are that by entering of the cooling fluid into the combustion chamber at that supplied to the burner Air pressure drops result.

In der nachveröffentlichten WO 98/13645 A1 ist eine Hitzeschildkomponente mit Kühlfluidrückführung mit einer zu kühlenden Heißgaswand, einem Einlaßkanal für Kühlfluid und einem Auslaßkanal für das Kühlfluid beschrieben, wobei der Einlaßkanal zur Heißgaswand hingerichtet ist und sich in Richtung zur Heißgaswand erweitert. Der Einlaßkanal ist weitgehend vom Auslaßkanal umgeben. Die Tragstruktur ist als Zweiwandstruktur ausgebildet mit einer Außenwand und einer zu dieser parallel angeordneten, unter Belassung eines Zwischenraums benachbarten Innenwand. Zur Befestigung an der Tragstruktur weist die Hitzeschildkomponente am Auslaßkanal ein Befestigungsteil auf, mit dem der Auslaßkanal auf die Außenwand aufgesetzt und an dieser befestigt ist. Innerhalb des Auslaßkanals weist die Außenwand eine Öffnung auf, durch die der Einlaßkanal unter Belassung eines Spalts durchgeführt ist. Die Innenwand weist eine weitere Öffnung auf, in die der Einlaßkanal über eine kurze Länge eingeschoben ist. Über den Einlaßkanal ist der Hitzeschildkomponente Kühlfluid zuführbar, welches über den Auslaßkanal abführbar ist. Der Einlaßkanal ist mit einer Abdeckwand abgedeckt, die Prallkühlöffnungen aufweist. Durch die Prallkühlöffnung kann aus dem Einlaßkanal zugeführtes Kühlfluid gegen die Heißgaswand prallen, wobei diese gekühlt wird.In post-published WO 98/13645 A1 is a heat shield component with cooling fluid return with one to be cooled Hot gas wall, an inlet channel for cooling fluid and one Outlet channel for the cooling fluid described, the inlet channel is executed towards the hot gas wall and turns towards extended to the hot gas wall. The inlet duct is largely from Surround exhaust duct. The supporting structure is a two-wall structure formed with an outer wall and one parallel to this arranged, leaving an intermediate space adjacent Interior wall. For attachment to the support structure the heat shield component has a fastening part on the outlet duct with which the outlet duct is placed on the outer wall and attached to it. Inside the exhaust duct the outer wall has an opening through which the inlet channel is carried out leaving a gap. The Inner wall has a further opening into which the inlet channel is inserted over a short length. Via the inlet duct cooling fluid can be supplied to the heat shield component, which can be removed via the outlet channel. The inlet duct is covered with a cover wall, the impingement cooling openings having. Through the baffle cooling opening from the inlet channel supplied cooling fluid impact against the hot gas wall, whereby this is cooled.

Aufgabe der Erfindung ist es, für einen Heißgasraum einer Anlage eine Hitzeschildkomponente, die mit einem Kühlfluid kühlbar ist, sowie eine Hitzeschildanordnung mit Hitzeschildkomponenten anzugeben, die einen ökonomischen Betrieb der Anlage ermöglicht.The object of the invention is for a hot gas room of a system a heat shield component using a cooling fluid is coolable, and a heat shield arrangement with heat shield components specify the economic operation of the facility allows.

Die auf die Hitzeschildkomponente gerichtete Aufgabe wird erfindungsgemäß gelöst durch eine Hitzeschildkomponente die auf einer Tragstruktur anbringbar ist, mit einem äußeren Hohlkörper der einen Einsatz mit einem zwischen dem äußeren Hohlkörper und dem Einsatz gebildeten Zwischenraum umschließt, wobei der äußere Hohlkörper eine einem Heißgas ansetzbare erste Bodenseite und Seitenwände aufweist und wobei der Einsatz Seitenwände und eine zweite Bodenseite mit einer Mehrzahl von Öffnungen zum Durchlaß von Kühlfluid in den Zwischenraum aufweist, wobei der äußere Hohlkörper und der Einsatz jeweils auf der Tragstruktur anbringbar sind. Die Hitzeschildkomponente ist auf der Tragstruktur anbringbar, ohne daß die Tragstruktur von der Hitzeschildkomponente durchdrungen sein muß. Dadurch ist die Tragstruktur weitgehend mit einer geschlossenen Oberfläche ausgestaltbar, wobei allenfalls kleinere Öffnungen, wie Bohrungen oder ähnliches, beispielsweise zur Befestigung der Hitzeschildkomponente in der Tragstruktur vorzusehen sind, die mechanisch einfach anbringbar sind.The object directed to the heat shield component is achieved according to the invention solved by a heat shield component a support structure can be attached, with an outer hollow body one insert with one between the outer hollow body and encloses the space formed, wherein the outer hollow body has a first bottom side that can be attached to a hot gas and has side walls and wherein the insert side walls and a second bottom side with a plurality of Has openings for the passage of cooling fluid into the intermediate space, the outer hollow body and the insert each are attachable to the support structure. The heat shield component can be attached to the support structure without the Support structure be penetrated by the heat shield component got to. As a result, the support structure is largely closed Surface can be designed, with smaller ones at most Openings, such as holes or the like, for example for fastening the heat shield component in the supporting structure are to be provided that are mechanically easy to attach.

Vorzugsweise sind die Seitenwände des Einsatzes so auf die Tragstruktur aufsetzbar, daß ein Innenraum gebildet ist, der von dem Einsatz und der Tragstruktur begrenzt ist. Dadurch ist ein über die Öffnungen mit dem Zwischenraum strömungstechnisch verbundener Innenraum gebildet, in den zunächst ein Kühlfluid einleitbar ist, welches durch die Öffnungen in den Zwischenraum strömt und gegen die erste Bodenseite zu deren Kühlung prallt.Preferably, the side walls of the insert are on the Support structure attachable that an interior is formed, the is limited by the use and the supporting structure. Thereby is a fluidic over the openings with the space connected interior formed in the first one Cooling fluid can be introduced, which through the openings in the Intermediate space flows and towards the first bottom side Cooling bounces.

Insbesondere stehen die Oberkanten der Seitenwände des Hohlkörpers entlang des vollen Umfangs der Hitzeschildkomponenten auf der Tragstruktur auf und bewirken eine weitgehende Abdichtung des Raumes, in dem sich das Kühlfluid befindet, gegenüber dem Heißgasraum. Vorteilhaft besitzen die Seitenwände des Hohlkörpers eine Geometrie, die es ermöglicht, eine Dichtung zwischen Hohlkörper und Tragstruktur einzubringen. Die Dichtung kann beispielsweise als eine Quetschdichtung ausgeführt sein. Bedingt durch die Geometrie des Hohlkörpers liegt die Dichtung dabei auf der kalten Seite der Hitzeschildkomponente.In particular, the upper edges of the side walls of the hollow body are along the full circumference of the heat shield components on the support structure and cause a substantial seal the room in which the cooling fluid is located the hot gas room. The side walls are advantageous of the hollow body has a geometry that enables a seal between the hollow body and the support structure. The Seal can for example be designed as a press seal his. Due to the geometry of the hollow body the seal on the cold side of the heat shield component.

Weiter bevorzugt ist der Einsatz austauschbar. Dadurch ist die Hitzeschildkomponente so ausgestaltet, daß gegebenenfalls der Einsatz oder der äußere Hohlkörper jeweils allein austauschbar ist.The insert is more preferably interchangeable. This is the heat shield component designed so that, if necessary the insert or the outer hollow body can be replaced alone is.

Bevorzugtermaßen sind ein erster und ein zweiter äußerer Hohlkörper nebeneinander auf der Tragstruktur anbringbar, wobei eine Seitenwand des ersten äußeren Hohlkörpers und eine Seitenwand des zweiten äußeren Hohlkörpers unter Belassung eines Spalts benachbart sind, wobei die Seitenwände jeweils eine solche Oberflächenkontur aufweisen, daß der Spalt gewunden ist. Dadurch bildet der Spalt eine Drosselstelle, über die nur erschwert außerhalb der Hitzeschildkomponente geführtes Heißgas in den Spalt eindringen oder aus der Hitzeschildkomponente austretendes Kühlfluid durch den Spalt treten kann. Dies kann beispielsweise durch ineinandergreifende Stufen oder Verzahnungen benachbarter Seitenwände von Hohlkörpern erreicht werden. Dadurch wird in den Spalt tretendes Kühlfluid oder Heißgas mehrfach umgelenkt. A first and a second outer are preferred Hollow body attachable side by side on the support structure, wherein a side wall of the first outer hollow body and one Side wall of the second outer hollow body left as it is a gap are adjacent, the side walls each have such a surface contour that the gap is tortuous is. As a result, the gap forms a throttling point which only leads with difficulty outside the heat shield component Hot gas penetrate into the gap or from the heat shield component Exiting cooling fluid through the gap can. This can be done, for example, by interlocking steps or toothing of adjacent side walls of hollow bodies can be achieved. This will cause gaps in the gap Cooling fluid or hot gas deflected several times.

Bevorzugt kann die innere Bodenseite des Hohlkörpers Kühlrippen oder dergleichen aufweisen, wodurch die Kühlung mit einem Kühlfluid optimierbar ist.The inner bottom side of the hollow body can preferably have cooling fins or the like, whereby the cooling with a Cooling fluid can be optimized.

Die Befestigung der Hitzeschildkomponenten an der Tragstruktur erfolgt bevorzugt über einen zentral angebrachten Haltebolzen. Der Haltebolzen kann mit Tellerfedern versehen werden, damit eine größere Nachgiebigkeit gewährleistet ist, wenn die Hitzeschildkomponente die zulässige Dehnung überschreitet. Aus Gründen einfacher Montage kann der Haltebolzen auf der heißen Seite der Hitzeschildkomponente angebracht werden. Es ist aber auch möglich, daß der Haltebolzen auf der kalten Seite der Hitzeschildkomponente sich befindet. Letzteres wirkt sich vorteilhaft auf die Korrosionseigenschaften der Hitzeschildkomponente aus.The attachment of the heat shield components to the support structure is preferably carried out via a centrally attached retaining bolt. The retaining bolt can be provided with disc springs, to ensure greater compliance, when the heat shield component exceeds the allowable elongation. For reasons of simple assembly, the retaining bolt can attached to the hot side of the heat shield component become. But it is also possible that the retaining bolt on the cold side of the heat shield component is located. The latter has an advantageous effect on the corrosion properties the heat shield component.

Die Bodenseite des Hohlkörpers kann wahlweise eine dreieckige, viereckige, (insbesondere quadratische oder trapezförmige) oder sechseckige Grundfläche besitzen. Auch andere geeignete Geometrien sind möglich. Für quadratische Bodenseiten des Hohlkörpers liegt die typische Größenordnung bei 200 mm Kantenlänge. Die Wandstärke der Bodenseite des Hohlkörpers liegt vorzugsweise unter 10 mm, besonders bevorzugt zwischen 3 bis 5 mm. Hierdurch wird ein relativ kleiner Temperaturunterschied zwischen Innen- und Außenoberfläche der Bodenseite des Hohlkörpers gewährleistet. Damit ist eine hohe Lastwechselbeständigkeit der Hitzeschildkomponente erreichbar.The bottom of the hollow body can optionally be a triangular, square, (especially square or trapezoidal) or have a hexagonal base. Other suitable ones too Geometries are possible. For square bottom sides the typical size of the hollow body is 200 mm Edge length. The wall thickness of the bottom of the hollow body is preferably less than 10 mm, particularly preferably between 3 to 5 mm. This creates a relatively small temperature difference between the inside and outside surface of the bottom side guaranteed of the hollow body. This is a high resistance to load changes of the heat shield component.

Die Hitzeschildkomponente besteht aus einem warmfesten Material, insbesondere einem Metall oder einer Metallegierung. Vorteilhaft ist es, die Hitzeschildkomponente, insbesondere den Hohlkörper, als Feingußteil zu fertigen.The heat shield component is made of a heat-resistant material, in particular a metal or a metal alloy. It is advantageous to use the heat shield component, in particular to manufacture the hollow body as an investment casting.

Die auf die Hitzeschildanordnung gerichtete Aufgabe wird erfindungsgemäß gelöst durch eine Hitzeschildanordnung die eine Mehrzahl von nebeneinander an einer Tragstruktur angeordneten Hitzeschildkomponenten umfaßt, wobei eine Hitzeschildkomponente auf der Tragstruktur anbringbar ist und einen äußeren Hohlkörper aufweist, der einen Einsatz mit einem zwischen dem äußeren Hohlkörper und dem Einsatz gebildeten Zwischenraum umschließt, wobei der äußere Hohlkörper eine einem Heißgas ausetzbare erste Bodenseite und Seitenwände aufweist und wobei der Einsatz Seitenwände und eine zweite Bodenseite mit einer Mehrzahl von Öffnungen zum Durchlaß von Kühlfluid in den Zwischenraum aufweist, wobei der äußere Hohlkörper und der Einsatz jeweils auf der Tragstruktur anbringbar sind und wobei durch die Bodenseiten der Hitzeschildkomponenten eine einem Heißgas aussetzbare Wand einer heißgasführenden Komponente, insbesondere einer Brennkammer einer Gasturbinenanlage, gebildet ist.The object directed to the heat shield arrangement is achieved according to the invention solved by a heat shield arrangement one Plurality of arranged side by side on a support structure Heat shield components comprising, a heat shield component is attachable to the support structure and an outer Has hollow body, an insert with a between the outer hollow body and the space formed insert encloses, the outer hollow body a a hot gas has removable first bottom side and side walls and wherein the use of side walls and a second bottom side a plurality of openings for the passage of cooling fluid in has the space, wherein the outer hollow body and the insert can be attached to the supporting structure and with a through the bottom sides of the heat shield components a hot gas-exposed wall of a hot gas-carrying component, in particular a combustion chamber of a gas turbine plant, is formed.

Eine heißgasführende Komponente, insbesondere eine Brennkammer einer Gasturbine, ist mit einer solchen Hitzeschildanordnung auskleidbar, wobei die Hitzeschildanordnung die Tragstruktur, die beispielsweise eine Wand der Brennkammer sein kann, gegen eine Hitzeeinwirkung durch das Heißgas schützt. Die einzelnen Hitzeschildkomponenten sind mit einem geschlossenen Kühlfluidkreislauf kühlbar.A hot gas-carrying component, in particular a combustion chamber a gas turbine, is with such a heat shield arrangement can be lined, the heat shield arrangement supporting structure, which, for example, be a wall of the combustion chamber can protect against the effects of heat from the hot gas. The individual heat shield components are closed with a Cooling fluid circuit can be cooled.

Vorzugsweise weist die Tragstruktur für die Hitzeschildkomponenten jeweils in einem ersten Bereich innerhalb der Seitenwände des Einsatzes einen Einlaßkanal für Kühlfluid und einen Auslaßkanal in den Zwischenraum für Kühlfluid auf. Hierdurch ist Kühlfluid über den Einlaßkanal in den Einsatz einer Hitzeschildkomponente führbar, aus der das Kühlfluid durch die Öffnungen in den Zwischenraum zu einer Prallkühlung der jeweiligen ersten Bodenseite tritt. Das Kühlfluid kann aus dem Zwischenraum über den Auslaßkanal abgeführt werden. The support structure preferably has for the heat shield components each in a first area within the side walls of use an inlet channel for cooling fluid and one Outlet channel in the space for cooling fluid. hereby is cooling fluid through the inlet duct using a heat shield component feasible from which the cooling fluid through the Openings in the space for impact cooling of the respective first floor side occurs. The cooling fluid can from the Clearance can be discharged through the outlet channel.

Weiter bevorzugt ist der Einlaßkanal mit einem Zufuhrkanal verbunden der außerhalb des Heißgasraumes angeordnet ist und der Auslaßkanal ist mit einem Abfuhrkanal verbunden, der ebenfalls außerhalb des Heißgasraumes angeordnet ist. Somit kann eine Zufuhr von Kühlfluid zum Einlaßkanal über den Zufuhrkanal erfolgen und eine Abfuhr des nach der Prallkühlung erwärmten Kühlfluids über den Auslaßkanal und einen Abfuhrkanal erfolgen. Hierdurch ist eine Führung von Kühlfluid in einen geschlossen Kühlfluidkreislauf möglich.The inlet duct with a feed duct is further preferred connected which is arranged outside the hot gas space and the outlet duct is connected to a discharge duct which is also arranged outside the hot gas space. Consequently can supply cooling fluid to the inlet channel via the supply channel take place and a removal of after the impingement cooling heated cooling fluid via the outlet channel and a discharge channel respectively. As a result, cooling fluid is guided into one closed cooling fluid circuit possible.

Bevorzugtermaßen ist das Kühlfluid von einem Verdichter, insbesondere einer Gasturbine, über den Zufuhrkanal der Hitzeschildkomponente zuführbar und wird über den Abfuhrkanal abgeführt, insbesondere wird es dabei einem Brenner zugeführt. Das Kühlfluid ist somit einfach einem Verdichter entnehmbar und nach einer Kühlung erwärmt einem Brenner zur Verbrennung zuführbar. Somit ist sämtliche Verdichterluft der Verbrennung zuführbar.The cooling fluid is preferably from a compressor, in particular a gas turbine, via the feed duct of the heat shield component feedable and is discharged via the discharge channel, in particular, it is fed to a burner. The cooling fluid is thus easily removed from a compressor and after cooling, heats a burner for combustion fed. So all the compressor air is from the combustion fed.

Auf diese Weise wird gewährleistet, daß das Kühlfluid lediglich die Hitzeschildkomponente durchströmt und nicht in den Heißgasraum einzudringen vermag. Durch diese vollständige Rückführung der Kühlluft aus den Hitzeschildkomponenten fällt eine Mischung von Heißgas und Kühlfluid demnach weg, so daß in einer Gasturbinenanlage gegebenenfalls eine niedrigere Heißgastemperatur einstellbar ist. Dies ist mit einer Reduzierung der Stickoxidbelastung verbunden. Durch die geschlossene Kühlluftrückführung tritt ebenfalls keine Kantenumströmung einer Hitzeschildkomponente auf, so daß sich in deren Material eine weitgehend gleichmäßige Temperaturverteilung mit geringen thermischen Spannungen einstellt.This ensures that the cooling fluid is only flows through the heat shield component and not in the Hot gas space is able to penetrate. Through this complete Return of the cooling air from the heat shield components falls a mixture of hot gas and cooling fluid accordingly away, so that possibly a lower one in a gas turbine plant Hot gas temperature is adjustable. This is with a reduction associated with nitrogen oxide pollution. Through the closed Cooling air return does not flow around the edges either a heat shield component, so that in their Material a largely uniform temperature distribution with low thermal stresses.

Die Versorgung der Hitzeschildkomponenten mit Kühlluft und die Rückführung der erwärmten Kühlluft zu einem Brenner der Gasturbinenanlage erfolgt vorzugsweise über achsparallele Versorgungskanäle. Die Kanäle lassen sich in radialer Richtung beliebig erweitern und ihre Querschnitte der erforderlichen Kühlluftmengen anpassen. Alle Hitzeschildkomponenten haben somit im wesentlichen identische Kühllufteintrittsbedingungen. Der Strömungsweg zu den Hitzeschildkomponenten bzw. erwärmten Kühlluft zu dem Brenner ist aufgrund seiner Kürze mit lediglich geringen Druckverlusten behaftet.The supply of the heat shield components with cooling air and the return of the heated cooling air to a burner Gas turbine system is preferably carried out via axially parallel Supply channels. The channels can be set in the radial direction expand as required and their cross sections of the required Adjust cooling air quantities. Have all heat shield components thus essentially identical cooling air entry conditions. The flow path to the heat shield components or heated cooling air to the burner is due to its brevity with only slight pressure losses.

Des weiteren entfallen Druckverluste dadurch, daß kein Kühlfluid in den Heißgasraum eindringt. Die Versorgung der an einer Außenseite einer rotationssymmetrischen heißgasführenden Komponente, insbesondere einer Brennkammer einer Gasturbinenanlage, angeordneten Hitzeschildkomponenten, erfolgt vorzugsweise über die Leitschaufeln der ersten Leitschaufelreihe der Gasturbine. Falls die durch die Leitschaufeln führbare Menge an Kühlluft nicht für eine ausreichende Kühlung der Hitzeschildkomponenten ausreicht, ist es möglich, Versorgungskanäle an der heißgasführenden Komponente, insbesondere der Brennkammer, vorbei an deren Außenseite zu führen.Furthermore, there is no pressure loss due to the fact that no cooling fluid penetrates into the hot gas space. The care of one Outside of a rotationally symmetrical hot gas Component, in particular a combustion chamber of a gas turbine plant, arranged heat shield components, is preferably done over the guide vanes of the first row of guide vanes Gas turbine. If the amount that can be guided through the guide vanes of cooling air is not sufficient to adequately cool the heat shield components sufficient, it is possible to supply channels on the hot gas-carrying component, in particular the Combustion chamber to run past the outside.

Die Rückführung der erwärmten Kühlluft erfolgt vorzugsweise über separate Abfuhrkanäle, die unmittelbar zu einem Brenner der Gasturbinenanlage führen. Es ist ebenfalls möglich, den Auslaßkanal der Hitzeschildkomponenten unmittelbar in einen Hauptkanal, in welchen die Verdichterluft dem Brenner zugeführt wird, münden zu lassen. Hierdurch kann die in die Hitzeschildkomponenten aufgenommene Wärme wieder besonders günstig dem Gasturbinenprozeß zugeführt werden.The return of the heated cooling air is preferably done via separate discharge channels that lead directly to a burner the gas turbine plant. It is also possible to use the Outlet duct of the heat shield components directly into one Main duct in which the compressor air is fed to the burner will let out. This allows the heat shield components absorbed heat again particularly cheap be fed to the gas turbine process.

Im folgenden wird ein Ausführungsbeispiel an Hitzeschildkomponente und eine Hitzeschildanordnung in einer Gasturbinenanlage gegeben. Dabei zeigen:

FIG 1
eine teilweise in Längsrichtung aufgeschnittene Gasturbinenanlage mit einer Ringbrennkammer,
FIG 2
einen Längsschnitt durch eine Hitzeschildkomponente mit Tragstruktur, Zufuhr- und Abfuhrkanal und
FIG 3
eine Schnittdarstellung der Seitenwände benachbarter Hohlkörper, die auf einer Tragstruktur aufgebracht sind.
An exemplary embodiment of a heat shield component and a heat shield arrangement in a gas turbine system are given below. Show:
FIG. 1
a gas turbine system partially cut in the longitudinal direction with an annular combustion chamber,
FIG 2
a longitudinal section through a heat shield component with support structure, feed and discharge channel and
FIG 3
a sectional view of the side walls of adjacent hollow bodies, which are applied to a support structure.

FIG 1 zeigt eine Gasturbinenanlage 10, die teilweise längs aufgeschnitten dargestellt ist. Die Gasturbinenanlage 10 hat eine Welle 26 und weist in axialer Richtung hintereinander geschaltet einen Verdichter 9, eine Ringbrennkammer 11 sowie die Beschaufelung (Leitschaufeln 18, Laufschaufeln 27) auf. In dem Verdichter 9 wird Verbrennungsluft verdichtet und erwärmt, die teilweise als Kühlfluid 4 einer Hitzeschildanordnung 20 zugeführt wird. Die verdichtete Luft wird einer Mehrzahl von Brennern 25 zugeführt, die kreisringförmig um die Ringbrennkammer 11 angeordnet sind. Ein in den Brennkammern 25 nicht dargestellter, mit der Verdichterluft verbrannter Brennstoff bildet in der Brennkammer 11 ein Heißgas 29, welches aus der Brennkammer 11 in die Beschaufelung der Gasturbinenanlage 10 (Leitschaufel 18,27) einströmt und damit einer Rotation der Welle 26 hervorruft.1 shows a gas turbine system 10, which is partially longitudinal is shown cut open. The gas turbine system 10 has a shaft 26 and points one behind the other in the axial direction switched a compressor 9, an annular combustion chamber 11 and the blading (guide vanes 18, moving blades 27). Combustion air is compressed and heated in the compressor 9, partially as cooling fluid 4 of a heat shield arrangement 20 is supplied. The compressed air becomes a plurality supplied by burners 25, which are circular around the Annular combustion chamber 11 are arranged. One in the combustion chambers 25 not shown, burned with the compressor air Fuel forms a hot gas 29 in the combustion chamber 11, which from the combustion chamber 11 into the blading of the gas turbine system 10 (guide blade 18, 27) flows in and thus one Rotation of the shaft 26 causes.

Dabei ist vorgesehen, die ganze Brennkammer-Wand mit den erfindungsgemäßen Hitzeschildkomponenten, die die Form von hohlen Kacheln haben, auszukleiden bzw. aus solchen Kacheln, die auf einer Tragstruktur außerhalb des Brennraums gehalten werden, aufzubauen.It is provided that the entire combustion chamber wall with the invention Heat shield components that have the shape of hollow Tiles have to be lined or from such tiles that are held on a support structure outside the combustion chamber, build.

In FIG 2 ist eine Hitzeschildkomponente schematisch dargestellt. Die Hitzeschildkomponente trägt insgesamt das Bezugszeichen 1. Sie weist einen Hohlkörper 100 auf dessen Bodenseite 101 einem Heißgas aussetzbar ist. Diese ("erste") Bodenseite 101 ist einem Heißgasstrom 29 ausgesetzt. Seitlich begrenzt wird der Hohlkörper 100 durch die Seitenwände 102. Diese Seitenwände 102 stehen mit ihrem unteren Rand auf der Tragstruktur 17 auf. In dem Hohlkörper 100 befindet sich ein weiterer kleinerer Hohlkörper als Einsatz 110. Dieser Einsatz 110 weist an seiner Bodenseite 111 Durchlaßöffnungen 113 auf. Seitlich begrenzt wird der Einsatz 110 durch seine Seitenwände 112. Mit ihrem Rand stehen die Seitenwände 112 auf der Tragstruktur 17 auf. Dadurch ist ein Innenraum 150 gebildet, der durch den Einsatz 110 und die Tragstruktur 17 begrenzt ist. Weiterhin ist dadurch ein Zwischenraum 151 gebildet, der durch den Einsatz 110, den Hohlkörper 100 und die Tragstruktur 17 begrenzt ist. Im Bereich 162, der sich zwischen den Seitenwänden 112 des Einsatzes 110 befindet, weist die Tragstruktur 17 ein oder mehrere Einlaßkanäle 3 auf, durch welche ein Kühlfluid 4 in den Innenraum 150 gelangen kann. Die Tragstruktur 17 weist weiterhin Auslaßkanäle 5 in den Zwischenraum 151 auf. Zu einer Prallkühlung der Bodenseite 101 strömt Kühlfluid 4 durch die Einlaßkanäle 3 in den Innenraum 150 des Einsatzes 110 und gelangt durch die Durchlaßöffnungen 113 in den Zwischenraum 151, wobei es gegen die Innenseite 103 der Bodenseite 101 prallt. Das nach der Prallkühlung erwärmte Kühlfluid wird aus dem Zwischenraum über die Auslaßkanäle 5 abgeführt, wie es durch Pfeile in FIG 2 angedeutet ist. Das Kühlfluid 4 wird somit in einem geschlossenen Kreislauf geführt. Dadurch wird vermieden, daß das Kühlfluid 4 in den Heißgasraum 37 gelangt.A heat shield component is shown schematically in FIG. The heat shield component bears the overall reference number 1. It has a hollow body 100 on its bottom side 101 is exposed to hot gas. This ("first") bottom side 101 is exposed to a hot gas stream 29. Laterally the hollow body 100 is delimited by the side walls 102. The lower edge of these side walls 102 is on the Support structure 17. A is located in the hollow body 100 another smaller hollow body than insert 110. This insert 110 has passage openings 113 on its bottom side 111. The insert 110 is laterally limited by its side walls 112. The edge of the side walls 112 is on the Support structure 17. This forms an interior space 150, which is limited by the insert 110 and the support structure 17 is. Furthermore, an intermediate space 151 is thereby formed through the insert 110, the hollow body 100 and the supporting structure 17 is limited. In the area 162, which is between the Sidewalls 112 of the insert 110, the Support structure 17 one or more inlet channels 3 through which a cooling fluid 4 can get into the interior 150. The support structure 17 also has outlet channels 5 in the Gap 151 on. For impact cooling on the bottom side 101 coolant fluid 4 flows through the inlet channels 3 into the interior 150 of the insert 110 and passes through the passage openings 113 in the space 151, being against the inside 103 of the bottom side 101 bounces. That after the impact cooling heated cooling fluid is drawn from the space over the Discharge channels 5 discharged, as indicated by arrows in FIG 2 is. The cooling fluid 4 is thus closed Cycle. This prevents the cooling fluid 4 reaches the hot gas space 37.

Durch die Anbringung von Dichtungen 34 ist es möglich, Leckageströme zwischen der Tragstruktur 17 und der darauf aufsitzenden Seitenwand 102 des Hohlkörpers 100 zu unterbinden. Die Dichtungen 34 sind hier als Quetschdichtungen ausgebildet, wobei die Seitenwand 102 des Hohlkörpers 100 eine Schulter aufweist, durch welche die Dichtung 34 im Bereich der Verbindungsstelle zwischen der Seitenwand 102 des Hohlkörpers 100 und der Tragstruktur 17 auf die Tragstruktur 17 aufgepreßt wird. By attaching seals 34, it is possible to avoid leakage flows between the support structure 17 and the one seated thereon To prevent side wall 102 of the hollow body 100. The Seals 34 are designed here as press seals, wherein the side wall 102 of the hollow body 100 is a shoulder through which the seal 34 in the region of the connection point between the side wall 102 of the hollow body 100 and the support structure 17 pressed onto the support structure 17 becomes.

Die Versorgung mit Kühlfluid 4 erfolgt in der Weise, daß von einem Verdichter 9 durch einen Zufuhrkanal 12 das Kühlfluid 4 den Einlaßkanälen 3 zugeführt wird. Dieser Zufuhrkanal 12 liegt dabei außerhalb des Heißgasraumes 37. Abgeführt wird das Kühlfluid 4 über einen ebenfalls außerhalb des Heißgasraumes 37 liegenden Abfuhrkanal 13. Durch diesen Abfuhrkanal 13 kann das Kühlfluid 4 beispielsweise dem Brenner 25 zugeführt werden.The supply of cooling fluid 4 takes place in such a way that a compressor 9 through a supply channel 12, the cooling fluid 4th the inlet channels 3 is supplied. This feed channel 12 lies outside the hot gas space 37. is discharged the cooling fluid 4 also outside the hot gas space 37 lying discharge channel 13. Through this discharge channel 13, the cooling fluid 4 can be fed to the burner 25, for example become.

Die Hitzeschildkomponente 1 wird in dem dargestellten Ausführungsbeispiel auf der Tragstruktur 17 fixiert durch einen Haltebolzen 130. Dieser Haltebolzen 130 ist in der Mitte der dargestellten rechteckigen Ausführungsform angeordnet. Seine Achse ist entlang der Hauptachse 32 der Hitzeschildkomponente ausgerichtet. Der Haltebolzen ist im Ausführungsbeispiel mit einer Verdickung auf der heißen Seite der Hitzeschildkomponente 1 ausgeführt und mit seinem dünneren Ende an der Tragstruktur 17 anmontiert. Der Haltebolzen kann mit hier nicht dargestellten Tellerfedern versehen werden, um ein Überschreiten der zulässigen Wärmedehnung der Hitzeschildkomponente 1 zu kompensieren.The heat shield component 1 is in the illustrated embodiment fixed on the support structure 17 by a Retaining bolt 130. This retaining bolt 130 is in the middle of the shown rectangular embodiment arranged. His Axis is along the major axis 32 of the heat shield component aligned. The retaining bolt is in the embodiment a thickening on the hot side of the heat shield component 1 executed and with its thinner end on the support structure 17 installed. The retaining bolt cannot with here illustrated disc springs are provided to exceed the permissible thermal expansion of the heat shield component 1 to compensate.

Wenn der Einsatz 110 und der Hohlkörper 100 mechanisch lösbar nur über den Haltebolzen 130 verbunden sind, können die Einsätze gegen andere Einsätze vertauscht werden, die in den Zwischenraum 35 zwischen dem Hohlkörper 100 und dem Einsatz 110 ein anderes Kühlfluidströmungsfeld erzeugen. Dadurch können die Kühlbedingungen für die Bodenseite 101 des Hohlkörpers 100 an die spezifischen Anforderungen angepaßt werden, die sich aus der Lage der Hitzeschildkomponente 1 im Heißgaskanal ergeben.If the insert 110 and the hollow body 100 mechanically detachable the inserts can only be connected via the retaining bolt 130 are exchanged for other bets placed in the Gap 35 between the hollow body 100 and the insert 110 generate another cooling fluid flow field. This allows the cooling conditions for the bottom side 101 of the hollow body 100 are adapted to the specific requirements, resulting from the position of the heat shield component 1 in the hot gas duct result.

In FIG 3 ist ein Ausschnitt aus einer Hitzeschildanordnung dargestellt. Die Hitzeschildanordnung wird aus einer Mehrzahl von an der Tragstruktur 17 angeordneten Hitzeschildkomponenten gebildet, wobei zur besseren Übersicht nur zwei Hitzeschildkomponenten 100 und 100A dargestellt sind, wobei zwei Seitenwände 102 und 102A zweier benachbarter Hohlkörper 100 und 100A sowie ein Teil der Tragstruktur 17 zu erkennen sind. Mit 115 und 115A sind dabei radial zu den Seitenwänden 102 verlaufende Kühlrippen auf der ersten Bodenseite angedeutet. Die Bodenseiten 101 und 101A der Hitzeschildkomponenten 100 und 100A bilden mit den Bodenseiten der nicht näher dargestellten Hitzeschildkomponenten eine einem Heißgas ansetzbare Wand 160.3 shows a section of a heat shield arrangement shown. The heat shield assembly is made up of a plurality of heat shield components arranged on the support structure 17 formed, with only two heat shield components for a better overview 100 and 100A are shown, two Sidewalls 102 and 102A of two adjacent hollow bodies 100 and 100A and part of the support structure 17 can be seen. 115 and 115A are radial to the side walls 102 running cooling fins indicated on the first bottom side. The bottom sides 101 and 101A of the heat shield components 100 and 100A form with the bottom sides of those not shown Heat shield components attachable to a hot gas Wall 160.

Die benachbarten Seitenwände 102 der Hohlkörper 100 weisen eine sich gegenseitig entsprechende Oberflächenkontur auf. Diese Oberflächenkontur ist so gestaltet, daß die Seitenwand 102A des in der Zeichnung auf der rechten Seite dargestellten Hohlkörpers 100A eine Schulter 105 aufweist, der eine Gegenschulter 104 der Seitenwand 102 des auf der linken Seite dargestellten Hohlkörpers 100 korrespondiert. Durch diese Formgebung mit Schulter 105 und Gegenschulter 104 wird erreicht, daß vom Heißgasraum 37 her kein linearer Spalt 36 zu der Tragstruktur 17 führt.The adjacent side walls 102 of the hollow body 100 have a mutually corresponding surface contour. This surface contour is designed so that the side wall 102A of that shown in the drawing on the right Hollow body 100A has a shoulder 105, which is a counter shoulder 104 of the side wall 102 of the one shown on the left Hollow body 100 corresponds. Through this design with shoulder 105 and counter shoulder 104 is reached, that from the hot gas space 37 ago no linear gap 36 to the Carrying structure 17 leads.

Hierdurch ist ein noch besserer Schutz der Tragstruktur 17 vor Erhitzung durch das Heißgas im Heißgasraum 37 gewährleistet. Da die Hohlkörper 100 im Feingußverfahren herstellbar sind, bereiten Geometrien, wie die beschriebene, keine Herstellungsschwierigkeiten. Selbstverständlich ist es auch möglich, andere Geometrien für die Seitenwände 102 und 102A der Hohlkörper 100 und 100A zu wählen, bei denen ein linearer Spalt zwischen Heißgasraum 37 und Tragstruktur 17 vermieden wird.This provides even better protection for the support structure 17 ensured before heating by the hot gas in the hot gas space 37. Since the hollow body 100 can be produced using the precision casting process geometries such as that described do not present any manufacturing difficulties. Of course it is also possible other geometries for sidewalls 102 and 102A of FIG Hollow body 100 and 100A to choose, in which a linear Gap between hot gas space 37 and support structure 17 avoided becomes.

Claims (12)

  1. Heat-shield component (1) which can be attached to a supporting structure (17) and has an outer hollow body (100) which encloses an insert (110) with an intermediate space (151) formed between the outer hollow body (100) and the insert (110), the outer hollow body (100) having a first base side (101) which can be exposed to a hot gas and side walls (102), and the insert (110) having side walls (112) and a second base side (111) having a plurality of openings (113) for the passage of cooling fluid (4) into the intermediate space (151), the outer hollow body (100) and the insert (110) in each case being attachable to the supporting structure (17).
  2. Heat-shield component (1) according to Claim 1, in which the side walls (112) of the insert (110) can be put onto the supporting structure (17) in such a way that an interior space (150), which is defined by the insert (110) and the supporting structure (17), is formed.
  3. Heat-shield component (1) according to Claim 1 or 2, the insert (110) being exchangeable.
  4. Heat-shield component (1) according to Claim 1, 2 or 3, a first outer hollow body (100) and a second outer hollow body (100A) being attachable next to one another on the supporting structure (17), so that a side wall (102) of the first outer hollow body (100) and a side wall (102A) of the second outer hollow body (100A) are adjacent to one another while leaving a gap (36), which side walls (102, 102A) in each case have a surface contour such that the gap (36) is winding.
  5. Heat-shield component (1) according to one of Claims 1 to 4, the base side (101) having cooling ribs (115) or structural elements of that kind on its surface (103) facing the intermediate space (151).
  6. Heat-shield component (1) according to one of Claims 1 to 5, having a centrally arranged retaining bolt (130) for fastening to the supporting structure (17).
  7. Heat-shield component (1) according to one of Claims 1 to 6, in which the side walls (102) of the hollow body (106) are designed in such a way that a seal (34) can be attached relative to the supporting structure (17).
  8. Heat-shield component (1) according to one of Claims 1 to 7, in which the base side (101) of the hollow body (100) is triangular, hexagonal or four-cornered, in particular quadrilateral or trapezoidal.
  9. Heat-shield arrangement (20) which comprises a plurality of heat-shield components which are arranged next to one another on a supporting structure (17), a heat-shield component (1) being attachable to the supporting structure (17) and having an outer hollow body (100) which encloses an insert (110) with an intermediate space (151) formed between the outer hollow body (100) and the insert (110), the outer hollow body (100) having a first base side (101) which can be exposed to a hot gas and side walls (102), and the insert (110) having side walls (112) and a second base side (111) having a plurality of openings (113) for the passage of cooling fluid (4) into the intermediate space (151), the outer hollow body (100) and the insert (110) in each case being attachable to the supporting structure (17), and a wall (160) of a component directing hot gas, in particular of a combustion chamber of a gas-turbine plant, which wall (160) can be exposed to a hot gas, being formed by the base sides (101 and 111) of the heat-shield component (1).
  10. Heat-shield arrangement (20) according to Claim 9, characterized in that the supporting structure (17) for a heat-shield component (1) has in each case an inlet passage (3) for cooling fluid (4) in a first region (162) inside the side walls (112) of the insert (110) and an outlet passage (5) into the intermediate space (151) for cooling fluid (4).
  11. Heat-shield arrangement (20) according to Claim 10, characterized in that the inlet passage (3) is connected to a feed passage (12), which is arranged outside the hot-gas space (37), and the outlet passage (5) is connected to a discharge passage (13), which is likewise arranged outside the hot-gas space (37).
  12. Heat-shield arrangement (20) according to Claim 11, characterized in that the cooling fluid (4) is fed to the heat-shield component (1) from a compressor (9) via the feed passage (12) and is discharged via the discharge passage (13), and in the process is directed in particular to a burner (25).
EP98948745A 1997-08-18 1998-08-07 Thermal shield component with recirculation of cooling fluid Expired - Lifetime EP1005620B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE29714742U DE29714742U1 (en) 1997-08-18 1997-08-18 Heat shield component with cooling fluid return and heat shield arrangement for a hot gas-carrying component
DE29714742U 1997-08-18
PCT/DE1998/002273 WO1999009354A1 (en) 1997-08-18 1998-08-07 Thermal shield component with recirculation of cooling fluid

Publications (2)

Publication Number Publication Date
EP1005620A1 EP1005620A1 (en) 2000-06-07
EP1005620B1 true EP1005620B1 (en) 2002-07-03

Family

ID=8044728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98948745A Expired - Lifetime EP1005620B1 (en) 1997-08-18 1998-08-07 Thermal shield component with recirculation of cooling fluid

Country Status (5)

Country Link
US (1) US6276142B1 (en)
EP (1) EP1005620B1 (en)
JP (1) JP2001515197A (en)
DE (2) DE29714742U1 (en)
WO (1) WO1999009354A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1507116A1 (en) 2003-08-13 2005-02-16 Siemens Aktiengesellschaft Heat shield arrangement for a high temperature gas conveying component, in particular for a gas turbine combustion chamber
US8522557B2 (en) 2006-12-21 2013-09-03 Siemens Aktiengesellschaft Cooling channel for cooling a hot gas guiding component

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10003728A1 (en) 2000-01-28 2001-08-09 Siemens Ag Heat shield arrangement for a component carrying hot gas, in particular for structural parts of gas turbines
US20030163997A1 (en) * 2000-10-10 2003-09-04 Herman H. Viegas Cryogenic refrigeration unit suited for delivery vehicles
US20020129613A1 (en) * 2000-10-10 2002-09-19 Thermo King Corporation Cryogenic refrigeration unit suited for delivery vehicles
EP1247943A1 (en) * 2001-04-04 2002-10-09 Siemens Aktiengesellschaft Coolable turbine shroud member
EP1248023A1 (en) * 2001-04-04 2002-10-09 Siemens Aktiengesellschaft Sealing system, in particular for use in a gas turbine, and gas turbine
US6751966B2 (en) 2001-05-25 2004-06-22 Thermo King Corporation Hybrid temperature control system
DE10224724A1 (en) 2001-06-04 2003-01-30 Thermo King Corp Control procedure for a self-propelled CRYO cooling system
EP1271056A1 (en) * 2001-06-20 2003-01-02 Siemens Aktiengesellschaft Gas turbine combustion chamber and process for supplying air therein
EP1284390A1 (en) 2001-06-27 2003-02-19 Siemens Aktiengesellschaft Thermal shield for a component carrying hot gases, especially for structural components of gas turbines
US6698212B2 (en) 2001-07-03 2004-03-02 Thermo King Corporation Cryogenic temperature control apparatus and method
US6631621B2 (en) 2001-07-03 2003-10-14 Thermo King Corporation Cryogenic temperature control apparatus and method
US6694765B1 (en) 2002-07-30 2004-02-24 Thermo King Corporation Method and apparatus for moving air through a heat exchanger
EP1400751A1 (en) * 2002-09-17 2004-03-24 Siemens Aktiengesellschaft Combustion chamber for a gas turbine
US6792757B2 (en) 2002-11-05 2004-09-21 Honeywell International Inc. Gas turbine combustor heat shield impingement cooling baffle
EP1420208A1 (en) * 2002-11-13 2004-05-19 Siemens Aktiengesellschaft Combustion chamber
EP1431661A1 (en) * 2002-12-19 2004-06-23 Siemens Aktiengesellschaft Flow guiding body
EP1443275B1 (en) * 2003-01-29 2008-08-13 Siemens Aktiengesellschaft Combustion chamber
US7000396B1 (en) * 2004-09-02 2006-02-21 General Electric Company Concentric fixed dilution and variable bypass air injection for a combustor
EP1672281A1 (en) * 2004-12-16 2006-06-21 Siemens Aktiengesellschaft Thermal shield element
WO2008017551A2 (en) * 2006-08-07 2008-02-14 Alstom Technology Ltd Combustion chamber of a combustion plant
EP2049840B1 (en) * 2006-08-07 2018-04-11 Ansaldo Energia IP UK Limited Combustion chamber of a combustion installation
DE102007008319A1 (en) * 2007-02-16 2008-08-21 Rolls-Royce Deutschland Ltd & Co Kg Method for impingement air cooling for gas turbines
DE102007062699A1 (en) * 2007-12-27 2009-07-02 Rolls-Royce Deutschland Ltd & Co Kg combustion liner
US7874138B2 (en) * 2008-09-11 2011-01-25 Siemens Energy, Inc. Segmented annular combustor
US8015817B2 (en) * 2009-06-10 2011-09-13 Siemens Energy, Inc. Cooling structure for gas turbine transition duct
CH703656A1 (en) * 2010-08-27 2012-02-29 Alstom Technology Ltd From hot gases flowed through housing body with internal heat shield.
EP2522907A1 (en) * 2011-05-12 2012-11-14 Siemens Aktiengesellschaft Heat shield assembly
EP2549063A1 (en) * 2011-07-21 2013-01-23 Siemens Aktiengesellschaft Heat shield element for a gas turbine
EP2728255A1 (en) * 2012-10-31 2014-05-07 Alstom Technology Ltd Hot gas segment arrangement
ITAN20130004A1 (en) 2013-01-10 2014-07-11 Queensbrook Ltd BIODEGRADABLE SYNTHETIC POLYMERIC MATERIAL.
US8984896B2 (en) 2013-08-23 2015-03-24 Pratt & Whitney Canada Corp. Interlocking combustor heat shield panels
US9534784B2 (en) 2013-08-23 2017-01-03 Pratt & Whitney Canada Corp. Asymmetric combustor heat shield panels
US9470421B2 (en) * 2014-08-19 2016-10-18 General Electric Company Combustor cap assembly
GB201501971D0 (en) * 2015-02-06 2015-03-25 Rolls Royce Plc A combustion chamber
US10520194B2 (en) 2016-03-25 2019-12-31 General Electric Company Radially stacked fuel injection module for a segmented annular combustion system
US10641176B2 (en) 2016-03-25 2020-05-05 General Electric Company Combustion system with panel fuel injector
US10641491B2 (en) 2016-03-25 2020-05-05 General Electric Company Cooling of integrated combustor nozzle of segmented annular combustion system
US10830442B2 (en) 2016-03-25 2020-11-10 General Electric Company Segmented annular combustion system with dual fuel capability
US10584876B2 (en) 2016-03-25 2020-03-10 General Electric Company Micro-channel cooling of integrated combustor nozzle of a segmented annular combustion system
US10584880B2 (en) 2016-03-25 2020-03-10 General Electric Company Mounting of integrated combustor nozzles in a segmented annular combustion system
US10605459B2 (en) 2016-03-25 2020-03-31 General Electric Company Integrated combustor nozzle for a segmented annular combustion system
US11428413B2 (en) 2016-03-25 2022-08-30 General Electric Company Fuel injection module for segmented annular combustion system
US10563869B2 (en) 2016-03-25 2020-02-18 General Electric Company Operation and turndown of a segmented annular combustion system
RU170277U1 (en) * 2016-07-29 2017-04-19 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" COMBUSTION CAMERA OF A GAS TURBINE ENGINE WITH LAMINARIZING PANELS
US11156362B2 (en) 2016-11-28 2021-10-26 General Electric Company Combustor with axially staged fuel injection
US10690350B2 (en) 2016-11-28 2020-06-23 General Electric Company Combustor with axially staged fuel injection
US10739001B2 (en) 2017-02-14 2020-08-11 Raytheon Technologies Corporation Combustor liner panel shell interface for a gas turbine engine combustor
US10718521B2 (en) 2017-02-23 2020-07-21 Raytheon Technologies Corporation Combustor liner panel end rail cooling interface passage for a gas turbine engine combustor
US10823411B2 (en) 2017-02-23 2020-11-03 Raytheon Technologies Corporation Combustor liner panel end rail cooling enhancement features for a gas turbine engine combustor
US10830434B2 (en) 2017-02-23 2020-11-10 Raytheon Technologies Corporation Combustor liner panel end rail with curved interface passage for a gas turbine engine combustor
US10677462B2 (en) 2017-02-23 2020-06-09 Raytheon Technologies Corporation Combustor liner panel end rail angled cooling interface passage for a gas turbine engine combustor
US10941937B2 (en) 2017-03-20 2021-03-09 Raytheon Technologies Corporation Combustor liner with gasket for gas turbine engine
US11994293B2 (en) 2020-08-31 2024-05-28 General Electric Company Impingement cooling apparatus support structure and method of manufacture
US11994292B2 (en) 2020-08-31 2024-05-28 General Electric Company Impingement cooling apparatus for turbomachine
US11371702B2 (en) 2020-08-31 2022-06-28 General Electric Company Impingement panel for a turbomachine
US11614233B2 (en) 2020-08-31 2023-03-28 General Electric Company Impingement panel support structure and method of manufacture
US11460191B2 (en) 2020-08-31 2022-10-04 General Electric Company Cooling insert for a turbomachine
US11255545B1 (en) 2020-10-26 2022-02-22 General Electric Company Integrated combustion nozzle having a unified head end
US11767766B1 (en) 2022-07-29 2023-09-26 General Electric Company Turbomachine airfoil having impingement cooling passages

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB849255A (en) * 1956-11-01 1960-09-21 Josef Cermak Method of and arrangements for cooling the walls of combustion spaces and other spaces subject to high thermal stresses
US4422300A (en) * 1981-12-14 1983-12-27 United Technologies Corporation Prestressed combustor liner for gas turbine engine
GB2166120A (en) * 1984-09-15 1986-04-30 Yeate And Hanson Ind Ltd Linings
DE3664374D1 (en) 1985-12-02 1989-08-17 Siemens Ag Heat shield arrangement, especially for the structural components of a gas turbine plant
DE3803086C2 (en) * 1987-02-06 1997-06-26 Gen Electric Combustion chamber for a gas turbine engine
US4838031A (en) 1987-08-06 1989-06-13 Avco Corporation Internally cooled combustion chamber liner
DE58908665D1 (en) * 1988-06-13 1995-01-05 Siemens Ag HEAT SHIELD ARRANGEMENT WITH LOW COOLING FLUID REQUIREMENT.
US5167487A (en) * 1991-03-11 1992-12-01 General Electric Company Cooled shroud support
US5273396A (en) * 1992-06-22 1993-12-28 General Electric Company Arrangement for defining improved cooling airflow supply path through clearance control ring and shroud
US5363643A (en) * 1993-02-08 1994-11-15 General Electric Company Segmented combustor
US5363654A (en) * 1993-05-10 1994-11-15 General Electric Company Recuperative impingement cooling of jet engine components
DE4343332C2 (en) * 1993-12-20 1996-06-13 Abb Management Ag Device for convective cooling of a highly loaded combustion chamber
US5480281A (en) * 1994-06-30 1996-01-02 General Electric Co. Impingement cooling apparatus for turbine shrouds having ducts of increasing cross-sectional area in the direction of post-impingement cooling flow
DE4436728A1 (en) * 1994-10-14 1996-04-18 Abb Research Ltd Method of burning liq. or gas fuel with low harmful emission, e.g. for producing steam
DE4443864A1 (en) * 1994-12-09 1996-06-13 Abb Management Ag Cooled wall part
WO1998013645A1 (en) 1996-09-26 1998-04-02 Siemens Aktiengesellschaft Thermal shield component with cooling fluid recirculation and heat shield arrangement for a component circulating hot gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1507116A1 (en) 2003-08-13 2005-02-16 Siemens Aktiengesellschaft Heat shield arrangement for a high temperature gas conveying component, in particular for a gas turbine combustion chamber
WO2005019730A1 (en) * 2003-08-13 2005-03-03 Siemens Aktiengesellschaft Heat shield arrangement for a hot gas-guiding component, particularly for a combustion chamber of a gas turbine
US7849694B2 (en) 2003-08-13 2010-12-14 Siemens Aktiengesellschaft Heat shield arrangement for a component guiding a hot gas in particular for a combustion chamber in a gas turbine
US8522557B2 (en) 2006-12-21 2013-09-03 Siemens Aktiengesellschaft Cooling channel for cooling a hot gas guiding component

Also Published As

Publication number Publication date
DE29714742U1 (en) 1998-12-17
WO1999009354A1 (en) 1999-02-25
DE59804685D1 (en) 2002-08-08
JP2001515197A (en) 2001-09-18
US6276142B1 (en) 2001-08-21
EP1005620A1 (en) 2000-06-07

Similar Documents

Publication Publication Date Title
EP1005620B1 (en) Thermal shield component with recirculation of cooling fluid
EP0928396B1 (en) Thermal shield component with cooling fluid recirculation and heat shield arrangement for a component circulating hot gas
EP0244693B1 (en) Hot gas overheating protection device for gas turbine power plants
EP1654495B1 (en) Heat shield arrangement for a high temperature gas conveying component, in particular for a gas turbine combustion chamber
EP1032791B1 (en) Combustion chamber and method for cooling a combustion chamber with vapour
DE102005025823B4 (en) Method and device for cooling a combustion chamber lining and a transition part of a gas turbine
DE2622234C2 (en) Device for supplying cooling air into the flame tube of gas turbine combustion chambers
EP0125572B1 (en) Multi-fuel burner
WO2006064038A1 (en) Heat shield element
EP2812636B1 (en) Annular-combustion-chamber bypass
EP1482246A1 (en) Combustion chamber
DE3113380A1 (en) APPLICATION FOR THE BURNER OF A GAS TURBINE ENGINE
EP1409926B1 (en) Baffle cooling device
DE2617999A1 (en) COOLING RING FOR COMBUSTION CHAMBERS
DE2844701A1 (en) LIQUID-COOLED TURBINE ROTOR
DE4223733C2 (en) Connection of mixing tube and flame tube of a gas turbine
WO2016156370A1 (en) Bypass heat shield element
EP1250555B1 (en) Thermal shield for a component carrying hot gases, especially for structural components of gas turbines
WO2006111508A1 (en) Heat shield arrangement
EP0534104B1 (en) Radiant tube with jacket
EP2271876B1 (en) Burner arrangement for liquid fuels and method for producing a burner arrangement
EP1422479B1 (en) Chamber for the combustion of a fluid combustible mixture
EP1707758B1 (en) Shell Element for a Combustion Chamber and Combustion Chamber
EP1420208A1 (en) Combustion chamber
EP1398462A1 (en) Gas turbine and transition piece

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20011128

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59804685

Country of ref document: DE

Date of ref document: 20020808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030404

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150812

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150818

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150825

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151016

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59804685

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160807

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160807

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160807