EP0927197A1 - Verfahren zur herstellung von methylmethacrylat-polymeren in einem kreislaufreaktor - Google Patents

Verfahren zur herstellung von methylmethacrylat-polymeren in einem kreislaufreaktor

Info

Publication number
EP0927197A1
EP0927197A1 EP97943868A EP97943868A EP0927197A1 EP 0927197 A1 EP0927197 A1 EP 0927197A1 EP 97943868 A EP97943868 A EP 97943868A EP 97943868 A EP97943868 A EP 97943868A EP 0927197 A1 EP0927197 A1 EP 0927197A1
Authority
EP
European Patent Office
Prior art keywords
reactor
circulation
polymerization
circuit
polymers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97943868A
Other languages
English (en)
French (fr)
Inventor
Klaus-Dieter Hungenberg
Michael BAUMGÄRTEL
Jürgen Koch
Wolfgang Fischer
Reiner Thiele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0927197A1 publication Critical patent/EP0927197A1/de
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/245Stationary reactors without moving elements inside placed in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2435Loop-type reactors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/02Polymerisation in bulk
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/14Methyl esters, e.g. methyl (meth)acrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow

Definitions

  • the invention relates to a continuous process for the production of methyl methacrylate polymers with a narrow molecular weight distribution by polymerization in bulk in a circulation reactor.
  • polymethyl methacrylate which is used as acrylic glass in amounts of more than 500,000 t per year, by polymerizing methyl methacrylate in emulsion, suspension or by bulk or bulk polymerization (previously also called block polymerization).
  • block polymerization For a long time, high-molecular semi-finished products made of polymethyl methacrylate as high-quality acrylic glass have been produced by casting processes (flat chamber process, double-belt process), 20-25% solutions of polymethyl methacrylate in mono methyl methacrylate obtained by prepolymerization often being used to shorten the production time.
  • prepolymerization in a stirred tank was combined with a subsequent reaction in screw extruders. It is e.g.
  • methyl methacrylate In contrast to bulk polymerization, for example styrene, methyl methacrylate, when polymerized alone or largely alone in bulk, has many special features that must be taken into account in bulk polymerization. For example, methyl methacrylate shows an enormous polymerization shrinkage of 20 to 21% during the polymerization. In addition, methyl methacrylate in bulk polymerization already shows a polymerization acceleration of only about 20% due to the Trommsdorff or gel effect, which leads to an acceleration of the reaction rate of 1-2 orders of magnitude with isothermal reaction control. With the high heat of polymerization of methyl methacrylate combined with low thermal conductivity of the system, a sharp rise in temperature can very quickly occur, which can result in a hardly manageable reaction.
  • the methyl methacrylate polymerization shows a glass effect and ceiling effect influencing the polymerization process (limit conversion due to freezing of the reaction, above the glass transition temperature T g of 105 ° C. decrease in conversion due to depolymerization / polymerization equilibrium, the depolymerization due to comonomers and Controller can be influenced).
  • a poly methacrylate with an average molecular weight M w of more than 300,000 can only be deformed thermo-elastically.
  • the object of the present invention was to polymerize methyl methacrylate in bulk continuously in circuit reactors to give polymers with very little non-uniformity, without the formation of large amounts of disruptive deposits on the circuit reactor walls during long-term operation.
  • the task also included delimiting the areas of the operating variables (half-life of the initiator, conversion, flow rate, circulation ratio, polymerization temperature, average residence time) in which the polymerization proceeds without problems and leads to a high-quality product.
  • REPLACEMENT SHEET (REGEL26 ⁇ polymerized in bulk in a circulation reactor with feed mixture feed, reactor outlet, mixing device, circulation pump and cooling surface such that a) the circulation ratio K R is greater than 20 / n E , where n E represents the number of feeds per circulation loop, and preferably K R is about 10 to 60, b) the mean effective axial flow velocity W eff # ax is greater than 5 cm / second and is preferably 7 to 40 cm / second, c) the polymerization temperature is 135 to 150 ° C, d) a polymerization initiator is used whose batch half-life t ⁇ / 2 ( batch ) is between 3 and 10 and preferably between 4 and 6 minutes at the polymerization temperature, e) the initiator feed concentration being adjusted so that the reaction mass has an average residence time t of 1 , 3 to 2.5 hours at the reactor outlet, a polymer mass fraction y p of 0.50 to 0.70 and in particular of about 0.55 to 0.65 is achieved.
  • the method according to the invention is carried out in a circuit reactor which has at least one inlet, outlet or reactor outlet, at least one mixing device such as a static mixing element, a circuit pump and cooling surface.
  • Circuit reactors are described in the technical literature and can be assembled by the process engineer in an appropriate manner if the critical process characteristics are known.
  • the circulation reactor is preferably filled hydraulically, so that the mass flows of the inlet and the outlet are the same during stationary operation.
  • the low-viscosity inlet mixture which generally has a temperature of about 20 ° C.
  • the metered inlet mixture when added, consists primarily of the freshly fed monomers and the volatile and then condensed fractions, in particular monomers, which are returned after leaving the circulation reactor, furthermore from the metered-in polymerization initiator and usual additives, such as added controllers.
  • the metered inlet mixture is advantageously already pre-mixed before mixing devices, such as, in particular, static mixers, rapidly mix the low-viscosity inlet mixture into the higher-viscosity circuit stream after each inlet position. Since narrow molar mass distributions can only be achieved with small temperature and concentration differences in the polymerization reactor, rapid mixing in of the premixed feed at high circulation ratio is of great importance. This keeps the axial temperature and concentration gradients small.
  • REPLACEMENT BLA ⁇ (RULE 26) Preferred mixing devices for the feed are static mixers such as commercially available SMX mixers
  • Suitable monomers for the process according to the invention are methyl methacrylate, which, however, can contain up to 10 and preferably up to 5% by weight of the total amount of monomers another copolymerizable olefinically unsaturated compound as comonomer, and mixtures thereof.
  • Other esters are particularly suitable as such comonomers the methacrylic acid and the acrylic acid with an alcohol having 1 to 8 carbon atoms, maleic anhydride d and preferably styrene.
  • the feed or the metered run-in mixture further contains a polymerization initiator which, according to the process according to the invention, has a batch half-life t ⁇ / 2 b at ch of between 3 and 10 and preferably between 4 and 6 minutes at the polymerization temperature, the polymerization temperature being 135 to 150, preferably 140 is up to 145 ° C.
  • the feed concentration of the polymerization initiator is to be set so that with an average residence time t of the reaction aces in the reactor of 1.3 to 2.5 and preferably 1.5 to 2.0 hours at the reactor outlet or outlet a polymer fraction y p of 0.5 to 0.7, in particular 0.55 to 0.65 and particularly preferably 0.57 to 0.63, is achieved
  • TBPA Butyl peracetate
  • TBPN Butylper-3, 5, 5-tr ⁇ methylhexanoat
  • n E of the feed or feed points per loop can be 1 to 4. Higher numbers generally do not occur in an industrial circulation reactor because of the high pressure loss in the mixing devices or static mixers. Preferably, n ⁇ 1 or 2. If there is more than one feed per circuit loop, it is advantageous to use approximately the same premixed feed volumes Vo0 ⁇ 02 etc. and the Arrange inlet positions so that approximately equal reaction volumes are between them.
  • a sufficient cooling surface A ⁇ must also be present in the circuit reactors for the entire reaction volume V R.
  • the temperature of the coolant should, if possible, not be more than 5 ° C. below the average temperature of the reaction mass (polymerization temperature).
  • the mean effective axial flow velocity W ef . ax be greater than 5 cm / second.
  • An upper limit is given by the pressure loss.
  • advantageous average effective axial flow velocities W eff, a ⁇ are between 7 and 40 cm / second.
  • the circulation flow ⁇ ⁇ which represents the volume flow in m 3 / hour after the last feed of the circulation loop 25 and shortly before the position of the outlet or reactor outlet is set accordingly high.
  • the circulation ratio K R is the quotient of the circulation flow V «measured before the reactor outlet - and the sum of the inflows
  • the circulation ratio K R should be greater than 20, divided by n E , the number of feeds in via the circulation loop. K R is preferably about 10 to 60.
  • the average circulation time t z in the circulation reactor is in particular
  • Particularly suitable circulation reactors are those whose predominant reaction volume consists of at least one, preferably 2 to 6 tube or tube bundle reactors. Allow tubular reactors
  • Suitable circulation reactors are shown schematically in FIGS. 1 to 4 and described in the examples.
  • Mixing devices preferably static mixers (2, 7, 14, or 20 and 21) are arranged directly behind the feed line or feeds into the reaction mixture (1, 6, 13 or 18 and 19) in order to allow the mederviscose to be mixed in quickly To use mixtures in the highly viscous reaction mass in the reactor.
  • the reaction mass then runs through the actual reactors (3, 8, 15, 22), in particular tubes, tube bundles, tubes with cooled static mixers such as SMXL elements from Sulzer (8) (with coolant inflow (11) and coolant outflow ( 12)) or cylindrical tubes with Kenics mixers and double jacket for cooling (15).
  • the circuit reactor of FIG. 4 has 2 feeds with associated mixing devices m of the circuit loop.
  • the circulation flow V ⁇ r (m 3 / hour) is measured directly before the reactor exits or exits (4, 9, 16, 23). It is important that a flow without jerk mixing is effected in the circulation reactor (except in the circulation pump (5, 10, 17, 24)).
  • the reaction mass which leaves the circulation reactor at the reactor outlet or outlet (4, 9, 16, 23), has a polymer mass fraction y p of 0.5 to 0.7 there, as stated, and thus still contains a lot of unreacted monomers.
  • the reaction mass which has escaped can be worked up in a known manner, the volatile fractions, such as the monomers, contained in the mass expediently being recycled in whole or in part after their condensation.
  • One way of working up in snake evaporators and screw evaporators is described in process stages 2 and 3 of DE-A 2724360.
  • the polymers obtained are outstandingly thermoplastic
  • SPARE BLADE (RULE 26) Processable and, due to their uniformity, transparency, brilliance and very good mechanical strength, they are ideal for the production of molded parts with high-quality optical properties such as domelights, lighting fixtures, 5 glazing, lenses, prisms, reflectors or light guides.
  • a tube-and-tube circuit reactor as shown schematically in FIG. 1, was used as the circulation reactor. It has two tube bundles (3), each with 19 tubes, with an inner tube diameter 5 ⁇ of 0.03 m and a height H R of 3 m
  • the circulation reactor has a specific cooling area of 107 m 2 / m 3.
  • the feed or feed mixture contained, in addition to 100 ppm of dodecyl merecaptan as regulator, 97.5% by weight of methyl methacrylate and 2.5% by weight of styrene, the percentages being based on one another refer to the total amount of monomers in the feed.
  • the polymerization initiator was tert.
  • Butyl peracetate (TBPA) is used, which has a batch half-life t ⁇ / 2 ( batch ) of 5.6 minutes at the average polymerization temperature of 145 ° C.
  • the initiator feed concentration I 0 of 9 x 10 ⁇ 4 kmol / m 3 has been set so that, for a mean residence time of the reaction mass 5 of 1.5 hours, the polymer weight fraction y t p at the reactor outlet at about 0.60
  • a circulation flow V K ⁇ of 3 m 3 / hour was set, which corresponds to an average effective axial flow velocity ⁇ w eff ax ⁇ n in the individual tubes of the tubular bundle from the circulation reactor of 6.2 cm / second.
  • the circulation ratio K was 45 and the average circulation time t z 1.5 minutes
  • the circuit reactor was able to operate in long-term operation without any significant 5 deposits. Reactor walls are operated stably.
  • the resulting degassed polymer had a mass-average degree of polymerization P w of 1230.
  • the molecular nonuniformity of the product U n P w / P n - 1, determined by gel permeation chromatography, was 1.1 0
  • Example 2 It was polymerized in the same tube bundle cycle reactor as in Example 1 and in the same way, but tert-butylper-3, 5,5-tr methylhexanoate (TBPN) was used as the polymerization initiator, which was one at the average polymerization temperature in the cycle reactor of 145 ° C. Batch half-life t ⁇ / 2 ( ba tc h ) of 4.8 minutes Has.
  • the initiator feed concentration I 0 was 8 ⁇ 10 -4 kmol / m 3 and was determined so that with a mean residence time of the reaction mass of 1.5 hours the polymer mass fraction is about 0.60.
  • the flow parameters corresponded to those of Example 1:
  • the reactor could be operated in long-term operation without any significant build-up on the reactor walls.
  • the resulting polymer had a mass average degree of polymerization P w of 1250 and a non-uniformity of 1.1.
  • a circulation reactor as shown schematically in FIG. 2 was used as the circulation reactor. It contained tubes with cooled static mixers (8) Sulzer-SMXL elements with an inner diameter of 0.15 m.
  • the feed or feed mixture corresponded to that of Example 1, but tert-butylper-3,5,5-trimethylhexanoate (TBPN) was used as the polymerization initiator, the batch half-life and initiator feed concentration of which are given in Example 2.
  • a circulation flow ⁇ r of 4 m 3 / hour was set. This corresponds to an average effective axial flow velocity W eff # ax of 7.1 cm / second.
  • the circulation ratio K R was 60 and the average circulation time t z 1 minute.
  • the cycle reactor could be operated stably in long-term operation. Wall coverings were not found.
  • the resulting degassed polymer had a mass average degree of polymerization P w of 1220 and a molecular non-uniformity of 1.1.
  • a Kenics cycle reactor as shown schematically in FIG. 3 was used as the cycle reactor. It contained cylindrical jacketed pipes (15) with non-cooled static mixers (Kenics mixers) of a length L R of 12 m and an inner diameter dj. of 0.1 m. The feed or feed mixture corresponded to that of Example 1, and the polymerization initiator given in Example 1 with the initiator feed concentration I 0 given there was also used.
  • a circulation flow V R ⁇ of 2 m 3 / hour was set. This corresponds to an average effective axial flow velocity W eff , a ⁇ of 7.1 cm / second.
  • the circulation ratio K R was 30, the average circulation time t z 3 minutes.
  • the cycle reactor worked trouble-free in long-term operation.
  • the resulting product had one mass average degree of polymerization P w of 1210 and a non-uniformity value of 1.1.
  • Example 2 The procedure was as in Example 1, but tert-butyl peroxide (TBPO) was used as the polymerization initiator, which has a batch half-life t ⁇ 2 ( batch ) of 1.24 hours at the average polymerization temperature of 145 ° C.
  • the initiator feed concentration I D of 1.7 ⁇ 10 -3 kmol / m 3 was determined in such a way that with a mean residence time t of the reaction mass of 1.5 hours at the reactor outlet, a polymer mass fraction of about 0.60 is achieved.
  • a circulation flow V K ⁇ of 3 3 / hour was set.
  • the average effective flow velocity W ef, ax in the tubes of the tube bundles was 6.2 cm / second, the circulation ratio K R was 45 and the average circulation time t z 1.5 minutes.
  • the operation of the tube bundle cycle reactor was characterized by an unstable behavior. The desired stationary operating point could not be set. After the reactor was shut down, the formation of a substantial wall covering was observed.
  • Example 2 The procedure was as in Example 2, polymerization was carried out in a tube bundle cycle reactor as shown in FIG. 1 and, as in Example 2, as the polymerization initiator. Butylper-3, 5, 5-trimethylhexanoate (TBPN) used with the feed concentration I 0 given in Example 2.
  • a circulation flow V K ⁇ of 1.5 m 3 / hour was set. This corresponds to an average effective flow velocity W eff; a ⁇ in the tubes of the tube bundle of 3.1 cm / second.
  • the circulation ratio K R was 30 and the average circulation time t z 3 minutes. After a long period of operation, the cycle reactor tended to vibrate. After the reactor was switched off, wall coverings were found in the reactor.
  • Example 3 The procedure was as in Example 3, a circulation reactor according to FIG. 2 was used, but tert-butyl peroxide (TBPO) with the initiator feed concentration I 0 given in Comparative Experiment 1 was used as the polymerization initiator as in Comparative Experiment 1.
  • a circulation flow V K ⁇ of 4 m 3 / hour was set. This corresponds to an average effective axial flow velocity W eff , ax of 7.1 cm / second.
  • the circulation ratio K was 60 and the average circulation time t z 1 minute.
  • the circulation reactor could only be operated for a short time. A steady state in the reactor could not be achieved. After the reactor was turned off, heavy wall coverings were found in it.
  • Example 3 The procedure was as in Example 3, including a Sulzer cycle reactor according to FIG. 2 and, as in Example 3, as a polymerization mediator. Butylper-3, 5, 5-tr ⁇ methylhexanoat (TBPN) with the same initiator feed concentration I 0 used. A circulation flow of 2 3 / hour was set. This corresponds to an average effective axial flow rate W eff, ax of 3.4 cm / second. The circulation ratio K R was 45 and the average circulation time t z 2 minutes. After a relatively short operating time of the cycle reactor, temperature fluctuations occurred. After the reactor was switched off, wall coverings were present on the cooled mixing elements.
  • Butylper-3, 5, 5-tr ⁇ methylhexanoat (TBPN) with the same initiator feed concentration I 0 used.
  • a circulation flow of 2 3 / hour was set. This corresponds to an average effective axial flow rate W eff, ax of 3.4 cm / second.
  • the circulation ratio K R was 45 and the average circulation time t z 2 minutes
  • Feed mixture approx. 97.5% by weight methyl methacrylate, based on total monomers approx. 2.5% by weight styrene, based on total monomers approx. 20 pp dodecyl mercaptan, based on monomers
  • Feed mixture approx. 97.5% by weight methyl methacrylate, based on total monomers approx. 2.5% by weight styrene, based on total monomers approx. 20 pp dodecyl mercaptan, based on monomers 8 ⁇ 10 "4 kmol / m 3 tert. Butyl 3, 5, 5, trimethylhexanoate
  • Circulation time t 6.2 minutes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Methylmethacrylat-Polymere mit einer Uneinheitlichkeit von 1,0 bis 1,2 werden kontinuierlich durch Polymerisation in Substanz aus zu mindestens 90 Gew.-% aus Methylmethacrylat bestehenden Monomeren in einem Kreislaufreaktor, der bevorzugt mindestens einen Rohr- oder Rohrbündelreaktor enthält, ohne störende Wandablagerungen so hergestellt, dass die Polymerisationstemperatur 135-150 °C beträgt, das Kreislaufverhältnis grösser als 20 geteilt durch die Zahl der Einspeisungen pro Kreislaufschleife ist, die mittlere effektive axiale Strömungsgeschwindigkeit grösser als 5 cm/Sek. ist, ein Polymerisationsinitiator mit einer Batchhalbwertszeit von 3 bis 10 Min. verwendet wird und die Zulaufkonzentration des Initiators so eingestellt wird, dass bei einer mittleren Verweilzeit von 1,3 bis 2,5 Stunden am Reaktoraustritt ein Polymerbruch von 0,50 bis 0,70 erzielt wird. Aus den einheitlichen Polymeren lassen sich Formkörper mit sehr guten optischen Eigenschaften herstellen.

Description

Verfahren zur Herstellung von Methylmethacrylat-Polymeren in einem Kreislaufreaktor
Die Erfindung betrifft ein kontinuierliches Verfahren zur Herstellung von Methylmethacrylat-Polymeren mit enger Molmassenverteilung durch Polymerisation in Substanz in einem Kreislaufreaktor .
Es ist bekannt, Polymethylmethacrylat , das als Acrylglas in Mengen von über 500 000 t pro Jahr Verwendung findet, durch Polymerisation von Methylmethacrylat in Emulsion, Suspension oder durch Polymerisation in Substanz oder Masse (früher auch Blockpolymerisation genannt) herzustellen. Seit langer Zeit wird hochmolekula- res Halbzeug aus Polymethylmethacrylat als hochwertiges Acrylglas durch Giessverfahren {Flachkammerverfahren, Doppelbandverfahren) hergestellt, wobei oft zur Verkürzung der Herstellzeit durch Vorpolymerisation erhaltene 20 bis 25 %ige Lösungen von Polymethylmethacrylat in mono erem Methylmethacrylat verwendet werden. Für kontinuierliche Polymerisationsverf hren kombinierte man auch eine Vorpolymerisation in einem Rührkessel mit einer Nachreaktion in Schneckenextrudern. Es ist z.B. aus der DE-A 2724360 auch bekannt, thermoplastisch verarbeitbare Formmassen von Methylmeth- acrylat-Cyclohexylmethacrylat-Maleinsäureanhydrid-Copolymeren in einem Tankreaktor in Substanz bei 140°C bis zu einem stationären Umsatz von 40 Mol-% radikalisch zu polymerisieren, um dann in zwei folgenden Verfahrensstufen erst in einem Schlangenrohrver- da pfer bei 220 bis 230°C mit Stickstoff als Treibgas das Copoly- merisat aufzukonzentrieren und dann in einem Schneckenverdampfer bei 230°C die Polymerkonzentration im Produktaustritt auf 99 Mol-% zu erhöhen. Die Monomeren aus den letzten beiden Verfahrensstufen werden in den gerührten Tankreaktor der ersten Verfahrensstufe zurückgeführt. Das Verfahren läuft jedoch oft nicht störungsfrei.
Im Unterschied zur Substanzpolymerisation z.B. des Styrols hat Methylmethacrylat, wenn es allein oder weitgehend allein in Substanz polymerisiert wird, viele bei der Substanzpolymerisation zu beachtende Besonderheiten. So weist Methylmethacrylat bei der Polymerisation den enormen Polymerisationsschwund von 20 bis 21 % auf. Ferner zeigt Methylmethacrylat bei der Substanzpolymerisation schon bei Polymerisationsumsätzen von nur etwa 20 % eine Selbstbeschleunigung der Polymerisation durch den Trommsdorff- oder Geleffekt, die bei isothermer Reaktionsführung zu einer Beschleunigung der Reaktionsgeschwindigkeit um 1 - 2 Grössenord- nungen führt. Bei der hohen Polymerisationswärme des Methylmeth- acrylats bei gleichzeitig niedriger Wärmeleitfähigkeit des Systems kann so sehr schnell ein starker Temperaturanstieg ein- treten, der eine kaum beherrschbare Reaktion zur Folge haben kann. Ferner zeigt die Methylmethacrylat-Polymerisation einen die Polymerisationsführung beeinflussenden Glas-Effekt und Ceiling- Effekt (Grenzumsatz durch Einfrieren der Reaktion, oberhalb der Glasübergangstemperatur Tg von 105°C Umsatzrückgang durch Depoly- merisations-/Polymerisationsgleichgewicht , wobei die Depolymeri- sation durch Comonomere und Regler beeinflusst werden kann) . Schliesslich ist zu beachten, dass ein Poly-methacrylat mit einem mittleren Molekulargewicht Mw von über 300 000 nur noch thermo- elastisch verformbar ist. Bei diesem Verhalten des Methylmeth- acrylats bei der Polymerisation in Substanz ist verständlich, dass ganz besondere Anforderungen an eine kontinuierliche Sub- stanzpolymerisation des Methyl ethacrylats zu stellen sind und oft Störungen bei seiner Durchführung auftreten, die auch zu un- einheitlichen Produkten führen. So treten durch nicht-hinreichende Kühlung oder durch tote Winkel in Teilen des Reaktors schwerwiegende Störungen auf. So bilden sich z.B. im Reaktor leicht störende Ablagerungen an den Reaktorwänden, die entfernt werden müssen. Will man die Substanzpolymerisation des Methyl- methacrylats in intensiv durchmischten kontinuierlichen Rührkesseln durchführen, so stellt man fest, dass im grosstechnischen Kessel die erforderliche spezifische Kühlfläche oft zu gering ist. wenn nicht diese durch gekühlte Einbauten vergrössert wird. Bei solchen Kesseln mit Einbauten können aber Totzonen nur durch sehr aufwendige konstruktive Lösungen vermieden werden. Zudem scheidet die sonst übliche Anwendung der Siedekühlung bei der Substanzpolymerisation von Methylmethacrylat aus.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, Methylmeth- acrylat in Substanz kontinuierlich in Kreislaufreaktoren zu Polymeren mit sehr geringer Uneinheitlichkeit zu polymerisieren, ohne dass im Langzeitbetrieb in grösserem Umfang störende Belagsbildungen an den Kreislaufreaktorwänden gebildet werden. Zur Aufgabenstellung gehörte ferner, die Bereiche der Betriebsvariablen (Halbwertszeit des Initiators, Umsatz, Strömungsgeschwindigkeit, Kreislaufverhältnis, Polymerisationstemperatur, mittlere Verweilzeit) abzugrenzen, in denen die Polymerisation störungsfrei abläuft und zu einem hochwertigem Produkt führt.
Es wurde nun gefunden, dass die Aufgabe gelöst wird und Methyl- methacrylat-Polymere mit sehr enger Molmassenverteilung bzw. geringer Uneinheitlichkeit hergestellt werden können, und die genannten Nachteile vermieden bzw. vermindert werden können, wenn man Methylmethacrylat, das bis zu 10 Gew.% der Gesamtmonomeren- menge andere copolymerisierbare olefinisch ungesättigte Monomere
ERSATZBLATT(REGEL26} enthalten kann, in Substanz in einem Kreislaufreaktor mit Einsatzgemischzulauf, Reaktoraustritt, Einmischvorrichtung, Kreislaufpumpe und Kühlfläche so polymerisiert, dass a) das Kreislaufverhältnis KR grösser als 20 /nE ist, wobei nE die Zahl der Einspeisungen pro Kreislaufschleife darstellt, und bevorzugt KR etwa 10 bis 60 beträgt, b) die mittlere effektive axiale Strömungsgeschwindigkeit Weff#ax grösser als 5 cm / Sekunde ist und bevorzugt 7 bis 40 cm / Sekunde beträgt, c) die Polymerisationstemperatur 135 bis 150°C beträgt, d) ein Polymerisationsinitiator benutzt wird, dessen Batchhalb- wertszeit tι/2 (batch) zwischen 3 und 10 und bevorzugt zwischen 4 und 6 Minuten bei der Polymerisationstemperatur liegt, wobei e) die Initiator-Zulaufkonzentration so eingestellt wird, dass bei einer mittleren Verweilzeit t der Reaktionsmasse von 1,3 bis 2,5 Stunden am Reaktoraustritt ein Polymermassenbruch yp von 0,50 bis 0,70 und insbesondere von etwa 0,55 bis 0,65 erzielt wird.
Das erfindungsgemässe Verfahren wird in einem Kreislaufreaktor durchgeführt, der mindestens einen Zulauf, Auslauf oder Reaktoraustritt, mindestens eine Einmischvorrichtung wie ein statisches Mischelement , eine Kreislaufpumpe und Kühlfläche aufweist. Kreis- laufreaktoren sind in dem technischen Schrifttum beschrieben und können bei Kenntnis der kritischen Verfahrensmerkmale vom Verfahrenstechniker in gegeigneter Weise zusammengesetzt werden. Der Kreislaufreaktor ist bevorzugt hydraulisch gefüllt, so dass die Massenströme des Zulaufs und des Auslaufs bei stationärem Betrieb gleich sind. Das niederviskose Einlaufgemisch, das im allgemeinen bei der Zugabe eine Temperatur von etwa 20°C hat, besteht vor allem aus den frisch zugeführten Monomeren und den nach dem Austritt aus dem Kreislaufreaktor zurückgeführten flüchtigen und dann kondensierten Anteilen, insbesondere Monomeren, weiter aus dem zudosierten Polymerisationsinitiator und üblichen Zusätzen, wie z.B. zugesetzten Reglern. Vorteilhaft ist das zudosierte Einlaufgemisch bereits vorvermischt, bevor Einmischvorrichtungen wie insbesondere statische Mischer nach jeder Zulaufposition das niederviskose Einlaufgemisch rasch in den höherviskosen Kreislauf- ström einmischen. Da sich enge Molmassenverteilungen nur bei geringen Temperatur- und Konzentrationsunterschieden im Polymerisationsreaktor erzielen lassen, kommt einem schnellen Einmischen des vorvermischten Zulaufs bei hohem Kreislaufverhältnis eine grosse Bedeutung zu. Dadurch werden die axialen Temperatur- und Konzentrationsgradienten klein gehalten.
ERSATZBLAπ(REGEL26) Bevorzugte Einmischvorrichtungen für den Zulauf sind statische Mischer wie handelsübliche SMX-Mischer
Als Monomere kommt für das erfmdungsgemasse Verfahren Methyl- methacrylat in Frage, das aber bis zu 10 und bevorzugt bis zu 5 Gew.% der Gesamtmonomerenmenge eine andere copolymerisierbare olefmisch ungesättigte Verbindung als Comonomeres enthalten kann, sowie Mischungen davon Als solche Comonomere sind besonders geeignet andere Ester der Methacrylsaure und der Acrylsaure mit einem Alkohol mit 1 bis 8 C-Atomen, Malemsaureanhydr d und bevorzugt Styrol .
Der Zulauf bzw. das zudosierte Emlaufgemisch enthalt ferner einen Polymerisationsinitiator, der gemäss dem erfmdungsgemassen Verfahren eine Batchhalbwertszeit tι/2 batch zwischen 3 und 10 und bevorzugt zwischen 4 und 6 Minuten bei der Polymerisationstemperatur hat, wobei die Polymerisationstemperatur 135 bis 150, bevorzugt 140 bis 145°C betragt Die Zulaufkonzentration des Polyme- risationsinitiators ist dabei so einzustellen, dass bei einer mittleren Verweilzeit t der Reaktions asse im Reaktor von 1,3 bis 2,5 und bevorzugt von 1,5 bis 2,0 Stunden am Reaktoraustritt bzw Auslauf ein Polymerbruch yp von 0,5 bis 0,7, insbesondere von 0,55 bis 0,65 und besonders bevorzugt von 0,57 bis 0,63 erzielt wird
Geeignete Polymerisationsmitiatoren mit der angegebenen Batchhalbwertszeit können der Fachliteratur entnommen werden Sehr geeignete Polymerisationsmitiatoren sind peroxidische Verbindungen und als bevorzugte Verbindungen davon seien z.B tert . Butylpera- cetat (TBPA) und tert . Butylper-3 , 5 , 5-trιmethylhexanoat (TBPN) ge- nannt .
Im Hinblick darauf, dass besonders bei Methylmethacrylatpolymeri- saten das Molgewicht bzw. die Kettenlange die Verarbeitungseigenschaften der Massen daraus stark beeinflusst, ist von Vorteil, mit dem Zulauf der Reaktionsmasse auch geringe Mengen eines bekannten Reglers zuzuführen, wie z B. chlorierte Kohlenwasserstoffe oder insbesondere Mercaptane wie Dodecylmercaptan, deren Zusatzmenge vorteilhaft bei 10 bis 1000 ppm der Monomerenmenge liegt.
Die Zahl nE der Zulauf- bzw. Einspeisungsstellen pro Kreislauf- schleife kann bei 1 bis 4 liegen. Höhere Zahlen kommen bei einem industriellem Kreislaufreaktor wegen des hohen Druckverlusts in den Einmischvorrichtungen bzw statischen Mischern im allgemeinen nicht vor. Bevorzugt betragt n^ 1 oder 2. Bei mehr als einer Em- speisung pro Kreislaufschleife ist es vorteilhaft, etwa gleiche vorvermischte Zulaufvolumina Voι< 02 etc. zu verwenden und die Zulaufpositionen so anzuordnen, dass etwa gleich grosse Reaktionsvolumina zwischen ihnen liegen.
Bei einer so exothermen Reaktion, wie es die Polymerisation von 5 Methylmethacrylat darstellt, ist es verständlich, dass auch in den Kreislaufreaktoren eine hinreichende Kühlfläche Aκ für das gesamte Reaktionsvolumen VR vorhanden sein muss. Bevorzugte spezifische Kühlflächen Aκ,Spez ( = Aκ / VR) betragen bei den Kreislauf- reaktoren etwa 20 bis etwa 150 m2/m3 Reaktorinhalt. Zur Vermeidung 10 unerwünschter lokaler Viskositätsanstiege sollte die Temperatur des Kühlmittels möglichst nicht mehr als 5°C unter der mittleren Temperatur der Reaktionsmasse (Polymerisationstemperatur) liegen.
Zur Erzielung stationärer Bedingungen im Kreislaufreaktor und zur 15 Verhinderung der Bildung stagnierender Polymerschichten an der Reaktorwand sind hohe Strömungsgeschwindigkeiten im Kreislaufreaktor erforderlich. Erfindungsgemäss soll die mittlere effektive axiale Strömungsgeschwindigkeit We f.ax grösser als 5 cm/Sekunde sein. Eine obere Grenze ist durch den Druckverlust gegeben. 20 Vorteilhafte mittlere effektive axiale Strömungsgeschwindigkeiten Weff,aχ liegen in der Praxis bei 7 bis 40 cm /Sekunde. Zur Erzielung der hohen mittleren effektiven axialen Strömungsgeschwindigkeiten Weff,ax wird der Kreislaufström κ < der den Volumenstrom in m3 / Stunde nach der letzten Einspeisung der Kreislaufschleife 25 und kurz vor der Position des Ablaufs bzw. Reaktoraustritts darstellt, entsprechend hoch eingestellt.
Das Kreislaufverhältnis KR ist der Quotient aus dem vor dem Reaktoraustritt gemessenen Kreislaufström V«- und der Summe der Zu-
30 laufströme Voi + V02 + 03 + V04 P^o Kreislaufschleife . Im er- findungsgemässen Verfahren soll das Kreislaufverhältnis KR grösser als 20, geteilt durch nE, die Zahl der Einspeisungen über die Kreislaufschleife sein. Bevorzugt liegt KR bei etwa 10 bis 60. Die mittlere Zirkulationszeit tz im Kreislaufreaktor liegt insbeson-
35 dere bei etwa 1 bis 8 Minuten.
Besonders geeignete Kreislaufreaktoren sind solche, deren überwiegendes Reaktionsvolumen aus mindestens einem, bevorzugt 2 bis 6 Rohr- oder Rohrbündelreaktoren besteht. Rohrreaktoren erlauben
*υ sowohl die Verarbeitung von Reaktionsmassen mit höheren Viskositäten als auch eine gute Abführung der Reaktionswärme durch grosse spezifische Kühlflächen Aκ,spez- Rohrbündelreaktoren bieten besonders grosse Reaktorvolumina mit grossen spezifischen Kühlflächen. Besonders vorteilhaft sind dabei Rohrbündel oder Rohre
*5 mi nichtgekühlten statischen Mischern (wie Kenics-Mischern) mit Kühlmantel sowie Rohre mit gekühlten statischen Mischern wie SMXL-Elemente, die eine gute Quervermischung des Reaktionsgemi- sches im Rohrreaktor bewirken und mit den grossen internen War e- austauschflachen eine temperaturkontrollierte Reaktionsfuhrung auch bei stark exothermen Polymerisationsreaktionen erlauben. In der Kreislaufschleife selbst findet keine Ruckmischung statt, die Ruckmischung der Reaktionsmasse erfolgt nur durch die Kreislaufpumpe. Vorteilhafte statische Mischer enthalten Mischelemente mit einem Gerüst ineinandergreifender, sich kreuzender Stege.
Geeignete Kreislaufreaktoren sind in den Fig. 1 bis 4 schema- tisch dargestellt und m den Beispielen beschrieben. Direkt hinter den Emsatzge ischzulaufen oder Einspeisungen des Reaktions- gemischs (1,6,13 bzw. 18 und 19) sind Einmischvorrichtungen, bevorzugt statische Mischer (2,7,14, bzw. 20 und 21) angeordnet, um ein schnelles Einmischen der mederviskosen Einsatzgemische in die hoherviskose Reaktionsmasse im Reaktor zu bewirken. Die Reaktionsmasse durchlauft dann im Kreis die eigentlichen Reaktoren (3,8,15,22), die insbesondere Rohre, Rohrbundel, Rohre mit gekühlten statischen Mischern wie SMXL-Elemente der Fa. Sulzer (8) (mit Kühlmittelzufluss (11) und Kuhlmittelabfluss (12)) oder zylindrische Rohre mit Kenics-Mischern und Doppelmantel zum Kuhlen (15) enthalten.
Der Kreislaufreaktor von Fig. 4 hat 2 Einspeisungen mit zugehörigen Einmischvorrichtungen m der Kreislaufschleife .
Im Kreislaufreaktor wird der Kreislaufström Vκr (m3 /Stunde) direkt vor den Reaktoraustritten oder Auslaufen (4,9,16,23) gemessen. Wichtig ist, dass im Kreislaufreaktor eine Strömung ohne eine Ruckmischung (ausser in der Kre slaufpumpe (5,10,17,24)) bewirkt wird.
Die Reaktionsmasse, die beim Reaktoraustπtt oder Auslauf (4,9,16,23) den Kreislaufreaktor verlasst, hat wie angegeben dort einen Polymermassenbruch yp von 0,5 bis 0,7, enthalt somit noch viel unumgesetzte Monomere. Die ausgetretene Reaktionsmasse kann in bekannter Weise aufgearbeitet werden, wobei zweckmassigerweise die in der Masse enthaltenen fluchtigen Anteile, wie die Monomeren, nach ihrer Kondensation ganz oder teilweise in den Kreislauf zurückgeführt werden. Eine Art der Aufarbeitung in Schlangenver- dampfern und Schneckenverdampfern ist in den Verfahrensstufen 2 und 3 der DE-A 2724360 beschrieben.
Die nach dem erfindungsgemassen kontinuierlichem Polymerisationsverfahren hergestellten Methylmethacrylat-Polymeren zeichnen sich durch eine enge Molmassenverteilung bzw. sehr geringe Uneinheitlichkeit Un = Pw/Pn - 1 aus, die Werte von 1,0 bis 1,2 aufweist. Die erhaltenen Polymeren sind hervorragend thermoplastisch
ERSÄTZBLATT(REGEL26) verarbeitbar und eignen sich aufgrund ihrer Einheitlichkeit, Transparenz, Brillianz und der sehr guten mechanischen Festigkeit ausgezeichnet zur Herstellung von Formteilen mit hochwertigen optischen Eigenschaften wie für Lichtkuppeln, Beleuchtungskörper, 5 Verglasungen, Linsen, Prismen, Reflektoren oder Lichtleiter.
Die nachfolgenden Beispiele und Vergleichsversuche sollen die Erfindung weiter erläutern, aber nicht beschranken
0 Beispiel 1
Als Kreislaufreaktor wurde ein Rohrbundel-Kreislaufreaktor verwendet, wie er in Figur 1 schematisch wiedergegeben ist Er hat zwei Rohrbundel (3) mit jeweils 19 Rohren mit einem inneren Rohr- 5 durchmesser ä^ von 0,03 m und einer Hohe HR von 3 m Der Kreislaufreaktor hat eine spezifische Kuhlflache von 107 m2/m3 Das Einsatz- oder Zulaufsgemisch enthielt neben 100 ppm Dodecylmer- captan als Regler 97,5 Gew.% Methylmethacrylat und 2,5 Gew.% Sty- rol, wobei sich die Prozentzahlen auf die Gesamtmonomerenmenge im 0 Zulauf beziehen Als Polymerisationsinitiator wurde tert. Butyl- peracetat (TBPA) verwendet, das bei der mittleren Polymerisationstemperatur von 145°C eine Batchhalbwertszeit tι/2 (batch) von 5,6 Minuten hat. Die Initiator-Zulaufkonzentration I0 von 9 x 10~4 kmol/ m3 wurde so festgelegt, dass bei einer mittleren Verweilzeit 5 t der Reaktionsmasse von 1,5 Stunden der Polymermassenbruch yp am Reaktoraustritt bei etwa 0,60 liegt
Es wurde ein Kreislaufström V von 3 m3 / Stunde eingestellt, der einer mittleren effektiven axialen Stromungsgeschwindigkeit υ w eff ax ιn den Einzelrohren des Rohrbundeis vom Kreislaufreaktor von 6,2 cm / Sekunde entspricht. Das Kreislaufverhältnis K betrug 45 und die mittlere Zirkulat onszeit tz 1,5 Minuten
Der Kreislauf reaktor Konnte im Langzeitbetrieb ohne nennenswerte 5 Belagbildung an der. Reaktorwanden stabil betrieben werden. Das resultierende entaaste Polymere hatte einen massenmittleren Poly- merisationsgrad Pw von 1230 Die durch Gelpermeationschromatogra- phie bestimmte molekulare Uneinheitlichkeit des Produkts Un = Pw/Pn - 1 betrug 1,1 0
Beispiel 2
Es wurde im gleichen Rohrbundelkreislaufreaktor wie in Beispiel 1 und in gleicher Weise polymeπsiert , jedoch als Polymensationsi- 5 nitiator tert .Butylper-3 , 5 , 5-tr methylhexanoat (TBPN) verwendet, das bei der mittleren Polymerisationstemperatur im Kreislaufreaktor von 145°C eine Batchhalbwertszeit tχ/2 (batch) von 4,8 Minuten hat. Die Initiator-Zulaufskonzentration I0 betrug 8 x 10-4 kmol/m3 und wurde so festgelegt, dass bei einer mittleren Verweilzeit _ der Reaktionsmasse von 1,5 Stunden der Polymermassenbruch bei etwa 0,60 liegt. Die Strömungsparameter entsprachen denen von Beispiel 1:
r = 3 m3/Stunde, Weff,aχ = 6,2 cm/Sekunde, KR = 45, tz = 1,5 Min.
Der Reaktor konnte im Langzeitbetrieb ohne nennenswerte Belag- bildung an den Reaktorwänden betrieben werden. Das resultierende Polymere hatte einen massenmittleren Polymerisationsgrad Pw von 1250 und eine Uneinheitlichkeit von 1,1.
Beispiel 3
Als Kreislaufreaktor wurde ein Kreislaufreaktor verwendet, wie er in Figur 2 schematisch dargestellt ist. Er enthielt als Rohre mit gekühlten statischen Mischern (8) Sulzer-SMXL-Elemente mit einem Innendurchmesser von 0.15 m. Das Einsatz- oder Zulaufgemisch ent- sprach dem von Beispiel 1, jedoch wurde als Polymerisationsinitiator tert .Butylper-3 , 5 , 5-trimethylhexanoat (TBPN) verwendet, dessen Batchhalbwertszeit und Initiator-Zulaufkonzentration in Beispiel 2 angegeben sind. Es wurde ein Kreislaufström κr von 4 m3 / Stunde eingestellt. Dem entspricht eine mittlere effektive axiale Strömungsgeschwindigkeit Weff#ax von 7,1 cm / Sekunde. Das Kreislaufverhältnis KR betrug 60 und die mittlere Zirkulationszeit tz 1 Minute. Der Kreislaufreaktor konnte im Langzeitbetrieb stabil betrieben werden. Wandbeläge wurden nicht festgestellt. Das resultierende entgaste Polymere hatte einen massenmittleren Poly e- risationsgrad Pw von 1220 und eine molekulare Uneinheitlichkeit von 1,1.
Beispiel 4
Als Kreislaufreaktor wurde ein Kenics-Kreislaufreaktor verwendet, wie er in Figur 3 schematisch dargestellt ist. Er enthielt zylindrische Doppelmantelrohre (15) mit nichtgekühlten statischen Mischern (Kenics-Mischer) von einer Länge LR von 12 m und einem Innendurchmesser dj. von 0,1 m. Das Einsatz- oder Zulaufgemisch entsprach dem von Beispiel 1, auch wurde der in Beispiel 1 angegebene Polymerisationsinitiator mit der dort angegebenen Initiator-Zulaufkonzentration I0 verwendet. Es wurde ein Kreislaufström V von 2 m3 / Stunde eingestellt. Dem entspricht eine mittlere effektive axiale Strömungsgeschwindigkeit Weff,aχ von 7,1 cm /Se- künde. Das Kreislaufverhältnis KR betrug 30, die mittlere Zirkulationszeit tz 3 Minuten. Der Kreislaufreaktor arbeitete im Langzeitbetrieb stö-rungsfrei . Das resultierende Produkt hatte einen massenmittleren Polymerisationsgrad Pw von 1210 und einen Uneinheitlichkeitwert von 1,1.
Vergleichsversuch 1
Es wurde wie in Beispiel 1 verfahren, jedoch wurde als Polymerisationsinitiator tert .Butylperoxid (TBPO) verwendet, das bei der mittleren Polymerisationstemperatur von 145°C eine Batchhalbwertszeit tχ 2 (batch) von 1,24 Stunden hat. Die Initiator-Zulaufs- konzentration ID von 1,7 x 10-3 kmol/m3 wurde so festgelegt, dass bei einer mittleren Verweilzeit t der Reaktionsmasse von 1,5 Stunden am Reaktoraustritt ein Polymermassenbruch von etwa 0,60 erzielt wird. Ein Kreislaufström V von 3 3 / Stunde wurde eingestellt. Die mittlere effektive Strömungsgeschwindigkeit Wef ,ax in den Rohren der Rohrbündel betrug 6,2 cm / Sekunde, das Kreislaufverhältnis KR betrug 45 und die mittlere Zirkulationszeit tz 1,5 Minuten. Der Betrieb des Rohrbündel-Kreislaufreaktors war durch ein instabiles Verhalten gekennzeichnet. Es gelang nicht, den gewünschten stationären Betriebspunkt einzustellen. Nach dem Abstellen des Reaktors wurde die Bildung eines beträchtlichen Wandbelags festgestellt.
Vergleichsversuch 2
Es wurde wie in Beispiel 2 verfahren, in einem Rohrbündel-Kreislaufreaktor gemäss Figur 1 polymerisiert und wie in Beispiel 2 als Polymerisationsinitiator ter . Butylper-3 , 5 , 5-trimethylhexa- noat (TBPN) verwendet mit der in Beispiel 2 angegebenen Zulauf- konzentration I0. Es wurde ein Kreislaufström V von 1,5 m3 / stunde eingestellt. Dem entspricht eine mittlere effektive Strömungsgeschwindigkeit Weff;aχ in den Rohren des Rohrbündels von 3,1 cm/Sekunde. Das Kreislaufverhältnis KR betrug 30 und die mittlere Zirkulationszeit tz 3 Minuten. Nach längerer Betriebszeit neigte der Kreislaufreaktor zu Temperaturschwingungen. Nach dem Abstel- len des Reaktors wurden Wandbeläge im Reaktor festgestellt.
Vergleichsversuch 3
Es wurde wie in Beispiel 3 verfahren, ein Kreislaufreaktor gemäss Figur 2 benutzt, jedoch wurde als Polymerisationsinitiator wie in Vergleichsversuch 1 tert .Butylperoxid (TBPO) mit der in Vergleichsversuch 1 angegebenen Initiator-Zulaufskonzentration I0 verwendet. Es wurde ein Kreislaufström V von 4 m3/Stunde eingestellt. Dem entspricht eine mittlere effektive axiale Strömungs- geschwindigkeit Weff,ax von 7,1 cm / Sekunde. Das Kreislaufverhältnis K war 60 und die mittlere Zirkulationszeit tz 1 Minute. Der Kreislaufreaktor konnte nur kurze Zeit betrieben werden. Ein stationärer Zustand im Reaktor konnte nicht erreicht werden. Nach dem Abstellen des Reaktors wurden starke Wandbelage m ihm festgestellt .
Vergleichsversuch 4
Es wurde wie in Beispiel 3 verfahren, auch ein Sulzer-Kreislauf- reaktor gemäss Figur 2 sowie wie in Beispiel 3 als Polymeπsati- onsmitiator tert . Butylper-3 , 5, 5-trιmethylhexanoat (TBPN) mit gleicher Initiatorzulaufkonzentration I0 verwendet. Es wurde ein Kreislaufström von 2 3 / Stunde eingestellt. Dem entspricht eine mittlere effektive axiale Stromungsgeschwindigkeit Weff,ax von 3,4 cm/Sekunde. Das Kreislaufverhältnis KR war 45 und die mittlere Zirkulationszeit tz 2 Minuten. Nach relativ kurzer Betriebszeit des Kreislaufreaktors traten Temperaturschwingungen auf. Nach Abstellen des Reaktors waren an den gekühlten Mischelementen Wandbelage vorhanden.
Beispiel 5
Hochrechnung auf einen industriellen Rohrbundel-Kreislaufreaktor :
Reaktorgeometrie : 4 Rohrbunde1 mit BundeHange von je LR = 6 m
Zahl der Einzelrohre zR = 300
Einzelrohrdurchmesser d± - 0,03 m
Reaktorvolumen insgesamt VR = 5,5 m3
Kuhlflache insgesamt Aκ = 678 m2 Spezifische Kühlfläche AK;Spez = 123 m2 / m3
Zulaufpositionen (vorvermischter Zulauf): Zahl : nE = 2
Einspeisung zu etwa gleichen Anteilen Einspeisung vor dem 1. und 3. Rohrbundel
Zulaufgemisch: ca. 97,5 Gew.% Methylmethacrylat , bezogen auf Gesamtmonomere ca. 2,5 Gew.% Styrol , ezogen auf Gesamtmonomere ca. 20 pp Dodecylmercaptan, bezogen auf Monomere
8 x 10-4 kmol/m3 ter .Butylper-3 , 5, 5-trimethylhexanoat
Gesamtzulaufstrom V = Voi + V02 = 3,67 m3 / Stunde Mittlere Verweilzeit t = V / V = 1,5 Stunden Mittlere Temperatur der Reaktionsmasse T = 145°C Polymermassenbruch am Reaktoraustritt yp = 0,60 Kreislaufström Vjr = 100 3 / Stunde
ERSATZBLÄTT(REGEL26) Kreislaufverhältnis KR = 27
Effektive axiale Strömungsgeschwindigkeit in den Rohren der Bündel Weff,ax = 13,1 cm /Sekunde Mittlere Temperatur des Kühlmittels Tκ = 140°C Zirkulationszeit tz = 3,3 Minuten
Produktionsausstoss Polymer mP = 15 kt / Jahr bei 1 Jahr = 8000 Betriebsstunden
Beispiel 6
Hochrechnung auf industriellen SMXL-Kreislaufreaktor : Reaktorgeometrie :
8 SMXL-Elemente (zylindrisch) Länge LR = 4 m Innendurchmesser d = 0,5 m Reaktorvolumen insgesamt VR - 5,2 m3 Kühlfläche insgesamt Aκ = 250 m2 Spezifische Kühlfläche AKιΞpez = 48 m2 / m3 Zulaufpositionen (vorvermischter Zulauf): Zahl : nE = 2 Einspeisung zu gleichen Anteilen
Einspeisung vor dem 1. und 5. Segment
Zulaufgemisch : ca. 97,5 Gew.% Methylmethacrylat , bezogen auf Gesamtmonomere ca. 2,5 Gew.% Styrol , bezogen auf Gesamtmonomere ca. 20 pp Dodecylmercaptan, bezogen auf Monomere 8 x 10"4 kmol/m3 tert .Butyl-3 , 5 , 5 , trimethylhexanoat
Gesamtzulaufström V = V_ι +V02 = 3,35 m3 / Stunde Mittlere Verweilzeit _ = VR/ = 1,55 Stunde
Mittlere Temperatur der Reaktionsmasse T = 145°C
Polymermassenbruch am Reaktoraustritt yp = 0,61
Kreislaufström Vκr - 50 m3 / Stunde
Kreislaufverhältnis Kp = 14,9 Effektive axiale Stromungsgeschwindigkeit We_f,ax = 8,8 cm/Sek.
Mittlere Temperatur des Kühlmittels Tκ = 139°C
Zirkulationszeit t- = 6,2 Minuten
Produktionsausstoss Polymer rhp = 13,9 kt / Jahr bei 1 Jahr = 8000 Betriebsstunden

Claims

Patentansprüche
1. Verfahren zur Herstellung von Methylmethacrylat-Polymeren
5 mit einer geringen Uneinheitlichkeit, dadurch gekennzeichnet, dass man Methylmethacrylat, das bis zu 10 Gew.% der Gesamt- monomerenmenge eines anderen copolymerisierbaren olefinisch ungesättigten Monomeren enthalten kann, in Substanz in einem Kreislaufreaktor mit Einlaufgemischzulauf , Reaktoraustritt, 0 Einmischvorrichtung, Kreislaufpumpe und Kühlfläche so polyme- risiert, dass a) das Kreislaufverhältnis KR grösser als 20 / nE ist, wobei nE die Zahl der Einspeisungen pro Kreislaufschleife darstellt, 5 b) die mittlere effektive axiale Strömungsgeschwindigkeit w eff,ax grösser als 5 cm/Sekunde ist, c) die Polymerisationstemperatur 135 bis 150°C beträgt, d) ein Polymerisationsinitiator benutzt wird, dessen Batchhalbwertszeit tι 2 (batch) zwischen 3 und 10 Minuten bei der 0 Polymerisationstemperatur liegt, wobei e) die Zulaufkonzentration des Polymerisationsinitiators so eingestellt ist, dass bei einer mittleren Verweilzeit t der Reaktionsmasse von 1,3 bis 2,5 Stunden am Reaktoraustritt ein Polymermassenbruch yp von 0,50 bis 0,70 erzielt 5 wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Kreislaufverhältnis KR etwa 10 bis etwa 60 ist.
0 3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die mittlere effektive axiale Strömungsgeschwindigkeit Weff>ax im Kreislaufreaktor 7 bis 40 cm /Sekunde beträg .
5 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die mittlere Zirkulationszeit tz im Kreislaufreaktor etwa 1 bis 8 Minuten beträgt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekenn- 40 zeichnet, dass die Batchhalbwertszeit tι_/2 (batch) des verwendeten Polymerisationsinitiators im Bereich von 4 bis 6 Minuten bei der Polymerisationstemperatur liegt.
45 68/96
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass als copolymerisierbare olefinisch ungesättigte Comonomere Styrol , Maleinsäureanhydrid, ein Ester der Acryl- säure oder Methacrylsäure mit einem Alkohol mit 1 bis 8 C-
5 Atomen oder Mischungen davon verwendet werden.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Kreislaufreaktor als Einmischvorrichtung einen statischen Mischer enthält.
10
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Kreislaufreaktor mindestens einen Rohroder Rohrbündelreaktor enthält.
15 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Kreislaufreaktor Rohrbündel oder Rohre mit innenliegenden nichtgekühlten statischen Mischern und mit einem Kühlmantel aufweist.
20 10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Kreislaufreaktor Rohre mit innenliegenden gekühlten statischen Mischern aufweist.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekenn- 25 zeichnet, dass der Kreislaufreaktor eine spezifische Kühlfläche AK(Ξpe2_ von etwa 20 bis etwa 150 m2 pro m3 Reaktorinhalt aufweist.
30
35
40
45
EP97943868A 1996-09-18 1997-09-18 Verfahren zur herstellung von methylmethacrylat-polymeren in einem kreislaufreaktor Ceased EP0927197A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19638094A DE19638094A1 (de) 1996-09-18 1996-09-18 Verfahren zur Herstellung von Methylmethacrylat-Polymeren in einem Kreislaufreaktor
DE19638094 1996-09-18
PCT/EP1997/005125 WO1998012229A1 (de) 1996-09-18 1997-09-18 Verfahren zur herstellung von methylmethacrylat-polymeren in einem kreislaufreaktor

Publications (1)

Publication Number Publication Date
EP0927197A1 true EP0927197A1 (de) 1999-07-07

Family

ID=7806043

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97943868A Ceased EP0927197A1 (de) 1996-09-18 1997-09-18 Verfahren zur herstellung von methylmethacrylat-polymeren in einem kreislaufreaktor

Country Status (3)

Country Link
EP (1) EP0927197A1 (de)
DE (1) DE19638094A1 (de)
WO (1) WO1998012229A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10037153C2 (de) * 2000-07-31 2003-04-10 Franz Willeke Vorrichtung zur Polymerisation in einem Schlaufenreaktor
DE102004001599A1 (de) * 2004-01-09 2005-08-04 Röhm GmbH & Co. KG Verfahren zur Herstellung von Schmelzpolymerisaten im Rohrreaktor
US7906598B2 (en) 2006-08-30 2011-03-15 Intertape Polymer Corp. Recirculation loop reactor bulk polymerization process
US20100105847A1 (en) 2006-01-24 2010-04-29 Intertape Polymer Corp. Plug flow bulk polymerization of vinyl monomers
MX2009000464A (es) * 2006-08-30 2009-04-28 Intertape Polymer Corp Proceso de polimerizacion en masa de reactor de recirculacion tipo bucle.
CA2680480A1 (en) * 2007-04-20 2008-10-30 Dsm Ip Assets B.V. Preparation of a condensation resin and impregnation process
DE102008000914A1 (de) 2008-04-01 2009-10-08 Evonik Röhm Gmbh Verfahren zur Synthese von verbesserten Bindemitteln und veränderter Taktizität
DE102009000814A1 (de) 2009-02-12 2010-08-19 Evonik Röhm Gmbh Verfahren zur Synthese von verbesserten Bindemitteln mit definierter Korngrößenverteilung
DE102011112081A1 (de) 2011-05-11 2015-08-20 Entex Rust & Mitschke Gmbh Verfahren zur Verarbeitung von Elasten
EP2596860A1 (de) * 2011-11-25 2013-05-29 Fluitec Invest AG Mit einem Wärmetauscher versehener Kreislaufreaktor
EP2906406B1 (de) 2012-10-11 2019-07-17 Entex Rust & Mitschke GmbH Extruder zur verarbeitung von kunststoffen, die zum verkleben neigen
DE102015001167A1 (de) 2015-02-02 2016-08-04 Entex Rust & Mitschke Gmbh Entgasen bei der Extrusion von Kunststoffen
DE102017001093A1 (de) 2016-04-07 2017-10-26 Entex Rust & Mitschke Gmbh Entgasen bei der Extrusion von Kunststoffen mit Filterscheiben aus Sintermetall
DE102016002143A1 (de) 2016-02-25 2017-08-31 Entex Rust & Mitschke Gmbh Füllteilmodul in Planetwalzenextruderbauweise
DE102017004563A1 (de) 2017-03-05 2018-09-06 Entex Rust & Mitschke Gmbh Entgasen beim Extrudieren von Polymeren
DE102017003681A1 (de) 2017-04-17 2018-10-18 Entex Rust & Mitschke Gmbh Kühlen beim Extrudieren von Schmelze
DE102017005999A1 (de) 2017-05-28 2018-11-29 Entex Rust & Mitschke Gmbh Herstellung von essbaren Wurstpellen aus Kollagen oder gleichartigen Stoffen durch Extrudieren
DE102017005998A1 (de) 2017-06-23 2018-12-27 Entex Rust & Mitschke Gmbh Chemische Prozeßführung für fließfähiges Einsatzgut in einem Planetwalzenextruder
DE102017006638A1 (de) 2017-07-13 2019-01-17 Entex Rust & Mitschke Gmbh Füllteilmodul in Planetwalzenextruderbauweise
DE102018001412A1 (de) 2017-12-11 2019-06-13 Entex Rust & Mitschke Gmbh Entgasen beim Extrudieren von Stoffen, vorzugsweise von Kunststoffen
WO2019166125A1 (de) 2018-02-28 2019-09-06 Entex Rust & Mitschke Gmbh Verfahren zur herstellung und verarbeitung von polymeren und polymermischungen in einem modular aufgebauten planetwalzenextruder
DE102020007239A1 (de) 2020-04-07 2021-10-07 E N T E X Rust & Mitschke GmbH Kühlen beim Extrudieren von Schmelzen
EP3892441A1 (de) 2020-04-07 2021-10-13 Entex Rust & Mitschke GmbH Nachrüstung für eine extruderanlage

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7700412A (nl) * 1977-01-15 1978-07-18 Synres Internationaal Nv Continu bereiding van polymeren in de massa.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9812229A1 *

Also Published As

Publication number Publication date
WO1998012229A1 (de) 1998-03-26
DE19638094A1 (de) 1998-03-19

Similar Documents

Publication Publication Date Title
EP0927197A1 (de) Verfahren zur herstellung von methylmethacrylat-polymeren in einem kreislaufreaktor
EP0752268B1 (de) Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Polymeren
EP1086143B1 (de) Verfahren und vorrichtung zur kontinuierlichen herstellung von polymerisaten
DE2724360C3 (de) Verfahren zur Herstellung von thermoplastischen Formmassen auf Basis von Vinylpolymerisaten
EP0752270A2 (de) Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Polymeren
DE69421080T2 (de) Polymere aus bromiertem styrol
DE2343871A1 (de) Verfahren zur herstellung von einheitlichen polymerisaten.
DE3631826A1 (de) Herstellung eines methylmethacrylat-copolymerisats
DE2146337A1 (de) Verfahren zur Herstellung eines schlagzähen alkenylaromatischen Polymeren
GB1559266A (en) Continuous mass preparation of polymers
WO1997033925A1 (de) Mehrstufiges verfahren zur herstellung von hochwärmeformbeständigen polymethacrylat-formmassen
EP0009638A1 (de) Verfahren zur kontinuierlichen Massepolymerisation von Alkenyl-aromaten
EP0752269A2 (de) Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Polymeren
EP0656374B1 (de) Polymethacrylat-Formmasse mit hoher Wärmeformbeständigkeit und hoher Stabilität gegen thermischen Abbau
EP0096201B1 (de) Reaktor zur kontinuierlichen Durchführung von Polymerisationen in hochviskosen Medien
EP0519266B1 (de) Verfahren zur Herstellung von Vinylpolymeren
DE4235785A1 (de) Verfahren und Vorrichtung zur kontinuierlichen Polymerisation
EP1701982A1 (de) Verfahren zur kontinuierlichen herstellung von schmelzpolymerisaten im rohrreaktor
DE2436259A1 (de) Verfahren zur substanzpolymerisation von alpha-olefinen
US3639372A (en) Method for the polymerization of alkenyl aromatic monomers
EP1592718B1 (de) Verfahren zur durchführung einer massepolymerisation
DE10154045A1 (de) Verfahren zur Herstellung von (Co)Polymerisaten von olefinisch ungesättigten Monomeren
DE2843759C2 (de)
DE3026973A1 (de) Verfahren zur herstellung von thermoplastisch verarbeitbaren copolymerisaten
WO2000061644A1 (de) Verfahren zur kontinuierlich herstellung von polymeren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990317

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 19991104

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20011025