EP0922747B1 - Procédé d'isomérisation des coupes paraffiniques C5-C8 riches en paraffines à plus de sept atomes de carbone - Google Patents
Procédé d'isomérisation des coupes paraffiniques C5-C8 riches en paraffines à plus de sept atomes de carbone Download PDFInfo
- Publication number
- EP0922747B1 EP0922747B1 EP98402869A EP98402869A EP0922747B1 EP 0922747 B1 EP0922747 B1 EP 0922747B1 EP 98402869 A EP98402869 A EP 98402869A EP 98402869 A EP98402869 A EP 98402869A EP 0922747 B1 EP0922747 B1 EP 0922747B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- process according
- weight
- hydrogen
- feed
- carbon atoms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/10—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with stationary catalyst bed
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/58—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
- C10G45/60—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
- C10G45/62—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing platinum group metals or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/02—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
- C10G11/08—Halides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
Definitions
- the present invention relates to an isomerization process in the presence of hydrogen (also sometimes called hydro-isomerization process), of a filler comprising in major part of normal paraffins (also called n-paraffins or normal paraffins) containing 5 to 8 carbon atoms molecule.
- hydrogen also sometimes called hydro-isomerization process
- a filler comprising in major part of normal paraffins (also called n-paraffins or normal paraffins) containing 5 to 8 carbon atoms molecule.
- n-butane normal butane
- isobutane which can be used in different applications.
- Isobutane can also, after dehydrogenation, be used in the reaction etherification with methanol or ethanol.
- ethers thus obtained - methyl tertio butyl ether (MTBE) or ethyl tertio butyl ether (ETBE) - have high octane numbers and can be directly incorporated into petrol.
- MTBE methyl tertio butyl ether
- ETBE ethyl tertio butyl ether
- the temperature of reaction is usually greater than 200 ° C and often 300 ° C and the ratio of the number of moles of hydrogen over the number of moles of hydrocarbons is greater than 1.
- Patent FR 2735993 describes a catalyst and its use in processes isomerization of normal paraffins containing from 4 to 6 carbon atoms.
- This catalyst contains at least one halogen, preferably this halogen is chlorine, less a group VIII metal and a shaped support comprising alumina gamma and / or optionally eta alumina, the catalyst being characterized in that the smallest average dimension of said support is about 0.8 to 2 mm, preferably approximately 1 to 1.8 mm, and in that its chlorine content is approximately 4.5 to 15% by weight, preferably about 5 to 12% by weight.
- This catalyst is prepared by halogenation of a catalyst containing at least one group VIII metal on an alumina support. Once once the metal has been deposited, the support can undergo an activation treatment in air and / or under nitrogen.
- Patent EP 0 495 277 describes a catalyst and its use in isomerization processes normal paraffins containing 4 to 7 carbon atoms.
- This catalyst contains a halogen, preferably this halogen is the Chlorine, a platinum group metal and a shaped support comprising alumina, catalyst being characterized in that its content of chlorine is 1 to 15% by weight and its platinum group metal content is from 0.01 to 2% by weight.
- the reaction isomerization takes place at a temperature between 125 and 165 ° C.
- a halogenated catalyst can also be prepared from a support, shaped and treated with steam.
- a catalyst is the subject of a patent application on the part of of the plaintiff, filed on the same day as this application, and in which is describes a catalyst containing at least one halogen, at least one metal from group VIII and a support comprising gamma alumina and / or eta alumina, shaped and treated under a stream of gas containing water vapor.
- the present invention relates to a process for isomerization in the presence of hydrogen of a filler mainly comprising normal paraffins containing from 5 to 8 atoms of carbon per molecule, characterized in that the sum of the normal paraffin contents at 7 and 8 carbon atoms per molecule contained in the charge is between 2 and 90% weight relative to the load, and in that said load is treated in at least one reaction zone, containing at least one fixed bed catalyst, said catalyst comprising a support, at least one halogen and at least one group VIII metal, the reaction being carried out at a temperature between 70 and 95 ° C.
- the present invention also relates to a method for increasing the index octane from a petroleum cut comprising normal paraffins containing from 5 to 8 carbon atoms per molecule.
- the present invention makes it possible in particular to overcome the aforementioned drawbacks.
- the method according to the invention makes it possible to convert charges for which the sum of the normal paraffin contents at 7 and at 8 carbon atoms per molecule contained in said charge is between 2 and 90 % by weight, preferably between 5 and 90% by weight, more preferably between 20 and 90% weight and very preferably between 40 and 90% by weight.
- the method according to the present invention allows, from a load to be treated comprising normal paraffins containing 5 to 8 carbon atoms per molecule, to obtain a paraffin yield branched containing at least 5 carbon atoms per molecule greater than 85% by weight.
- the process according to the present invention uses at least one reaction zone which includes at least one reactor, preferably containing at least one solid catalyst acid in a fixed bed, the reaction temperature is between 70 and 95 ° C.
- the catalyst used comprises a support, preferably based on alumina, containing at least one halogen, the halogen content being between 0.1 and 15% by weight, and at least one Group VIII metal.
- a catalyst based on chlorinated alumina preferably based on chlorinated alumina.
- the catalyst used in the process according to the invention contains at least one metal of the group VIII on a support preferably based on alumina, on this support is deposited at least one halogen, preferably chosen from the group formed by fluorine, chlorine, bromine and iodine, more preferably the halogen is chlorine. Content halogen is between 0.1 and 15% by weight, preferably between 4 and 12%. in weight
- the support of the catalyst preferably comprises essentially alumina.
- the alumina preferably used in the process according to the invention can be of gamma alumina and / or optionally eta alumina (i.e. be either gamma alumina, or eta alumina, or a mixture of these two aluminas).
- the alumina of the support comprises between 50 and 100% by weight, preferably between 80 and 100% by weight of alumina eta, more preferred 80 to 95% by weight of alumina eta, the balance being gamma alumina.
- the smallest average size of the catalyst support is about 0.8 to 2 mm, of preferably about 1 to 1.8 mm.
- said support is formed essentially of beads with an average diameter of about 0.8 to 2 mm, preferably about 1 to 1.8 mm, or well said support is formed essentially of extrudates whose smallest dimension is about 0.8 to 2 mm, preferably about 1 to 1.8 mm, i.e. the extrudates have was shaped using any extrusion technique known to those skilled in the art, such as for example a die with a diameter of about 0.8 to 2 mm, preferably about 1 to 1.8 mm.
- the gamma alumina possibly present in the support of the catalyst has a specific surface of approximately 150 to 300 m 2 / g and preferably of approximately 180 to 250 m 2 / g, and a total pore volume generally of approximately 0, 4 to 0.8 cm 3 / g and preferably about 0.45 to 0.7 cm 3 / g.
- the alumina was optionally present in the catalyst support has a specific surface of approximately 400 to 600 m 2 / g and preferably of approximately 420 to 550 m 2 / g, and a total pore volume of approximately 0.3 at 0.5 cm 3 / g and preferably about 0.35 to 0.45 cm 3 / g.
- the metal of group VIII is chosen from the group formed by iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, preferably chosen in the group formed by platinum, palladium and nickel.
- the content is about 0.05 to 2% by weight and so preferred about 0.1 to 1.5% by weight.
- the weight content is from about 0.1 to 10% by weight and preferably from about 0.2 to 6% weight.
- the preparation of the catalyst is generally carried out by shaping the support. Says it support shaped suddenly can optionally undergo a treatment under steam at high temperature before or after the deposition of at least one group VIII metal. A halogenation, preferably chlorination, is then carried out. It is also possible and preferred to carry out an activation step under hydrogen, before said step halogenation.
- these two types of aluminas are preferably mixed and shaped together, according to any technique known to those skilled in the art, for example by extrusion through a die, by pelleting or by coating.
- the smallest dimension of the geometric shape described by the support after shaping is approximately 0.8 to 2 mm, preferably approximately 1 to 1.8 mm, which makes it possible to obtain , during the halogenation stage of the support, a sufficient halogen content for a reduced halogenation period.
- the support preferably undergoes a treatment at high temperature under water vapor.
- the hydrothermal treatment is generally carried out for 0.5 to 6 hours, for example at a temperature of around 200 to 700 ° C. under a gas flow, for example air and / or nitrogen.
- the gas must contain water, for example at contents of about 0.2% to 100% by volume and preferably about 0.3% to 20% by volume.
- the activation of alumina by water vapor makes it possible to obtain much more acidic catalysts and therefore much more active in isomerization.
- At least one hydrogenating metal from group VIII chosen from the group formed by iron, the cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, preferably chosen from the group formed by platinum, palladium, and nickel, is then deposited on the support by any technique known to those skilled in the art, by example by anion exchange in the form of hexachloroplatinic acid in the case of platinum or in the form of chloride in the case of palladium. Hydrothermal treatment can be made after depositing the metal on the support.
- the support comprising the deposited metal can then optionally undergo a treatment under hydrogen which makes it possible to obtain an active metallic phase.
- the procedure of this hydrogen treatment for example includes a slow rise in temperature under hydrogen flow up to the maximum reduction temperature which is around 300 to 700 ° C, and preferably between 340 to 680 ° C, followed by maintaining this temperature, generally for 1 to 6 hours, preferably for 1.5 to 4.5 hours.
- the halogenation step can be carried out according to any known technique of the skilled person.
- the halogen preferably chlorine
- Halogenation, preferably chlorination, alumina is carried out directly in the isomerization unit before injection of the load to be treated, or off site: in a separate unit, intended for halogenation.
- the halogenation can be carried out by any halogenating carbon agent, of preferably chlorinating agent, known to those skilled in the art.
- halogen preferably chlorine
- the reduction treatment under hydrogen can take place outside the unit (e.g. situ "), which implies taking special precautions for the transport of said catalyst up to said unit, or else said treatment can take place within the unit ("in-situ") just before the use of said catalyst.
- the present invention relates to a process for the isomerization of a charge mainly comprising normal paraffins containing from 5 to 8 carbon atoms per molecule, characterized in that the sum of the contents of normal paraffins at 7 and 8 carbon atoms per molecule contained in the charge is between 2 and 90% by weight, preferably between 5 and 90% by weight, more preferably between 20 and 90% by weight, and very preferably between 40 and 90% by weight relative to the feed, and in that said feed is treated in at least one reaction zone, preferably containing at least one fixed bed catalyst, said catalyst comprising a support, at least one halogen and at least one group VIII metal, the reaction being carried out at a temperature of between 70 and 95 ° C.
- the feed to be treated preferably containing at least one halogenated compound, more preferably a chlorinated compound, the pon content of which derale in said charge is between 50 and 2000 ppm, and most often between 50 and 300 ppm, for example perchlorethylene C 2 Cl 4 ,
- Two embodiments of the invention can be considered, they will be chosen in function of the amount of excess hydrogen relative to the amount of hydrogen consumed by hydrogenation reactions, the opening of naphthenic cycles and paraffin cracking. This can also be expressed by the ratio R of the number of moles of hydrogen on the number of moles of hydrocarbons in the effluent leaving the reactor.
- a small excess of hydrogen is used, so that the ratio R of the number of moles of hydrogen to the number of moles of hydrocarbons calculated on the basis of the composition of the effluent leaving the reactor either between 0.06 and 0.3, preferably 0.06 and 0.2. In this case it is not necessary to recycle the hydrogen not consumed towards the inlet of the reactor. We then operate at "Lost hydrogen".
- the ratio R of the number of moles of hydrogen to the number of moles of hydrocarbons calculated on the basis of the composition of the effluent leaving the reactor is then understood between 0.3 and 10, preferably between 0.3 and 5, and even more preferably between 0.5 and 3.
- the excess hydrogen is recycled to the inlet of the reactor for example by means of a gas-liquid separation tank and a recycling compressor. according to this mode of the invention it is possible to adjust the partial pressure of hydrogen in a wider range than in the first embodiment.
- the hourly volume velocity (PPH) defined as the mass flow rate of feed to be treated per mass of catalyst and per hour is approximately 0.2 to 10 kg of feed per kg of catalyst and per hour (0.2 to 10 h -1 ), preferably around 0.3 to 5 kg of feed per kg of catalyst per hour (0.3 to 5 h -1 ) and even more preferably between 0.5 and 2 kg of feed per kg of catalyst per hour (0.5 to 2 h -1 ).
- the reactor pressure is about 0.1 to 10 MPa relative, preferably about 0.5 to 8 MPa relative, more preferably between 2 and 5 MPa.
- the reactor temperature is between 70 and 95 ° C.
- a catalyst comprising a support, at least one halogen and at least one metal of group VIII, under the operating conditions indicated above leads to a surprisingly in obtaining high levels of conversion of C5-C8 n-paraffins, and more particularly n-heptane while retaining high yields of isomers, that is to say in light gasoline essentially consisting of hydrocarbons containing 5 to 8 carbon atoms.
- This catalyst therefore makes it possible to obtain a low cracking rate.
- the method according to the invention can treat all types of charges comprising in major part of normal paraffins containing from 5 to 8 carbon atoms, naphthenes, aromatic (in amounts usually less than 10% by weight). More specifically, the process according to the invention makes it possible to treat paraffinic cuts including the chain contains 5 to 8 carbon atoms, and in which the sum of the paraffin contents normal to 7 and 8 carbon atoms per molecule included in the section is included between 2 to 90% by weight, preferably between 5 and 90% by weight, more preferably between 20 and 90% by weight and very preferably from 40 to 90% by weight.
- the charges of the process according to the invention are free of water, oxygen, sulfur and more generally all compounds known to be poisons or inhibitors of alumina catalysts halogenated.
- a reactor with a volume of 200 ml is used, fed in upflow mode fluids by the mixture constituted by the charge to be treated and by the hydrogen.
- the effluent leaving the reactor is cooled and then analyzed by vapor phase chromatography.
- an industrial catalyst based on chlorinated alumina sold is used. by the company Procatalyse under the reference IS 612A.
- a reactor with a volume of 200 ml is also used, fed in flow mode ascending of fluids by the mixture constituted by the load to be treated and by hydrogen.
- the effluent leaving the reactor is cooled and then analyzed by phase chromatography steam.
- the operating conditions are as follows:
- the reactor is supplied with a feed comprising hydrocarbons containing from 5 to 7 carbon atoms and 800 ppm by weight of perchlorethylene (C 2 Cl 4 ) at a flow rate of 87 g / h, the mass of the catalyst being of 86 g, the PPH is 1.01 h -1 .
- the hydrogen flow rate is 4.5 10 -9 l / h.
- the total pressure is 3 MPa relative.
- isomerization 1 is carried out at a temperature of 105 ° C.
- the ratio R1 of the number of moles of hydrogen to the number of moles of hydrocarbons calculated at the outlet of the reactor is equal to 0.14
- isomerization 2 is carried out at 115 ° C. and the ratio R2 of the number of moles of hydrogen to the number of moles of hydrocarbons calculated at the outlet of the reactor is equal to 0.11.
- Example 1 the same catalyst and the same reactor are used as in Example 1.
- the reactor is supplied with a feed comprising hydrocarbons containing 5 to 7 carbon atoms and 800 ppm by weight of perchlorethylene (C2C14) at a flow rate of 84 g / h, the mass of the catalyst being 84 g, the PPH is 1 h-1 .
- the hydrogen flow rate is 60 10 -9 l / h.
- the total pressure is 3 MPa relative.
- isomerization 3 is carried out at a temperature of 115 ° C.
- the ratio R3 of the number of moles of hydrogen to the number of moles of hydrocarbons calculated at the outlet of the reactor is equal to 2.67
- isomerization 4 is carried out at 130 ° C.
- the ratio R4 of the number of moles of hydrogen to the number of moles of hydrocarbons calculated at the outlet of the reactor is equal to 2.56.
- Example 2 corresponds to an isomerization process in which a large excess of hydrogen is used with respect to the feed to be converted.
- the composition of the charge and the results obtained are illustrated by means of Table 2.
- compounds Load (% by weight) After isomerization 3 (% by weight) After isomerization4 (% by weight) C2-C4 0.87 5.99 9.51 iC5 9.95 11,73 12.5 nC5 7.79 6.33 6.18 cyclopentane 0.62 0.62 0.62 IC6 9.50 10.40 11,01 nC6 2.97 2.07 2.02 cyclohexane 5.10 3.79 3.19 methylcyclopentane 2.32 2.47 2.67 benzene 0.17 0 0 nC7 55.41 13.63 9.15 IC7 5.30 42.97 43,15 Isomerization 1 Isomerization 2 nC5 conversion 18.8% 20.7% nC6 conversion 30.3% 32% nC7 conversion 75.4% 83.5% C5 + efficiency 94
- Table 2 also illustrates the fact that 130 ° C is an appreciably low temperature. away from the maximum temperature compatible with obtaining high yields in isomers, in particular if it is estimated that a cracking rate in light products of 10% is the upper acceptable limit. In fact, at 130 ° C, 8.7% of products are already obtained light formed by cracking, therefore a yield of branched paraffins containing from 5 to 7 91.3% carbon atoms.
- the catalyst used in Example 3 is manufactured as follows: gamma alumina is formed by extrusion through a die with a diameter of 1.2 mm. The solid thus formed is treated at 500 ° C with air containing 3% by volume of water vapor. 0.2% of platinum-shaped alumina is deposited on said alumina by ion exchange with hexachloroplatinic acid in the presence of HCl as a competing agent. The solid obtained is reduced under hydrogen at 400 ° C. The solid obtained is then chlorinated, at a temperature of 280 ° C., by injection of carbon tetrachloride under a stream of nitrogen.
- the load to be treated consists of approximately 10% by weight of normal paraffins with 5 carbon atoms, 10% by weight of normal paraffins with 6 carbon atoms, 65% by weight of normal paraffins with 7 carbon atoms and 8% by weight of naphthenes containing 6 carbon atoms.
- Said feed containing 100 ppm of carbon tetrachloride (CCl 4 ) expressed by weight of chlorine to maintain the chlorine content of the catalyst used.
- the isomerization operating conditions are as follows: the reactor temperature is 110 ° C., the total pressure of 3 relative MPa, the PPH of 1 h -1 and the ratio R5 of the number of moles of hydrogen to the number of moles of hydrocarbons calculated at the reactor outlet is equal to 0.47.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Description
- les catalyseurs de type Friedel et Crafts, tels que les catalyseurs contenant du chlorure d'aluminium, qui sont utilisés à basses températures (environ 20 à 130°C),
- les catalyseurs à base de métaux du groupe VIII de la classification périodique des éléments (Handbook of Chemistry and Physics, 45 ème édition, 1964-1965) déposés sur alumine et contenant généralement un halogène, qui sont utilisés à des températures moyennes (environ 110 à 160°C). Les brevets US-A-2.906.798, US-A-2.993.398, US-A-3.791.960, US-A-4.113.789, US-A-4.149.993, US-A-4.804.803 décrivent, par exemple, ce type de catalyseurs,
- les catalyseurs zéolithiques comprenant un métal du groupe VIII déposé sur une zéolithe, qui sont utilisés à des températures élevées (de 250 °C à 350 °C), ces catalyseurs conduisent à l'obtention d'un mélange d'hydrocarbures ayant un indice d'octane amélioré mais moins bon que celui obtenu par les procédés utilisant les catalyseurs cités ci-dessus, cependant ils présentent l'avantage d'être plus faciles à mettre en oeuvre et plus résistants aux poisons. Leur faible acidité ne permet pas de les employer pour l'isomérisation du n-butane. Le brevet US-A- 4.727.217 décrit ce type de catalyseurs.
L'alumine êta éventuellement présente dans le support du catalyseur possède une surface spécifique d'environ 400 à 600 m2/g et de préférence d'environ 420 à 550 m2/g, et un volume poreux total d'environ 0,3 à 0,5 cm3/g et de manière préférée d'environ 0,35 à 0,45 cm3/g.
Le support subit préférentiellement un traitement à haute température sous vapeur d'eau. Le traitement hydrothermal est réalisé généralement pendant 0,5 à 6 heures par exemple à une température d'environ 200 à 700°C sous flux de gaz par exemple l'air et/ou l'azote. Le gaz doit contenir de l'eau par exemple à des teneurs d'environ 0,2 % à 100 % en volume et de préférence d'environ 0,3 % à 20% en volume. L'activation de l'alumine par la vapeur d'eau permet d'obtenir des catalyseurs beaucoup plus acides et donc beaucoup plus actifs en isomérisation.
La vitesse volumique horaire (PPH) définie comme le débit massique de charge à traiter par masse de catalyseur et par heure est d'environ de 0,2 à 10 kg de charge par kg de catalyseur et par heure (0,2 à 10 h-1), de préférence d'environ 0,3 à 5 kg de charge par kg de catalyseur et par heure (0.3 à 5 h-1) et d'une manière encore plus préférée entre 0,5 et 2 kg de charge par kg de catalyseur et par heure (0,5 à 2 h-1).
La pression du réacteur est d'environ 0,1 à 10 MPa relatifs, de préférence d'environ 0,5 à 8 MPa relatifs, de manière plus préféré entre 2 et 5 MPa.
La température du réacteur est comprise entre 70 et 95°C.
Composés | Charge (% en poids) | Après isomérisation 1 (% en poids) | Après isomérisation2 (% en poids) |
C2-C4 | 0,74 | 5,19 | 7,15 |
iC5 | 4,19 | 6,72 | 7,62 |
nC5 | 10,53 | 7,67 | 7,5 |
cyclopentane | 0,28 | 0,27 | 0,28 |
iC6 | 4,01 | 4,32 | 4,73 |
nC6 | 1,06 | 0,82 | 0,88 |
cyclohexane | 1,4 | 3,04 | 2,6 |
méthylcyclopentane | 1,01 | 1,66 | 1,62 |
benzène | 0,01 | 0 | 0 |
nC7 | 65,7 | 20,00 | 17,35 |
iC7 | 11,7 | 50,31 | 50,27 |
Isomérisation 1 | Isomérisation 2 | |
conversion nC5 | 29% | 27% |
conversion nC6 | 17% | 22,60% |
conversion nC7 | 73,6 % | 69,60% |
rendement C5+ | 93,5 % | 95,50% |
Deux isomérisations à des températures différentes sont effectuées sur la même charge, l'isomérisation 3 est effectuée à une température de 115 °C, le rapport R3 du nombre de moles d'hydrogène sur le nombre de moles d'hydrocarbures calculé en sortie de réacteur est égal à 2,67 et l'isomérisation 4 est effectuée à 130 °C, le rapport R4 du nombre de moles d'hydrogène sur le nombre de moles d'hydrocarbures calculé en sortie de réacteur est égal à 2,56.
La composition de la charge et les résultats obtenus sont illustrés au moyen du tableau 2.
Composés | Charge (% en poids) | Après isomérisation 3 (% en poids) | Après isomérisation4 (% en poids) |
C2-C4 | 0,87 | 5,99 | 9,51 |
iC5 | 9,95 | 11,73 | 12,5 |
nC5 | 7,79 | 6,33 | 6,18 |
cyclopentane | 0,62 | 0,62 | 0,62 |
iC6 | 9,50 | 10,40 | 11,01 |
nC6 | 2,97 | 2,07 | 2,02 |
cyclohexane | 5,10 | 3,79 | 3,19 |
méthylcyclopentane | 2,32 | 2,47 | 2,67 |
benzène | 0,17 | 0 | 0 |
nC7 | 55,41 | 13,63 | 9,15 |
iC7 | 5,30 | 42,97 | 43,15 |
Isomérisation 1 | Isomérisation 2 | |
conversion nC5 | 18,8% | 20,7% |
conversion nC6 | 30,3% | 32% |
conversion nC7 | 75,4% | 83,5% |
rendement C5+ | 94,8% | 91,3% |
On procède ensuite à la chloration du solide obtenu, à une température de 280°C, par injection de tétrachlorure de carbone sous courant d'azote.
Claims (15)
- Procédé d'isomérisation en présence d'hydrogène d'une charge comprenant en majeure partie des paraffines normales contenant de 5 à 8 atomes de carbone par molécule, dans lequel la somme des teneurs en paraffines normales à 7 et à 8 atomes de carbone par molécule contenues dans la charge est comprise entre 2 et 90 % poids par rapport à la charge, et dans lequel ladite charge est traitée dans au moins une zone réactionnelle, contenant au moins un catalyseur en lit fixe, ledit catalyseur comprenant un support, au moins un halogène et au moins un métal du groupe VIII, caractérisé en ce que la réaction est effectuée à une température comprise entre 70 et 95 °C.
- Procédé d'isomérisation selon la revendication 1, dans lequel la somme des teneurs en paraffines normales à 7 et à 8 atomes de carbone par molécule contenues dans la charge est comprise entre 5 et 90 % poids.
- Procédé d'isomérisation selon la revendication 1, dans lequel la somme des teneurs en paraffines normales à 7 et à 8 atomes de carbone par molécule contenues dans la charge est comprise entre 20 et 90 % poids.
- Procédé d'isomérisation selon l'une quelconque des revendications 1 à 3, dans lequel la somme des teneurs en paraffines normales à 7 et à 8 atomes de carbone par molécule contenues dans la charge est comprise entre 40 et 90 % poids.
- Procédé d'isomérisation selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'un traitement du support à une température de 200 à 700°C sous vapeur d'eau est réalisé avant ou après le dépôt d'au moins un métal.
- Procédé d'isomérisation selon l'une quelconque des revendications 1 à 5, dans lequel un traitement du support est effectué pendant 0,5 à 6 heures, à une température de 200 à 700°C sous un flux de gaz contenant de l'eau à des teneurs de 0,2 % à 100 % en volume.
- Procédé d'isomérisation selon l'une quelconque des revendications 1 à 6, dans lequel le support est à base d'alumine, cette alumine comprenant entre 50 et 95 % poids d'alumine êta, le complément étant de l'alumine gamma.
- Procédé d'isomérisation selon l'une quelconque des revendications 1 à 7, dans lequel la charge à traiter contient au moins un composé halogéné dont la teneur pondérale dans ladite charge est comprise entre 50 et 2000 ppm.
- Procédé d'isomérisation selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'halogène contenu dans le support est du chlore.
- Procédé d'isomérisation selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le support contient un halogène dans des teneurs comprises entre 0,1 et 15 % en poids.
- Procédé d'isomérisation selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la pression totale de réaction est de 0,1 à 10 MPa relatifs, la vitesse spatiale horaire étant de 0,2 à 10 h-1.
- Procédé d'isomérisation selon l'une quelconque des revendications 1 à 11, caractérisé en ce que la réaction est effectuée en présence d'un excès d'hydrogène tel que le rapport R du nombre de moles d'hydrogène sur le nombre de moles d'hydrocarbures calculé sur la base de la composition de l'effluent sortant du réacteur est compris entre 0,06 et 0,3.
- Procédé d'isomérisation selon l'une quelconque des revendications 1 à 11 caractérisé en ce que la réaction est effectuée en présence d'un excès d'hydrogène tel que le rapport R du nombre de moles d'hydrogène sur le nombre de moles d'hydrocarbures calculé sur la base de la composition de l'effluent sortant du réacteur est compris entre 0,3 et 10.
- Procédé d'isomérisation selon l'une quelconque des revendications 1 à 13, caractérisé en ce que le catalyseur subit un traitement sous hydrogène avant le dépôt d'au moins un halogène.
- Procédé d'isomérisation selon la revendication 14, caractérisé en ce que le traitement sous hydrogène comprend une montée lente de la température sous courant d'hydrogène jusqu'à la température maximale de réduction qui est de 300 à 700°C, suivie d'un maintien de cette température, généralement pendant 1 à 6 heures.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9714892A FR2771417B1 (fr) | 1997-11-25 | 1997-11-25 | Procede d'isomerisation des coupes paraffiniques c5-c8 riches en paraffines a plus de sept atomes de carbone |
FR9714892 | 1997-11-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0922747A1 EP0922747A1 (fr) | 1999-06-16 |
EP0922747B1 true EP0922747B1 (fr) | 2003-10-29 |
Family
ID=9513847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98402869A Expired - Lifetime EP0922747B1 (fr) | 1997-11-25 | 1998-11-19 | Procédé d'isomérisation des coupes paraffiniques C5-C8 riches en paraffines à plus de sept atomes de carbone |
Country Status (7)
Country | Link |
---|---|
US (2) | US20020002319A1 (fr) |
EP (1) | EP0922747B1 (fr) |
JP (1) | JPH11236577A (fr) |
KR (1) | KR100567996B1 (fr) |
CA (1) | CA2252065A1 (fr) |
DE (1) | DE69819286T2 (fr) |
FR (1) | FR2771417B1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10889767B2 (en) * | 2018-06-28 | 2021-01-12 | Uop Llc | Perchloroethylene decomposition reactor design for isomerization unit hydrogen feed, enabling a lower temperature process with increased C5+ yield |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE594884A (fr) * | ||||
US3969425A (en) * | 1974-02-22 | 1976-07-13 | Universal Oil Products Company | Saturated hydrocarbon isomerization process |
US4069269A (en) * | 1975-11-20 | 1978-01-17 | Uop Inc. | Isomerization of naphthenes |
US5004859A (en) * | 1989-11-13 | 1991-04-02 | Uop | Catalyst for the isomerization of alkanes |
FR2714305B1 (fr) * | 1993-12-29 | 1996-02-02 | Inst Francais Du Petrole | Catalyseur pour la réduction de la teneur en benzène dans les essences. |
US5591689A (en) * | 1995-06-23 | 1997-01-07 | Phillips Petroleum Company | Preparation of isomerization catalyst composition |
-
1997
- 1997-11-25 FR FR9714892A patent/FR2771417B1/fr not_active Expired - Lifetime
-
1998
- 1998-11-19 DE DE69819286T patent/DE69819286T2/de not_active Expired - Lifetime
- 1998-11-19 EP EP98402869A patent/EP0922747B1/fr not_active Expired - Lifetime
- 1998-11-24 CA CA002252065A patent/CA2252065A1/fr not_active Abandoned
- 1998-11-25 JP JP10334558A patent/JPH11236577A/ja active Pending
- 1998-11-25 KR KR1019980050665A patent/KR100567996B1/ko not_active IP Right Cessation
- 1998-11-25 US US09/199,350 patent/US20020002319A1/en not_active Abandoned
-
2002
- 2002-11-04 US US10/286,819 patent/US20030060673A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
FR2771417B1 (fr) | 1999-12-31 |
KR19990045556A (ko) | 1999-06-25 |
EP0922747A1 (fr) | 1999-06-16 |
CA2252065A1 (fr) | 1999-05-25 |
FR2771417A1 (fr) | 1999-05-28 |
JPH11236577A (ja) | 1999-08-31 |
DE69819286T2 (de) | 2004-05-13 |
US20030060673A1 (en) | 2003-03-27 |
KR100567996B1 (ko) | 2006-07-11 |
US20020002319A1 (en) | 2002-01-03 |
DE69819286D1 (de) | 2003-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1868719B1 (fr) | Procède de préparation de catalyseurs multimetalliques utilisables dans des réactions de transformation des hydrocarbures | |
EP0256945B1 (fr) | Catalyseur à base de mordénite pour l'isomérisation de paraffines normales | |
EP0661095B1 (fr) | Catalyseur pour la réduction de la teneur en benzène dans les essences | |
EP0661370B1 (fr) | Catalyseur pour la réduction de la teneur en benzène dans les essences | |
EP1417283B1 (fr) | Procede d'isomerisation d'une coupe c5-c8 mettant en oeuvre deux reacteurs en parallele | |
EP0552070B1 (fr) | Réduction de la teneur en benzène dans les essences | |
FR2670132A1 (fr) | Catalyseur a base d'alumine chloree et son utilisation en isomerisation des paraffines normales c4-c6. | |
EP0922747B1 (fr) | Procédé d'isomérisation des coupes paraffiniques C5-C8 riches en paraffines à plus de sept atomes de carbone | |
CA1334980C (fr) | Procede d'isomerisation du butene-1 en butenes-2 dans une coupe d'hydrocarbures en c _ contenant du butadiene et des composes sulfures | |
FR2704773A1 (fr) | Procédé de préparation de catalyseurs utilisables en déshydrogénation. | |
EP2934747B1 (fr) | Catalyseur modifie de type structural mtw, sa méthode de préparation et son utilisation dans un procédé d'isomérisation d'une coupe c8 aromatique | |
EP0552069B1 (fr) | Réduction de la teneur en benzène dans les essences par un procédé d'isomérisation | |
EP0750941B1 (fr) | Catalyseur à base d'alumine chlorée, et son utilisation en isomérisation des normales paraffines C4-C6 | |
EP0623387B2 (fr) | Procédé d'hydrogénation catalytique | |
EP1110931B1 (fr) | Procédé et dispositif pour l'alkylation de l'isobutane par des oléfines légères. | |
FR2744441A1 (fr) | Procede d'isomerisation de paraffines | |
EP0552072B1 (fr) | Réduction de la teneur en benzène dans les essences | |
FR2795340A1 (fr) | Nouveaux catalyseurs contenant des heteropolyanions utilisables dans des procedes de conversion de paraffines | |
WO2024217919A1 (fr) | Catalyseur de deshydrogenation de paraffines et/ou de naphtenes a base de ptsnkcl sur un support d'alumine gamma | |
EP1369175A1 (fr) | Lit homogène de catalyseur et procédé de transformation d'hydrocarbures en composés aromatiques avec ledit lit | |
FR2771307A1 (fr) | Preparation et utilisation en isomerisation des normales paraffines c4-c8 d'un catalyseur halogene a base d'alumine traitee a la vapeur d'eau | |
FR2694565A1 (fr) | Réduction de la teneur en benzène dans les essences. | |
FR2468406A1 (fr) | Nouveaux catalyseurs de conversion d'hydrocarbures | |
CA2340821A1 (fr) | Catalyseur et processus d'isomerisation de paraffine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB IT NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19991216 |
|
AKX | Designation fees paid |
Free format text: DE GB IT NL |
|
17Q | First examination report despatched |
Effective date: 20011024 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB IT NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 69819286 Country of ref document: DE Date of ref document: 20031204 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20031210 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040730 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 69819286 Country of ref document: DE Owner name: IFP ENERGIES NOUVELLES, FR Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL MALMAISON, FR Effective date: 20110331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20171124 Year of fee payment: 20 Ref country code: DE Payment date: 20171207 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20171123 Year of fee payment: 20 Ref country code: IT Payment date: 20171130 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69819286 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20181118 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20181118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20181118 |