EP1707758B1 - Shell Element for a Combustion Chamber and Combustion Chamber - Google Patents

Shell Element for a Combustion Chamber and Combustion Chamber Download PDF

Info

Publication number
EP1707758B1
EP1707758B1 EP05006399A EP05006399A EP1707758B1 EP 1707758 B1 EP1707758 B1 EP 1707758B1 EP 05006399 A EP05006399 A EP 05006399A EP 05006399 A EP05006399 A EP 05006399A EP 1707758 B1 EP1707758 B1 EP 1707758B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
shell element
chamber shell
holes
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05006399A
Other languages
German (de)
French (fr)
Other versions
EP1707758A1 (en
Inventor
Dr. Andreas Böttcher
Peter Danyluk
Claus Krusch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP05006399A priority Critical patent/EP1707758B1/en
Priority to ES05006399T priority patent/ES2368717T3/en
Priority to AT05006399T priority patent/ATE522703T1/en
Publication of EP1707758A1 publication Critical patent/EP1707758A1/en
Application granted granted Critical
Publication of EP1707758B1 publication Critical patent/EP1707758B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/243Flange connections; Bolting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/60Support structures; Attaching or mounting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/64Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
    • F05D2230/642Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins using maintaining alignment while permitting differential dilatation

Definitions

  • the present invention relates to a combustion chamber shell element for constructing a combustion chamber together with at least one further combustion chamber shell element.
  • the invention relates to a combustor constructed from combustion chamber shell elements.
  • the invention relates to a combustion chamber outer shell element for constructing the combustion chamber outer shell of an annular combustion chamber for a gas turbine plant.
  • Such a combustion chamber shell element is made EP 1 429 077 A1 known.
  • Combustion chambers for example combustion chambers for gas turbine plants, generally comprise a combustion chamber shell with a heat shield upstream of the combustion chamber shell toward the interior of the combustion chamber.
  • flow channels are arranged between the combustion chamber shell and the heat shields through which a cooling fluid for cooling the combustion chamber shell and the heat shield elements flows, which is previously conducted past the outside of the combustion chamber shell.
  • the aim here is to achieve a homogeneous temperature distribution in the entire combustion chamber shell in order to avoid mechanical stresses due to temperature inhomogeneities.
  • the first object is achieved by a combustion chamber shell element according to claim 1 and the second object by a combustion chamber according to claim 8.
  • the dependent claims contain advantageous developments of the invention.
  • An inventive combustion chamber shell element for constructing a combustion chamber together with at least one further combustion chamber shell element has at least one connection region with receiving recesses for receiving connecting elements, which are provided for establishing the connection with another combustion chamber shell element.
  • the connection area has further recesses which are not provided for receiving connecting elements.
  • connection region can be influenced by means of the further recesses. Both variables have a direct influence on the mechanical stresses occurring in transient states of the gas turbine plant in the connection region and in the regions of the combustion chamber shell adjacent to the connection region.
  • the elasticity of the connecting region can be increased, which counteracts mechanical stresses.
  • Additional recesses formed as holes may increase the surface area of the connection area and thus provide even heating or cooling of the connection area in transient gas turbine conditions.
  • the additional holes may have the same opening dimensions as the through-holes. The through holes and the additional holes can then be made with the same tool.
  • the combustion chamber shell element can have at least one flange as connection region, wherein the receiving recesses and the further recesses are arranged in the flange.
  • the combustion chamber shell element is designed as a half shell and has a structure which makes it possible to build up the combustion chamber outer shell of a combustion chamber in cooperation with a second combustion chamber shell element likewise designed as a half shell.
  • the combustion chamber shell element according to the invention can in particular be configured as a combustion chamber shell element for constructing the combustion chamber outer shell of an annular combustion chamber of a gas turbine plant.
  • the invention also provides a combustion chamber, in particular a combustion chamber for a gas turbine plant, which has an outer shell constructed from at least two combustion chamber shell elements according to the invention.
  • the combustion chamber can be designed in particular as an annular combustion chamber.
  • FIG. 1 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103, which is also referred to as a turbine runner.
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 106 communicates with an annular annular hot gas channel 111, for example.
  • annular annular hot gas channel 111 for example.
  • turbine stages 112 connected in series form the turbine 108.
  • Each turbine stage 112 is formed, for example, from two blade rings. In the flow direction of a working medium As can be seen in the hot gas duct 111 of a guide blade row 115, a row 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield bricks lining the annular combustion chamber 106.
  • the guide vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane foot opposite Guide vane head on.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
  • the FIG. 2 shows a combustion chamber 110 of a gas turbine.
  • the combustion chamber 110 is configured, for example, as a so-called annular combustion chamber, in which a plurality of burners 107 arranged around the rotation axis 102 in the circumferential direction open into a common combustion chamber space.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.
  • Each heat shield element 155 is equipped on the working medium side with a particularly heat-resistant protective layer or made of high-temperature-resistant material. These may be solid ceramic stones or alloys with MCrA1X and / or ceramic coatings. The materials of the combustion chamber wall and its coatings may be similar to the turbine blades.
  • Due to the high temperatures inside the combustion chamber 110 may also be provided for the heat shield elements 155 and for their holding elements, a cooling system.
  • FIG. 3 is shown as an embodiment of the invention, a section of a combustion chamber shell element 1, which is designed to construct the outer shell of an annular combustion chamber 110 of a gas turbine plant 100.
  • the Combustor outer shell substantially corresponds to the in Fig. 2 illustrated combustion chamber wall.
  • the combustion chamber shell element 1 is designed as a half shell which, together with a further half shell, forms the combustion chamber outer shell of the annular combustion chamber 110.
  • each combustion chamber shell element 1 has a flange 3, in which through-holes 5, 5 'are arranged, which serve as receiving recesses for screws (not shown).
  • the two combustion chamber shell elements can be screwed together to form the combustion chamber shell.
  • the flanges 3 of the two combustion chamber shell elements are in contact via contact surfaces 2.
  • the through holes 5, 5 'each have an opening diameter which is suitable for receiving the screw shafts.
  • the opening diameter of the through holes 5, 5 ' is widened in order to accommodate screw heads or nuts at least partially.
  • the flange 3 extends in the axial direction of the combustor 110 to be constructed and has a widened section 7 at its ends. A portion of the through holes 5 is disposed in the wide sections 7, another part of the through holes 5 'is located in the narrow section 9. There, where in the narrow section 9, the through holes. 5 'are arranged, the flange 3 has slots 10 which extend from the outer surface 11 of the flange 3 to the through holes 5' and open into this. The slots 10 increase the elasticity of the flange, so that impediments of temperature-induced expansions of the flange 3 are reduced. Due to the increased elasticity becomes an uneven expansion less resistance to the flange material than would be the case without the slots 10.
  • blind bores 13 are arranged in the flange, which also extend through the flange 3 and have substantially the same opening diameter as the through bores 5, 5'.
  • the blind bores 13 do not serve to accommodate screw shanks. Since no screw head or no nut is to be received, the opening diameter of the blind holes 13 in the region of the upper side 4 of the flange 3 is not widened as the opening diameter of the through holes 5, 5 '.
  • the flange has slots 15 which extend from the outside 11 of the flange to the blind bores 13 and open into them. Like the slots 10, the slots 15 serve to increase the elasticity of the flange.
  • a more uniform temperature distribution in the flange is achieved during transient gas turbine conditions.
  • the uniform temperature distribution in the flange 3 results from the larger surface that provides the flange due to the blind holes for contact with a heating and cooling medium.
  • a uniform distribution of the blind bores 13 via the flange 3 leads to a comparatively uniform heating or cooling of the flange 3 during transient gas turbine states.
  • the flange 3 heats up rather unevenly when the measures according to the invention are not taken.
  • This compressed air is preheated, on the one hand by the compression process itself and, on the other hand, optionally by an air preheating device which extracts heat from the gas turbine exhaust gases and transfers this heat to the compressed air.
  • the preheating The compressed air by means of such a preheater may be advantageous in terms of efficiency and pollutant emissions of the gas turbine plant. Since the preheated air, even if a preheating device is used, is significantly cooler than the combustion exhaust gases, the preheated air from the compressor is used for cooling the combustion chamber components. It flows around the combustion chamber outer shell and passes through inlet openings 17, which are present in the combustion chamber shell elements 1, therethrough.
  • the preheated air is warmer than the combustion chamber shell elements 1, so that it leads to a heating of the combustion chamber shell elements 1 in the first minutes of starting the gas turbine plant 100.
  • the blind bores 13 increase the area available for heat transfer from the preheated compressor air to the flange 3, so that the flange heats up more uniformly.
  • the slots 10, 15 contribute to an increase in the area and thus to a more uniform heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Portable Nailing Machines And Staplers (AREA)

Abstract

The component (1) has an edge-sided flange (3) with through-holes (5, 5 `) for receiving fasteners, which are provided for making a connection with the component. The flange has other through-holes additional to the through-holes (5, 5`) for increasing elasticity, where the later through-holes are not provided for receiving the fasteners. The later through-holes are formed as slots (10, 15) or holes (13).

Description

Die vorliegende Erfindung betrifft ein Brennkammerschalenelement zum Aufbau einer Brennkammer zusammen mit wenigstens mit einem weiteren Brennkammerschalenelement. Daneben betrifft die Erfindung eine aus Brennkammerschalenelementen aufgebaute Brennkammer. Insbesondere betrifft die Erfindung ein Brennkammeraußenschalenelement zum Aufbau der Brennkammeraußenschale einer Ringbrennkammer für eine Gasturbinenanlage. Ein solches Brennkammerschalenelement ist aus EP 1 429 077 A1 bekannt.The present invention relates to a combustion chamber shell element for constructing a combustion chamber together with at least one further combustion chamber shell element. In addition, the invention relates to a combustor constructed from combustion chamber shell elements. In particular, the invention relates to a combustion chamber outer shell element for constructing the combustion chamber outer shell of an annular combustion chamber for a gas turbine plant. Such a combustion chamber shell element is made EP 1 429 077 A1 known.

Brennkammern, beispielsweise Brennkammern für Gasturbinenanlagen, umfassen in der Regel eine Brennkammerschale mit einem der Brennkammerschale zum Brennkammerinneren hin vorgelagerten Hitzeschild. Häufig sind zwischen der Brennkammerschale und den Hitzeschilden Strömungskanäle angeordnet, durch welche ein Kühlfluid zum Kühlen der Brennkammerschale und der Hitzeschildelemente strömt, welches zuvor an der Außenseite der Brennkammerschale vorbeigeleitet wird. Ziel ist es hierbei zu einer homogenen Temperaturverteilung in der gesamten Brennkammerschale zu gelangen, um mechanische Spannungen aufgrund von Temperaturinhomogenitäten zu vermeiden.Combustion chambers, for example combustion chambers for gas turbine plants, generally comprise a combustion chamber shell with a heat shield upstream of the combustion chamber shell toward the interior of the combustion chamber. Frequently, flow channels are arranged between the combustion chamber shell and the heat shields through which a cooling fluid for cooling the combustion chamber shell and the heat shield elements flows, which is previously conducted past the outside of the combustion chamber shell. The aim here is to achieve a homogeneous temperature distribution in the entire combustion chamber shell in order to avoid mechanical stresses due to temperature inhomogeneities.

Das Vermeiden mechanischer Spannungen funktioniert recht gut in stationären Gasturbinenzuständen, in denen sich alle wesentlichen Betriebsparameter nicht ändern. Im Falle von transienten Zuständen, also Zuständen in denen sich ein wesentlicher Parameter oder gar mehrere wesentliche Parameter des Gasturbinenprozesses ändern, lassen sich Temperaturgradienten, d.h. unterschiedliche Temperaturen in unterschiedlichen Bereichen der Brennkammerschale nicht vollständig vermeiden, was zu einer Erhöhung der mechanischen Spannungen in der Brennkammerschale während der transienten Zustände führt. Im Ergebnis verkürzt dies die Lebensdauer der Brennkammerschale und die Wartungsintervalle.The avoidance of mechanical stresses works quite well in stationary gas turbine states where all essential operating parameters do not change. In the case of transient states, ie states in which an essential parameter or even several essential parameters of the gas turbine process change, temperature gradients, ie different temperatures in different regions of the combustion chamber shell can not be completely avoided, which leads to an increase of the mechanical stresses in the combustion chamber shell the transient states leads. As a result, this shortens the service life of the combustion chamber shell and the maintenance intervals.

Es ist daher Aufgabe der vorliegenden Erfindung, ein Brennkammerschalenelement für den Aufbau einer Brennkammerschale zur Verfügung zu stellen, in dem die Neigung zur Bildung mechanischer Spannungen während transienter Zustände verringert ist.It is therefore an object of the present invention to provide a combustor shell element for the construction of a combustor shell in which the tendency to form mechanical stresses during transient conditions is reduced.

Außerdem ist es eine Aufgabe der vorliegenden Erfindung, eine Brennkammer zur Verfügung zu stellen, in der die Spannungen während transienter Zustände der Gasturbinenanlage vermindert sind.In addition, it is an object of the present invention to provide a combustor in which the stresses during transient conditions of the gas turbine plant are reduced.

Die erste Aufgabe wird durch ein Brennkammerschalenelement nach Anspruch 1 und die zweite Aufgabe durch eine Brennkammer nach Anspruch 8 gelöst. Die abhängigen Ansprüche enthalten vorteilhafte Weiterbildungen der Erfindung.The first object is achieved by a combustion chamber shell element according to claim 1 and the second object by a combustion chamber according to claim 8. The dependent claims contain advantageous developments of the invention.

Ein erfindungsgemäßes Brennkammerschalenelement zum Aufbau einer Brennkammer zusammen mit wenigstens einem weiteren Brennkammerschalenelement weist wenigstens einen Verbindungsbereich mit Aufnahmeaussparungen zur Aufnahme von Verbindungselementen auf, welche zum Herstellen der Verbindung mit einem anderen Brennkammerschalenelement vorgesehen sind. Neben den Aufnahmeaussparungen weist der Verbindungsbereich weitere Aussparungen auf, die nicht zur Aufnahme von Verbindungselementen vorgesehen sind.An inventive combustion chamber shell element for constructing a combustion chamber together with at least one further combustion chamber shell element has at least one connection region with receiving recesses for receiving connecting elements, which are provided for establishing the connection with another combustion chamber shell element. In addition to the receiving recesses, the connection area has further recesses which are not provided for receiving connecting elements.

Mittels der weiteren Aussparungen kann je nach deren Ausgestaltung sowohl der Temperaturgradient im Verbindungsbereich als auch die Steifigkeit des Verbindungsbereiches beeinflusst werden. Beide Größen haben einen unmittelbaren Einfluss auf die in transienten Zuständen der Gasturbinenanlage auftretenden mechanischen Spannungen im Verbindungsbereich und in den an den Verbindungsbereich angrenzenden Bereichen der Brennkammerschale.Depending on their configuration, the temperature gradient in the connection region as well as the rigidity of the connection region can be influenced by means of the further recesses. Both variables have a direct influence on the mechanical stresses occurring in transient states of the gas turbine plant in the connection region and in the regions of the combustion chamber shell adjacent to the connection region.

Wenn die weiteren Aussparungen belspielswelse als schlitze ausgebildet sind, lässt sich die Elastizität des Verbindungsbereiches erhöhen, was mechanischen Spannungen entgegenwirkt.If the further recesses are designed as slots, the elasticity of the connecting region can be increased, which counteracts mechanical stresses.

Als Löcher ausgebildete zusätzliche Aussparungen können die Oberfläche des Verbindungsbereiches vergrößern und so für eine gleichmäßige Erwärmung bzw. Abkühlung des Verbindungsbereichs bei transienten Gasturbinenzuständen sorgen. Insbesondere, wenn die Aufnahmeaussparungen als Durchgangslöcher ausgebildet sind, können die zusätzlichen Löcher dieselben Öffnungsmaße aufweisen wie die Durchgangslöcher. Die Durchgangslöcher und die zusätzlichen Löcher lassen sich dann mit demselben Werkzeug herstellen.Additional recesses formed as holes may increase the surface area of the connection area and thus provide even heating or cooling of the connection area in transient gas turbine conditions. In particular, when the receiving recesses are formed as through-holes, the additional holes may have the same opening dimensions as the through-holes. The through holes and the additional holes can then be made with the same tool.

Insbesondere, wenn beide genannten Maßnahmen, also sowohl Schlitze als auch Löcher, als weitere Aussparungen zur Anwendung kommen, kann eine erhöhte Lebensdauer der Brennkammerschale aufgrund reduzierter Spannungen und einer gleichmäßigeren Erwärmung im Verbindungsbereich erreicht werden.In particular, when both measures mentioned, so both slots and holes, come as more recesses used, an increased life of the combustion chamber shell due to reduced voltages and a more uniform heating in the connection area can be achieved.

In einer zweckmäßigen Ausgestaltung kann das Brennkammerschalenelement wenigstens einen Flansch als Verbindungsbereich aufweisen, wobei die Aufnahmeaussparungen sowie die weiteren Aussparungen im Flansch angeordnet sind.In an expedient embodiment, the combustion chamber shell element can have at least one flange as connection region, wherein the receiving recesses and the further recesses are arranged in the flange.

In einer speziellen Ausführungsvariante ist das Brennkammerschalenelement als Halbschale ausgebildet und weist eine Struktur auf, die es ermöglicht, im Zusammenwirken mit einem zweiten, ebenfalls als Halbschale ausgebildeten Brennkammerschalenelement die Brennkammeraußenschale einer Brennkammer aufzubauen.In a specific embodiment variant, the combustion chamber shell element is designed as a half shell and has a structure which makes it possible to build up the combustion chamber outer shell of a combustion chamber in cooperation with a second combustion chamber shell element likewise designed as a half shell.

Das erfindungsgemäße Brennkammerschalenelement kann insbesondere als Brennkammerschalenelement zum Aufbau der Brennkammeraußenschale einer Ringbrennkammer einer Gasturbinenanlage ausgestaltet sein.The combustion chamber shell element according to the invention can in particular be configured as a combustion chamber shell element for constructing the combustion chamber outer shell of an annular combustion chamber of a gas turbine plant.

Erfindungsgemäß wird außerdem eine Brennkammer, insbesondere eine Brennkammer für eine Gasturbinenanlage, zur Verfügung gestellt, welche eine aus wenigstens zwei erfindungsgemäßen Brennkammerschalenelementen aufgebaute Außenschale aufweist. Die Brennkammer kann insbesondere als Ringbrennkammer ausgebildet sein.The invention also provides a combustion chamber, in particular a combustion chamber for a gas turbine plant, which has an outer shell constructed from at least two combustion chamber shell elements according to the invention. The combustion chamber can be designed in particular as an annular combustion chamber.

Weitere Merkmale, Eigenschaften und Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels unter Bezugnahme auf die beiliegenden Figuren.

Fig. 1
zeigt beispielhaft eine Gasturbine in einem Längsteilschnitt.
Fig. 2
zeigt eine Brennkammer einer Gasturbine.
Fig. 3
zeigt ein erfindungsgemäßes Brennkammerschalenelement.
Further features, properties and advantages of the present invention will become apparent from the following description of an embodiment with reference to the accompanying figures.
Fig. 1
shows an example of a gas turbine in a longitudinal section.
Fig. 2
shows a combustion chamber of a gas turbine.
Fig. 3
shows a combustion chamber shell element according to the invention.

Die Figur 1 zeigt beispielhaft eine Gasturbine 100 in einem Längsteilschnitt. Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 auf, der auch als Turbinenläufer bezeichnet wird. Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer 106, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.The FIG. 1 shows by way of example a gas turbine 100 in a longitudinal partial section. The gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103, which is also referred to as a turbine runner. Along the rotor 103 follow one another an intake housing 104, a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th

Die Ringbrennkammer 106 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinandergeschaltete Turbinenstufen 112 die Turbine 108.The annular combustion chamber 106 communicates with an annular annular hot gas channel 111, for example. There, for example, four turbine stages 112 connected in series form the turbine 108.

Jede Turbinenstufe 112 ist beispielsweise aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.Each turbine stage 112 is formed, for example, from two blade rings. In the flow direction of a working medium As can be seen in the hot gas duct 111 of a guide blade row 115, a row 125 formed of rotor blades 120 follows.

Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind.The guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.

An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt).Coupled to the rotor 103 is a generator or work machine (not shown).

Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.During operation of the gas turbine 100, air 105 is sucked in and compressed by the compressor 105 through the intake housing 104. The compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel. The mixture is then burned to form the working fluid 113 in the combustion chamber 110. From there, the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120. On the rotor blades 120, the working medium 113 expands in a pulse-transmitting manner so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.

Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 106 auskleidenden Hitzeschildsteinen am meisten thermisch belastet.The components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100. The guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield bricks lining the annular combustion chamber 106.

Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden.To withstand the prevailing temperatures, they can be cooled by means of a coolant.

Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht dargestellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt.The guide vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane foot opposite Guide vane head on. The vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Die Figur 2 zeigt eine Brennkammer 110 einer Gasturbine. Die Brennkammer 110 ist beispielsweise als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Umfangsrichtung um die Rotationsachse 102 herum angeordneten Brennern 107 in einen gemeinsamen Brennkammerraum münden. Dazu ist die Brennkammer 110 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Rotationsachse 102 herum positioniert ist.The FIG. 2 shows a combustion chamber 110 of a gas turbine. The combustion chamber 110 is configured, for example, as a so-called annular combustion chamber, in which a plurality of burners 107 arranged around the rotation axis 102 in the circumferential direction open into a common combustion chamber space. For this purpose, the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.

Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 110 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1000°C bis 1600°C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermöglichen, ist die Brennkammerwand 153 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer aus Hitzeschildelementen 155 gebildeten Innenauskleidung versehen.To achieve a comparatively high efficiency, the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C. In order to enable a comparatively long service life even with these, for the materials unfavorable operating parameters, the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.

Jedes Hitzeschildelement 155 ist arbeitsmediumsseitig mit einer besonders hitzebeständigen Schutzschicht ausgestattet oder aus hochtemperaturbeständigem Material gefertigt. Dies können massive keramische Steine oder Legierungen mit MCrA1X und/oder keramischen Beschichtungen sein. Die Materialien der Brennkammerwand und deren Beschichtungen können ähnlich der Turbinenschaufeln sein.Each heat shield element 155 is equipped on the working medium side with a particularly heat-resistant protective layer or made of high-temperature-resistant material. These may be solid ceramic stones or alloys with MCrA1X and / or ceramic coatings. The materials of the combustion chamber wall and its coatings may be similar to the turbine blades.

Aufgrund der hohen Temperaturen im Inneren der Brennkammer 110 kann zudem für die Hitzeschildelemente 155 bzw. für deren Halteelemente ein Kühlsystem vorgesehen sein.Due to the high temperatures inside the combustion chamber 110 may also be provided for the heat shield elements 155 and for their holding elements, a cooling system.

In Figur 3 ist als ein Ausführungsbeispiel für die Erfindung ein Ausschnitt aus einem Brennkammerschalenelement 1 dargestellt, welches zum Aufbau der Außenschale einer Ringbrennkammer 110 einer Gasturbinenanlage 100 ausgebildet ist. Die Brennkammeraußenschale entspricht im Wesentlichen der in Fig. 2 dargestellten Brennkammerwand.In FIG. 3 is shown as an embodiment of the invention, a section of a combustion chamber shell element 1, which is designed to construct the outer shell of an annular combustion chamber 110 of a gas turbine plant 100. The Combustor outer shell substantially corresponds to the in Fig. 2 illustrated combustion chamber wall.

Im vorliegenden Ausführungsbeispiel ist das Brennkammerschalenelement 1 als Halbschale ausgebildet, welche zusammen mit einer weiteren Halbschale die Brennkammeraußenschale der Ringbrennkammer 110 bildet. Zur Verbindung mit dem jeweils anderen Brennkammerschalenelement weist jedes Brennkammerschalenelement 1 einen Flansch 3 auf, in dem Durchgangsbohrungen 5, 5' angeordnet sind, die als Aufnahmeaussparungen für Schrauben (nicht dargestellt) dienen. Mittels der Schrauben können die beiden Brennkammerschalenelemente zum Aufbau der Brennkammerschale miteinander verschraubt werden. Nach dem Verschrauben stehen die Flansche 3 der beiden Brennkammerschalenelemente über Kontaktflächen 2 miteinander in Kontakt.In the present exemplary embodiment, the combustion chamber shell element 1 is designed as a half shell which, together with a further half shell, forms the combustion chamber outer shell of the annular combustion chamber 110. For connection to the respective other combustion chamber shell element, each combustion chamber shell element 1 has a flange 3, in which through-holes 5, 5 'are arranged, which serve as receiving recesses for screws (not shown). By means of the screws, the two combustion chamber shell elements can be screwed together to form the combustion chamber shell. After screwing, the flanges 3 of the two combustion chamber shell elements are in contact via contact surfaces 2.

Die Durchgangsbohrungen 5, 5' weisen jeweils einen Öffnungsdurchmesser auf, der zur Aufnahme der Schraubenschäfte geeignet ist. Im Bereich derjenigen Flanschseite 4, die der Kontaktfläche 2 gegenüber liegt, ist der Öffnungsdurchmesser der Durchgangsbohrungen 5, 5' erweitert, um Schraubenköpfe oder Muttern wenigstens teilweise aufnehmen zu können.The through holes 5, 5 'each have an opening diameter which is suitable for receiving the screw shafts. In the region of that flange side 4, which is opposite the contact surface 2, the opening diameter of the through holes 5, 5 'is widened in order to accommodate screw heads or nuts at least partially.

Der Flansch 3 erstreckt sich in Axialrichtung der aufzubauenden Brennkammer 110 und weist an seinen Enden verbreiterte Abschnitt 7 auf. Zwischen den verbreiterten Abschnitten 7 befindet sich ein schmaler Abschnitt 9. Ein Teil der Durchgangsbohrungen 5 ist in den breiten Abschnitten 7 angeordnet, ein anderer Teil der Durchgangsbohrungen 5' befindet sich dagegen im schmalen Abschnitt 9. Dort, wo im schmalen Abschnitt 9 die Durchgangsbohrungen 5'angeordnet sind, weist der Flansch 3 Schlitze 10 auf, die sich von der Außenfläche 11 des Flansches 3 aus bis zu den Durchgangsbohrungen 5' erstrecken und in diese münden. Die Schlitze 10 erhöhen die Elastizität des Flansches, so dass Behinderungen temperaturbedingter Ausdehnungen des Flansches 3 reduziert werden. Auf Grund der erhöhten Elastizität wird einer ungleichmäßigen Ausdehnung des Flanschmaterials weniger Widerstand entgegengesetzt als dies ohne die Schlitze 10 der Fall wäre.The flange 3 extends in the axial direction of the combustor 110 to be constructed and has a widened section 7 at its ends. A portion of the through holes 5 is disposed in the wide sections 7, another part of the through holes 5 'is located in the narrow section 9. There, where in the narrow section 9, the through holes. 5 'are arranged, the flange 3 has slots 10 which extend from the outer surface 11 of the flange 3 to the through holes 5' and open into this. The slots 10 increase the elasticity of the flange, so that impediments of temperature-induced expansions of the flange 3 are reduced. Due to the increased elasticity becomes an uneven expansion less resistance to the flange material than would be the case without the slots 10.

Zusätzlich zu den Durchgangsbohrungen 5, 5' sind im Flansch Blindbohrungen 13 angeordnet, die sich ebenfalls durch den Flansch 3 erstrecken und im Wesentlichen den gleichen Öffnungsdurchmesser wie die Durchgangsbohrungen 5, 5' aufweisen. Die Blindbohrungen 13 dienen jedoch im Unterschied zu den Durchgangsbohrungen 5, 5' nicht zur Aufnahme von Schraubenschäften. Da kein Schraubenkopf bzw. keine Mutter aufzunehmen ist, ist der Öffnungsdurchmesser der Blindbohrungen 13 im Bereich der Oberseite 4 des Flansches 3 nicht wie der Öffnungsdurchmesser der Durchgangsbohrungen 5, 5' verbreitert. Auch im Bereich der Blindbohrungen 13 weist der Flansch Schlitze 15 auf, die sich von der Außenseite 11 des Flansches aus bis zu den Blindbohrungen 13 erstrecken und in diese münden. Ebenso wie die Schlitze 10 dienen die Schlitze 15 zum Erhöhen der Elastizität des Flansches.In addition to the through bores 5, 5 ', blind bores 13 are arranged in the flange, which also extend through the flange 3 and have substantially the same opening diameter as the through bores 5, 5'. However, in contrast to the through bores 5, 5 ', the blind bores 13 do not serve to accommodate screw shanks. Since no screw head or no nut is to be received, the opening diameter of the blind holes 13 in the region of the upper side 4 of the flange 3 is not widened as the opening diameter of the through holes 5, 5 '. Also in the area of the blind bores 13, the flange has slots 15 which extend from the outside 11 of the flange to the blind bores 13 and open into them. Like the slots 10, the slots 15 serve to increase the elasticity of the flange.

Mittels der Blindbohrungen 13 ist eine gleichmäßigere Temperaturverteilung im Flansch während transienter Gasturbinenzustände zu erzielen. Die gleichmäßige Temperaturverteilung im Flansch 3 resultiert dabei aus der größeren Oberfläche, die der Flansch aufgrund der Blindbohrungen für den Kontakt mit einem Heiz- und Kühlmedium bietet. Eine gleichmäßige Verteilung der Blindbohrungen 13 über den Flansch 3 führt dabei zu einer vergleichsweise gleichmäßigen Erwärmung oder Abkühlung des Flansches 3 während transienter Gasturbinenzustände.By means of the blind bores 13 a more uniform temperature distribution in the flange is achieved during transient gas turbine conditions. The uniform temperature distribution in the flange 3 results from the larger surface that provides the flange due to the blind holes for contact with a heating and cooling medium. A uniform distribution of the blind bores 13 via the flange 3 leads to a comparatively uniform heating or cooling of the flange 3 during transient gas turbine states.

Insbesondere beim Anfahren einer Gasturbinenanlage erwärmt sich der Flansch 3 ziemlich ungleichmäßig, wenn die erfindungsgemäßen Maßnahmen nicht getroffen werden. Dies resultiert daher, dass der Flansch von verdichteter Luft aus dem Verdichter 105 umströmt wird. Diese verdichtete Luft ist jedoch vorgewärmt, einerseits durch den Verdichtungsprozess selbst und andererseits gegebenenfalls durch eine Luftvorwärmvorrichtung, die den Gasturbinenabgasen Wärme entzieht und diese Wärme an die verdichtete Luft überträgt. Das Vorwärmen der verdichteten Luft mittels einer derartigen Vorwärmevorrichtung kann im Hinblick auf den Wirkungsgrad und den Schadstoffausstoß der Gasturbinenanlage vorteilhaft sein. Da die vorgewärmte Luft, selbst dann, wenn eine Vorwärmevorrichtung Verwendung findet, deutlich kühler ist als die Verbrennungsabgase, wird die vorgewärmte Luft aus dem Verdichter zum Kühlen der Brennkammerbauelemente herangezogen. Sie umströmt dabei die Brennkammeraußenschale und tritt durch Eintrittsöffnungen 17, die in der Brennkammerschalenelementen 1, vorhanden sind durch diese hindurch.In particular, when starting a gas turbine plant, the flange 3 heats up rather unevenly when the measures according to the invention are not taken. This results from the fact that the flange of compressed air from the compressor 105 is flowed around. However, this compressed air is preheated, on the one hand by the compression process itself and, on the other hand, optionally by an air preheating device which extracts heat from the gas turbine exhaust gases and transfers this heat to the compressed air. The preheating The compressed air by means of such a preheater may be advantageous in terms of efficiency and pollutant emissions of the gas turbine plant. Since the preheated air, even if a preheating device is used, is significantly cooler than the combustion exhaust gases, the preheated air from the compressor is used for cooling the combustion chamber components. It flows around the combustion chamber outer shell and passes through inlet openings 17, which are present in the combustion chamber shell elements 1, therethrough.

Beim Anfahren einer Gasturbinenanlage 100 ist die vorgewärmte Luft jedoch wärmer als die Brennkammerschalenelemente 1, sodass sie zu einer Erwärmung der Brennkammerschalenelemente 1 in den ersten Minuten des Anfahrens der Gasturbinenanlage 100 führt. Insbesondere im Bereich der Flansche 3 tritt dabei aufgrund ihrer Form und Masse eine relativ ungleichmäßige Erwärmung auf, die durch die erfindungsgemäßen Maßnahmen gleichmäßiger gestaltet werden kann. So vergrößern die Blindbohrungen 13 die für die Wärmeübertragung von der vorgewärmten Verdichterluft auf den Flansch 3 zur Verfügung stehende Fläche, sodass sich der Flansch gleichmäßiger erwärmt. Ebenso tragen auch die Schlitze 10, 15 zu einer Vergrößerung der Fläche und damit zu einer gleichmäßigeren Erwärmung bei.When starting a gas turbine plant 100, however, the preheated air is warmer than the combustion chamber shell elements 1, so that it leads to a heating of the combustion chamber shell elements 1 in the first minutes of starting the gas turbine plant 100. In particular, in the area of the flanges 3 occurs due to their shape and mass to a relatively uneven heating, which can be made more uniform by the inventive measures. Thus, the blind bores 13 increase the area available for heat transfer from the preheated compressor air to the flange 3, so that the flange heats up more uniformly. Likewise, the slots 10, 15 contribute to an increase in the area and thus to a more uniform heating.

Obwohl die Erwärmung durch die Vergrößerung der Flanschfläche gleichmäßiger gestaltet werden kann, verbleiben dennoch Temperaturgradienten im Flansch, die aus einer ungleichmäßigen Erwärmung herrühren. Diese sind zwar im Vergleich zum Stand der Technik vermindert, dennoch führen derartige Temperaturgradienten zur Behinderung der Wärmedehnung und damit zu mechanischen Spannungen im Material. Die trotz der im Vergleich zum Stand der Technik gleichmäßigeren Erwärmung entstehenden Spannungen können jedoch aufgrund der erhöhten Elastizität des Flansches, die durch die Schlitze 10, 15 gegeben ist, in im Bereich des Flansches reduziert werden.Although heating can be made smoother by increasing the flange area, temperature gradients still remain in the flange resulting from uneven heating. Although these are reduced in comparison to the prior art, yet such temperature gradients lead to the hindrance of thermal expansion and thus to mechanical stresses in the material. However, due to the increased elasticity of the flange, which is given by the slots 10, 15, the stresses arising in spite of the more uniform heating compared with the prior art can be reduced in the area of the flange.

Insgesamt lassen sich daher durch die erfindungsgemäßen Maßnahmen die mechanischen Spannungen im Flansch insbesondere beim Anfahren der Gasturbinenanlage, aber auch während anderer transienter Gasturbinenzustände, etwa dem Abfahren, verringern. Dies erhöht die Lebensdauer der Brennkammeraußenschale und verringert die Wartungsintervalle.Overall, therefore, can be reduced by the inventive measures, the mechanical stresses in the flange in particular when starting the gas turbine plant, but also during other transient gas turbine states, such as the shutdown. This increases the service life of the combustion chamber outer shell and reduces the maintenance intervals.

Claims (9)

  1. Combustion chamber shell element (1) for constructing a combustion chamber (110) of annular cross section together with at least one further combustion chamber shell element (1), wherein each combustion chamber shell element (1) has at least one marginal connecting region (3) having receiving apertures (5, 5') for receiving connecting elements which are provided for producing the connection to one of the further combustion chamber shell elements, characterized in that the connecting region (3) of the combustion chamber shell element (1) has, in addition to the receiving apertures (5, 5'), further apertures (10, 13, 15) for increasing the elasticity, said further apertures (10, 13, 15) not being provided for receiving connecting elements.
  2. Combustion chamber shell element (1) according to Claim 1, characterized in that at least one flange (3) is formed as connecting region, and the receiving apertures (5, 5') and the further apertures (10, 13, 15) are arranged in the flange (3).
  3. Combustion chamber shell element (1) according to Claim 1 or 2, characterized in that the further apertures are configured as slots (10, 15) in the connecting region (3).
  4. Combustion chamber shell element (1) according to Claim 1, 2 or 3, characterized in that the further apertures are configured as holes (13) in the connecting region (3).
  5. Combustion chamber shell element (1) according to Claim 4, characterized in that the receiving apertures are designed as through-holes (5, 5'), and the holes (13) have the same opening dimensions as the through-holes (5, 5').
  6. Combustion chamber shell element (1) according to one of the preceding claims, characterized by the configuration thereof as a half shell for constructing a combustion chamber outer shell together with a second combustion chamber shell element (1) designed as a half shell.
  7. Combustion chamber shell element (1) according to one of the preceding claims, characterized by the configuration thereof as a combustion chamber shell element (1) for constructing the combustion chamber outer shell of an annular combustion chamber (110).
  8. Combustion chamber (110), in particular for a gas turbine plant, characterized in that it has an outer shell which is composed of at least two combustion chamber shell elements (1) according to one of Claims 1 to 7.
  9. Combustion chamber (110) according to Claim 8, characterized by the configuration thereof as an annular combustion chamber of a gas turbine plant.
EP05006399A 2005-03-23 2005-03-23 Shell Element for a Combustion Chamber and Combustion Chamber Not-in-force EP1707758B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05006399A EP1707758B1 (en) 2005-03-23 2005-03-23 Shell Element for a Combustion Chamber and Combustion Chamber
ES05006399T ES2368717T3 (en) 2005-03-23 2005-03-23 ELEMENT OF COMBUSTION CHAMBER AND COMBUSTION CHAMBER.
AT05006399T ATE522703T1 (en) 2005-03-23 2005-03-23 COMBUSTION CHAMBER SHELL ELEMENT AND COMBUSTION CHAMBER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05006399A EP1707758B1 (en) 2005-03-23 2005-03-23 Shell Element for a Combustion Chamber and Combustion Chamber

Publications (2)

Publication Number Publication Date
EP1707758A1 EP1707758A1 (en) 2006-10-04
EP1707758B1 true EP1707758B1 (en) 2011-08-31

Family

ID=34934463

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05006399A Not-in-force EP1707758B1 (en) 2005-03-23 2005-03-23 Shell Element for a Combustion Chamber and Combustion Chamber

Country Status (3)

Country Link
EP (1) EP1707758B1 (en)
AT (1) ATE522703T1 (en)
ES (1) ES2368717T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180223691A1 (en) * 2017-02-03 2018-08-09 United Technologies Corporation Case flange with stress reducing features

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352404B1 (en) * 2000-02-18 2002-03-05 General Electric Company Thermal control passages for horizontal split-line flanges of gas turbine engine casings
US6691019B2 (en) * 2001-12-21 2004-02-10 General Electric Company Method and system for controlling distortion of turbine case due to thermal variations
ES2307704T3 (en) * 2002-12-10 2008-12-01 Siemens Aktiengesellschaft GAS TURBINE.

Also Published As

Publication number Publication date
EP1707758A1 (en) 2006-10-04
ATE522703T1 (en) 2011-09-15
ES2368717T3 (en) 2011-11-21

Similar Documents

Publication Publication Date Title
EP1005620B1 (en) Thermal shield component with recirculation of cooling fluid
EP2738470B1 (en) Shingle attachment assembly of a gas turbine combustion chamber
EP1443275B1 (en) Combustion chamber
EP0170938A1 (en) Blade and seal clearance optimization device for compressors of gas turbine power plants, particularly of gas turbine jet engines
DE3506733A1 (en) TURBINE GUIDE RING
EP2812636B1 (en) Annular-combustion-chamber bypass
EP1724526A1 (en) Shell for a Combustion Chamber, Gas Turbine and Method for Powering up and down a Gas Turbine.
EP2411631B1 (en) Sealplate and rotor blade system
EP1245806A1 (en) Cooled gas turbine balde
WO2013060663A2 (en) Gas turbine
EP0928364A1 (en) Method of compensating pressure loss in a cooling air guide system in a gas turbine plant
WO2006111508A1 (en) Heat shield arrangement
EP1707758B1 (en) Shell Element for a Combustion Chamber and Combustion Chamber
WO2000060219A1 (en) Turbo-engine with an array of wall elements that can be cooled and method for cooling an array of wall elements
EP3017147B1 (en) Rotor for a turbine
EP1398569A1 (en) Gas turbine
EP2324208A1 (en) Turbine guide vane support for a gas turbine and method for operating a gas turbine
EP2218882A1 (en) Stator vane carrier system
EP2159377A1 (en) Stator vane support for a gas turbine and corresponding gas turbine plant
DE4442936A1 (en) Operating stationary gas turbine installation for silo combustion chamber
EP3004741B1 (en) Tubular combustion chamber with a flame tube end area and gas turbine
DE102006010863B4 (en) Turbomachine, in particular compressor
EP3088673B1 (en) Blade for gas turbine, corresponding rotor, gas turbine and engine
EP2194236A1 (en) Turbine casing
EP1676977A1 (en) Gas turbine comprising a swirl nozzle arrangement and method of operating a gas turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20061023

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DANYLUK, PETER

Inventor name: KRUSCH, CLAUS

Inventor name: BOETTCHER, DR. ANDREAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2368717

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005011828

Country of ref document: DE

Effective date: 20111124

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110831

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111201

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005011828

Country of ref document: DE

Effective date: 20120601

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 522703

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150312

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150513

Year of fee payment: 11

Ref country code: CH

Payment date: 20150602

Year of fee payment: 11

Ref country code: ES

Payment date: 20150409

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160307

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160329

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005011828

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160323

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160324

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170323