EP0925610A1 - Composant a semi-conducteur avec electrode de commande servant a moduler la conductivite d'une zone canal par l'utilisation d'une structure a magnetoresistance - Google Patents

Composant a semi-conducteur avec electrode de commande servant a moduler la conductivite d'une zone canal par l'utilisation d'une structure a magnetoresistance

Info

Publication number
EP0925610A1
EP0925610A1 EP97932757A EP97932757A EP0925610A1 EP 0925610 A1 EP0925610 A1 EP 0925610A1 EP 97932757 A EP97932757 A EP 97932757A EP 97932757 A EP97932757 A EP 97932757A EP 0925610 A1 EP0925610 A1 EP 0925610A1
Authority
EP
European Patent Office
Prior art keywords
semiconductor
electrode
gate electrode
region
component according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97932757A
Other languages
German (de)
English (en)
Inventor
Torsten Franke
Peter TÜRKES
Heinrich Brunner
Alfred Porst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7799971&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0925610(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0925610A1 publication Critical patent/EP0925610A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Definitions

  • power MOSFETs do not require any control current in the stationary operating state. Because of their structure, however, power OSFETs contain comparatively large parasitic capacitances that have to be reloaded with every switching operation. Since these capacitances influencing the switching behavior of the MOSFET consist both of metallizations and insulator layers and of the space charge zones formed in the area of the pn junctions, their respective size depends in a nonlinear manner on the voltage applied.
  • the feedback capacitance caused by the gate electrode and the insulator of the gate-drain / or the gate-collector overlap surface has a predominantly disadvantageous effect on the switching behavior of the respective component and its circuitry ⁇ Freewheeling branch).
  • the invention relates to a MOS-controlled semiconductor component.
  • the aim is a structure that ensures good switching behavior of the component without impairing its static properties.
  • the component should have a high breakdown strength and should be usable in particular in the field of power electronics.
  • a semiconductor component with the features specified in patent claim 1 has these properties.
  • the dependent claims relate to refinements and advantageous developments of the semiconductor component according to the invention.
  • the invention enables the construction of power semiconductors
  • FIG. 2 shows an enlarged section of the symmetry unit according to FIG. 1. 4. Description of the embodiments
  • Figures 1 and 2 show a mirror-symmetrical with respect to the axis 2, in the vertical; to the axis 2 oriented plane, for example circular, square or hexagonal cell 1 of a vertical n-channel MOS field-effect transistor.
  • the individual transistor cells 1 are connected in parallel.
  • the dielectric strength of the structure depends on the dopant concentration and thickness of the Si epitaxial layer 5 deposited on the low-resistance, n + -doped substrate (n-buffer) 4 provided with the drain metallization 3.
  • the p + -doped wells 7 of the transistor cells 1 are introduced into this n ⁇ -doped layer 5, each of the wells 7 containing an annular, n * -doped source zone 6.
  • An Al metallization 8 serves as the source electrode, which contacts both the annular n + region 6 and the respective p + trough 7.
  • the metallization 8 connects adjacent transistor cells to one another in a conductive manner and closes them in parallel.
  • the gate electrode 9 made of polycrystalline silicon is arranged between the thin gate oxide (Si0 2 ) 10 and the oxide layer 11 carrying the source metallization 8.
  • L gd the gate-drain overlap area and this in turn determines the size of the feedback capacitance
  • L d ⁇ p denotes the width of the space charge zone of the p * -n ⁇ junction in the epitaxial layer 5 with the channel formed and the maximum forward current.
  • the ring-shaped or frame-shaped electrode 13 ensures a comparatively homogeneous field distribution in the edge region of the gate electrode 9 and thus prevents the electrical field strength in the semiconductor material from reaching the critical ionization and thus triggering electron multiplication, which is the critical value of approximately 10 5 volts / cm.
  • the parameter L gd must be adjusted accordingly in order to ensure an optimal transmission and switching characteristic of the component.
  • a small length L gd improves the switching shafts in principle, but at the same time worsens the transmission properties.
  • the distance L s between the gate 9 and the additional electrode 13 the field distortion in Affected area of the electrode ends and L s should therefore be as small as possible.
  • the dopant concentration N A of the edge region 15 is determined by the charge which the region 15 serving as contact contributes to the absorption of the electric field until the entire semiconductor structure breaks through. Its dimensions L A / D A should be chosen so that the space charge zone extending from the p + n junction does not or only insignificantly affects the transmission properties of the transistor cell 1.
  • the invention is of course not limited to the exemplary embodiments described above.
  • This component differs essentially only from a MOSFET in that the substrate provided with the collector metallization has p-doping, as a result of which an additional, minority charge carrier is injected into the epitaxial layer (n-base) and the source electrode is formed by a Emitter connection is replaced (see for example [1], pages 350 - 353).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

Dans les semi-conducteurs de puissance à commande MOS connus, les propriétés parasites de ce qu'on appelle la capacitance à rétroaction en court-circuit nuisent considérablement au comportement de commutation du composant. Une réduction de la surface de chevauchement grille-drain/grille-collecteur et donc de ladite capacitance à rétroaction améliore le comportement haute fréquence mais détériore la rigidité diélectrique de la structure. L'électrode-grille (9) de faible surface du composant de l'invention recouvre le substrat (4,5) seulement sur une longueur Lgd ≈ Ldep (Ldep: = largeur de la zone de charge d'espace du substrat). Une électrode (13) supplémentaire, insérée dans l'oxyde (10,11) de grille et distante de l'électrode-grille (9), est reliée de manière conductrice à la métallisation de source (8) et se prolonge jusqu'au bord de l'unité de symétrie (1). Cette électrode (13) supplémentaire assure une répartition de champ comparativement homogène dans la zone latérale de l'électrode-grille (9), empêchant ainsi que l'intensité du champ électrique n'atteigne, dans le semi-conducteur, la valeur critique d'environ 105 V/cm qui déclenche une ionisation par impact. L'invention permet de produire des transistors à effet de champ à grille isolée (MOSFET) et des transistors bipolaires à grille isolée (IGBT) ayant de bonnes propriétés dynamiques et une tension inverse élevée.
EP97932757A 1996-07-16 1997-07-10 Composant a semi-conducteur avec electrode de commande servant a moduler la conductivite d'une zone canal par l'utilisation d'une structure a magnetoresistance Ceased EP0925610A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19628656 1996-07-16
DE19628656 1996-07-16
PCT/DE1997/001458 WO1998002925A1 (fr) 1996-07-16 1997-07-10 Composant a semi-conducteur avec electrode de commande servant a moduler la conductivite d'une zone canal par l'utilisation d'une structure a magnetoresistance

Publications (1)

Publication Number Publication Date
EP0925610A1 true EP0925610A1 (fr) 1999-06-30

Family

ID=7799971

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97932757A Ceased EP0925610A1 (fr) 1996-07-16 1997-07-10 Composant a semi-conducteur avec electrode de commande servant a moduler la conductivite d'une zone canal par l'utilisation d'une structure a magnetoresistance

Country Status (3)

Country Link
US (1) US6150675A (fr)
EP (1) EP0925610A1 (fr)
WO (1) WO1998002925A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2785448B1 (fr) 1998-10-30 2001-01-26 Alstom Technology Procede de fabrication d'une electrode de commande de grille pour transistor igbt
JP3895110B2 (ja) * 1999-03-04 2007-03-22 インフィネオン テクノロジース アクチエンゲゼルシャフト 固有スイッチオン抵抗の低減されたヴァーティカルmosトランジスタ装置のボディ領域の製造方法
US20030079786A1 (en) * 2001-10-30 2003-05-01 Diana Michael J. Modular fluid pressure regulator with bypass
DE10203164B4 (de) * 2002-01-28 2005-06-16 Infineon Technologies Ag Leistungshalbleiterbauelement und Verfahren zu dessen Herstellung
DE10212149B4 (de) 2002-03-19 2007-10-04 Infineon Technologies Ag Transistoranordnung mit Schirmelektrode außerhalb eines aktiven Zellenfeldes und reduzierter Gate-Drain-Kapazität
DE10212144B4 (de) * 2002-03-19 2005-10-06 Infineon Technologies Ag Transistoranordnung mit einer Struktur zur elektrischen Kontaktierung von Elektroden einer Trench-Transistorzelle
US7768064B2 (en) * 2006-01-05 2010-08-03 Fairchild Semiconductor Corporation Structure and method for improving shielded gate field effect transistors
US7807576B2 (en) * 2008-06-20 2010-10-05 Fairchild Semiconductor Corporation Structure and method for forming a thick bottom dielectric (TBD) for trench-gate devices
US8829624B2 (en) * 2008-06-30 2014-09-09 Fairchild Semiconductor Corporation Power device with monolithically integrated RC snubber

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3046749C2 (de) * 1979-12-10 1986-01-16 Sharp K.K., Osaka MOS-Transistor für hohe Betriebsspannungen
JPS5887874A (ja) * 1981-11-20 1983-05-25 Hitachi Ltd 絶縁ゲ−ト形半導体装置
DE3201545A1 (de) * 1982-01-20 1983-07-28 Robert Bosch Gmbh, 7000 Stuttgart Planare halbleiteranordnung
WO1991011826A1 (fr) * 1990-02-01 1991-08-08 Quigg Fred L Structure de transistor a effet de champ de technologie mos a capacitance de grille reduite et methode de fabrication
EP0485648B1 (fr) * 1990-11-12 1995-05-24 Siemens Aktiengesellschaft Dispositif semi-conducteur à haute tension de blocage
US5404040A (en) * 1990-12-21 1995-04-04 Siliconix Incorporated Structure and fabrication of power MOSFETs, including termination structures
JP3417013B2 (ja) * 1993-10-18 2003-06-16 株式会社デンソー 絶縁ゲート型バイポーラトランジスタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9802925A1 *

Also Published As

Publication number Publication date
WO1998002925A1 (fr) 1998-01-22
US6150675A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
EP0833386B1 (fr) Dispositif semiconducteur vertical contrôlable par effet de champ
DE19848828C2 (de) Halbleiterbauelement mit kleiner Durchlaßspannung und hoher Sperrfähigkeit
DE19539541B4 (de) Lateraler Trench-MISFET und Verfahren zu seiner Herstellung
DE102004007197B4 (de) Hochsperrendes Halbleiterbauelement mit niedriger Durchlassspannung
DE19630740B4 (de) Bipolarer Transistor mit Kurzschlußanode und seitlich angeordneter isolierter Gate-Elektrode
EP0939446A1 (fr) Composant semiconducteur de puissance contrÔle par effet de champ
EP1051756A1 (fr) Transistor mos a effet de champ avec electrode auxiliaire
EP0057256A2 (fr) Transistor MIS vertical à effet de champ à résistance minime à l'état passant
EP0043009A2 (fr) Commutateur commandé par semiconducteur
DE102014114100A1 (de) Igbt mit reduzierter rückwirkungskapazität
DE19816448C1 (de) Universal-Halbleiterscheibe für Hochspannungs-Halbleiterbauelemente, ihr Herstellungsverfahren und ihre Verwendung
DE3905434C2 (de) Bipolare Halbleiterschalteinrichtung und Verfahren zu ihrer Herstellung
DE102009011349B4 (de) Halbleiterbauelemente und Verfahren zur Herstellung von Halbleiterchips
DE10313712B4 (de) Laterales mittels Feldeffekt steuerbares Halbleiterbauelement für HF-Anwendungen
EP0925610A1 (fr) Composant a semi-conducteur avec electrode de commande servant a moduler la conductivite d'une zone canal par l'utilisation d'une structure a magnetoresistance
EP1097482A1 (fr) Ensemble a semi-conducteur, en particulier transistor a effet de champ a jonction
DE102007013848A1 (de) Halbleiterbauelement und Verfahren zur Herstellung desselben
EP0098496A1 (fr) IGFET avec zone d'injection
DE102006002438A1 (de) Halbleitervorrichtung und Verfahren zu ihrer Herstellung
EP0017980B1 (fr) Thyristor contrôlé par un transistor à effet de champ
DE102005045910B4 (de) Laterales SOI-Bauelement mit einem verringerten Einschaltwiderstand
EP0966761B1 (fr) Transistor vertical bipolaire a grille isolee pourvu d'une structure du type silicium sur isolant
DE19750827A1 (de) Leistungshalbleiterbauelement mit Emitterinjektionssteuerung
DE10005772B4 (de) Trench-MOSFET
EP0600241A2 (fr) Diode commandée par MOS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INFINEON TECHNOLOGIES AG

17Q First examination report despatched

Effective date: 20070823

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20091111