EP0750941B1 - Catalyseur à base d'alumine chlorée, et son utilisation en isomérisation des normales paraffines C4-C6 - Google Patents

Catalyseur à base d'alumine chlorée, et son utilisation en isomérisation des normales paraffines C4-C6 Download PDF

Info

Publication number
EP0750941B1
EP0750941B1 EP96401327A EP96401327A EP0750941B1 EP 0750941 B1 EP0750941 B1 EP 0750941B1 EP 96401327 A EP96401327 A EP 96401327A EP 96401327 A EP96401327 A EP 96401327A EP 0750941 B1 EP0750941 B1 EP 0750941B1
Authority
EP
European Patent Office
Prior art keywords
catalyst
support
alumina
range
catalyst according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96401327A
Other languages
German (de)
English (en)
Other versions
EP0750941A1 (fr
Inventor
Hervé Cauffriez
Christine Travers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0750941A1 publication Critical patent/EP0750941A1/fr
Application granted granted Critical
Publication of EP0750941B1 publication Critical patent/EP0750941B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating
    • B01J37/24Chlorinating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • B01J27/13Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/2206Catalytic processes not covered by C07C5/23 - C07C5/31
    • C07C5/226Catalytic processes not covered by C07C5/23 - C07C5/31 with metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2767Changing the number of side-chains
    • C07C5/277Catalytic processes
    • C07C5/2791Catalytic processes with metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with noble metals

Definitions

  • the present invention relates to a catalyst based on chlorinated alumina and to its use in a process for the isomerization of normal C 4 -C 6 paraffins.
  • n-butane makes it possible to produce isobutane respectively for aliphatic alkylation of olefins and for the synthesis of MTBE (methyl tertio butyl ether) via the dehydrogenation of isobutane, making it possible respectively to produce a high octane alkylate and provide MTBE compounds incorporable into essence fractions.
  • MTBE methyl tertio butyl ether
  • the isomerization of normal C 5 -C 6 paraffins makes it possible to transform paraffins of low octane number into isoparaffins of high octane number.
  • US Pat. No. 5,166,121 claims a catalyst comprising gamma alumina shaped into beads and comprising between 0.1 and 3.5% halogen on the support.
  • the halogen content, preferably chlorine deposited on the support is extremely weak.
  • the invention relates to a catalyst containing at least chlorine, at least one group VIII metal and a shaped support comprising gamma alumina and optionally alumina eta, the catalyst being characterized in that the most small average size of said support is between 0.8 and 2 mm, preferably between 1 and 1.8 mm, and in that its chlorine content is between 4.5 and 15%, preferably between 5 and 12%, by weight.
  • the catalyst support according to the invention is based on alumina, that is to say that it essentially includes alumina.
  • the alumina support is alumina gamma to which eta alumina is optionally added.
  • the alumina of the support generally comprises between 50 and 100% (terminal excluded), preferably between 80 and 100% (terminal excluded) (% by weight) of alumina eta, the balance being gamma alumina.
  • the smallest average size of the catalyst support according to the invention is between 0.8 and 2mm, preferably between 1 and 1.8mm.
  • said support consists essentially of balls with an average diameter between 0.8 and 2 mm, preferably between 1 and 1.8 mm, or else said support is formed essentially extruded whose smallest dimension is between 0.8 and 2 mm, preferably between 1 and 1.8 mm, i.e. the extrudates have been placed form from any extrusion technique known to those skilled in the art, such as for example a die with a diameter between 0.8 and 2 mm, preferably between 1 and 1.8 mm.
  • the gamma alumina present in the catalyst support according to the invention has a specific surface generally between 150 and 300 m 2 / g and preferably between 180 and 250 m 2 / g, and a total pore volume generally between 0, 4 and 0.8 cm 3 / g and preferably between 0.45 and 0.7 cm 3 / g.
  • the alumina was optionally present in the support of the catalyst according to the invention has a specific surface generally between 400 and 600 m 2 / g and preferably between 420 and 550 m 2 / g and a total pore volume generally between 0, 3 and 0.5 cm 3 / g and preferably between 0.35 and 0.45 cm 3 / g.
  • the group VIII metal is chosen from the group formed by iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, preferably chosen from the group formed by platinum, palladium and nickel.
  • the content by weight is included between 0.05 and 1% and preferably between 0.1 and 0.6%.
  • the weight content is between 0.1 and 10% and preferably between 0.2 and 5%.
  • the catalyst according to the invention comprises at least chlorine, at a content between 4.5 and 15% by weight preferably between 5 and 12% by weight.
  • the preparation of the catalyst according to the invention is generally carried out by setting form of the support, then by depositing on said support shaped at least one metal of group VIII, and finally by chlorination, after a optional preferred step of activation under hydrogen.
  • Each step of the process for preparing the support according to the invention is explained below.
  • the two types of alumina are preferably mixed and form together, according to any technique known to a person skilled in the art, for example by extrusion through a die, by pelleting or by coating. But he is also possible to shape the two types of alumina separately, then proceed to mix the two shaped aluminas.
  • the most small dimension of the geometric shape described by the support after shaping is between 0.8 and 2 mm, preferably between 1 and 1.8 mm, which allows to obtain, during the chlorination stage of the support, a sufficient chlorine content for a reduced chlorination time.
  • At least one hydrogenating metal from group VIII preferably chosen from the group formed by platinum, palladium, and nickel, is then deposited on this support by any technique known to a person skilled in the art, for example by anion exchange in the form of hexachloroplatinic acid in the case of platinum or in the form of chloride in the case of palladium.
  • the catalyst can optionally undergo activation treatment in high temperature air, for example at a temperature between 300 and 700 ° C, then treatment with hydrogen to to obtain an active metallic phase.
  • the procedure for this treatment under hydrogen for example includes a slow rise in temperature under current hydrogen up to the maximum reduction temperature generally understood between about 300 and 700 ° C, preferably between about 340 and 680 ° C, followed by a maintaining this temperature, generally for 1 to 6 hour (s), preferably for 1.5 to 4.5 hours.
  • Chlorination, alumina is carried out outside or directly in the reaction unit where the catalyst is used, preferably an isomerization unit, by tetrachloride carbon or chloroform, as exemplified below.
  • Chlorination treatment can be performed directly in the catalyst use unit according to the invention, before injection of the load, or off site.
  • a support characterized in that its smallest average dimension is between 0.8 and 2 mm, preferably between 1 and 1.8 mm, and in that its content in chlorine, is between 4.5 and 15%, preferably between 5 and 12%, by weight, the chlorinating agent being the carbon tetrachloride or chloroform advantageously provides rapid and uniform chlorination.
  • the most small average size is greater than 2 mm does not allow halogenation fast and total support; the halogen content (weight percentage) of the support then remaining below 4.5% even after a very long halogenation time, this which does not allow obtaining the maximum activity and selectivity for this type of catalyst.
  • the reduction treatment under hydrogen can take place outside the unit (ex situ "), which involves taking special precautions for the transport of said catalyst to said unit, or else said processing can take place within the unit ("in-situ") just before the use of said catalyst.
  • the catalyst according to the invention is used in a conventional process isomerization of a charge comprising mainly normal paraffins containing from 4 to 6 carbon atoms per molecule, preferably from 5 to 6 carbon atoms per molecule, the conditions of which are indicated below usual procedures.
  • the isomerization takes place in at least one reactor.
  • the temperature is between 100 and 300 ° C, preferably between 120 and 280 ° C, and the partial pressure of hydrogen is between atmospheric pressure and 7 MPa, preferably between 0.5 and 5 MPa.
  • the space velocity is between 0.2 and 10 liters, preferably between 0.5 and 5 liters of liquid hydrocarbons per liter of catalyst per hour.
  • the hydrogen / charge molar ratio at the reactor inlet is such that the ratio hydrogen / charge molar in the effluent leaving the reactor is greater than 0.06, of preferably between 0.06 and 10.
  • Gamma alumina is formed by extrusion through a die of diameter 1.2 mm. After calcination in prior air, it is deposited on said alumina 0.3% platinum shaping by ion exchange with acid hexachloroplatinic in the presence of HCI as a competitive agent. The solid as well prepared is calcined in air and then reduced in hydrogen at 600 ° C.
  • the solid obtained is then chlorinated, at a temperature of 250 ° C., by injection of carbon tetrachloride.
  • Gamma alumina is formed by extrusion through a die of diameter 1.2 mm. After calcination in prior air, it is deposited on said alumina 0.3% platinum shaping by ion exchange with acid hexachloroplatinic in the presence of HCl as a competitive agent. The solid as well prepared is calcined in air and then reduced in hydrogen at 600 ° C.
  • the solid obtained is then chlorinated, at a temperature of 250 ° C., by injection of hydrogen chloride.
  • Gamma alumina is formed by extrusion through a die of 2.4mm diameter. After calcination in prior air, it is deposited on said alumina 0.3% platinum shaping by ion exchange with acid hexachloroplatinic in the presence of HCI as a competitive agent. The solid as well prepared is calcined in air and then reduced in hydrogen at 600 ° C.
  • the solid obtained is then chlorinated, at a temperature of 250 ° C., by Injection of carbon tetrachloride.
  • Gamma alumina is formed by extrusion through a die of diameter 2.4 mm. After calcination in prior air, it is deposited on said alumina 0.3% platinum shaping by ion exchange with acid hexachloroplatinic in the presence of HCI as a competitive agent. The solid as well prepared is calcined in air and then reduced in hydrogen at 600 ° C.
  • the solid obtained is then chlorinated, at a temperature of 250 ° C., by injection of hydrogen chloride.
  • Gamma alumina is formed by extrusion through a die of diameter 1.2 mm. After calcination in prior air, it is deposited on said alumina 0.3% platinum shaping by ion exchange with acid hexachloroplatinic in the presence of HCI as a competitive agent. The solid as well prepared is calcined in air and then reduced in hydrogen at 600 ° C.
  • the solid obtained is then chlorinated, at a temperature of 250 ° C., by injection of chloroform.
  • a mixture of 90% eta alumina and 10% gamma alumina is formed by extrusion through a 1.2 mm diameter die. After calcination in air beforehand, 0.3% platinum is deposited on said shaped alumina by ion exchange with hexachloroplatinic acid in the presence of HCl as competing agent. The solid thus prepared is calcined in air and then reduced under hydrogen at 600 ° C.
  • the solid obtained is then chlorinated, at a temperature of 250 ° C., by injection of carbon tetrachloride.
  • a mixture of 90% eta alumina and 10% gamma alumina is formed by extrusion through a 1.2 mm diameter die. After calcination in air beforehand, 0.3% platinum is deposited on said shaped alumina by ion exchange with hexachloroplatinic acid in the presence of HCI as competing agent. The solid thus prepared is calcined in air and then reduced under hydrogen at 600 ° C.
  • the solid obtained is then chlorinated, at a temperature of 250 ° C., by injection of chloroform.
  • the chlorine content in weight percent for catalysts A, B, C, D, E, F, G is followed as a function of the duration of chlorination by X-ray fluorescence.
  • Catalysts E and G chlorinated by chloroform have chlorine contents obtained close to those obtained by chlorination with carbon tetrachloride (catalysts A and F).
  • Catalysts F and G containing eta alumina and gamma alumina have chlorine contents obtained substantially equal.
  • the catalysts A and C previously prepared are each tested in isomerization of a charge formed of approximately 60% of normal C 5 paraffins and 40% of normal C 6 paraffins, said charge containing 100 ppm of CCl 4 expressed by weight of chlorine to maintain the chlorine content of the catalyst used.
  • Catalyst A according to the invention with a chlorine content greater than 4.5% gives better performance than catalyst C, the chlorine content of which is weaker.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

La présente invention concerne un catalyseur à base d'alumine chlorée et sa mise en oeuvre dans un procédé d'isomérisation de normales paraffines C4-C6.
L'isomérisation des normales paraffines comportant entre 4 et 6 atomes de carbone par molécule revêt actuellement une importance considérable dans l'industrie pétrolière, principalement à cause de la suppression des alkyls de plomb dans les essences.
L'isomérisation du n-butane permet de produire de l'isobutane respectivement pour l'alkylation aliphatique des oléfines et pour la synthèse du MTBE (méthyl tertio butyl éther) via la deshydrogénation de l'isobutane, permettant respectivement de produire un alkylat d'indice d'octane élevé et de fournir du MTBE, composés incorporables aux fractions essences.
L'isomérisation des normales paraffines C5-C6 permet de transformer des paraffines de faible indice d'octane en isoparaffines d'indice d'octane élevé.
Trois types de catalyseurs sont traditionnellement utilisés pour réaliser la réaction d'isomérisation des normales paraffines comportant entre 4 et 6 atomes de carbone par molécule, de préférence entre 5 et 6 atomes de carbone par molécule:
  • les catalyseurs de type Friedel et Crafts, tel que le chlorure d'aluminium, qui sont utilisés à des basses températures (environ 80 à 130°C);
  • les catalyseurs comprenant au moins un métal du groupe VIII sur support à base d'alumine halogénée, de préférence chlorée, qui sont utilisés à des températures moyennes (environ 150°C),
  • les catalyseurs zéolithiques comprenant au moins un métal du groupe VIII déposé sur une zéolithe, qui sont utilisés à des températures élevées (250°C et plus); lesdits catalyseurs conduisent à des gains d'octane plus faibles dans les produits obtenus que les deux types de catalyseurs précédemment décrits mais présentent l'avantage d'être plus faciles à mettre en oeuvre et d'être plus résistants aux poisons. Néanmoins, ils ne peuvent pas être employés pour l'isomérisation du n-butane car ils développent en plus une plus faible acidité que les deux types de catalyseurs précédemment décrits.
De nombreux brevets ont pour objet des catalyseurs monométalliques à base de platine déposé sur une alumine halogénée, et leur utilisation dans des procédés d'isomérisation des normales paraffines. On peut citer le brevet US-A-3 963 643, qui impose un traitement par un composé de type Friedel et Crafts suivi par un traitement avec un composé chloré comportant au moins deux atomes de chlore.
Plus récemment le brevet US-A-5 166 121 revendique un catalyseur comprenant de l'alumine gamma mise en forme sous forme de billes et comportant entre 0,1 et 3,5 % d'halogène sur le support. La teneur en halogène de préférence en chlore déposé sur le support est extrêmement faible.
L'invention concerne un catalyseur contenant au moins du chlore, au moins un métal du groupe VIII et un support mis en forme comprenant de l'alumine gamma et éventuellement de l'alumine êta, le catalyseur étant caractérisé en ce que la plus petite dimension moyenne dudit support est comprise entre 0,8 et 2 mm, de préférence entre 1 et 1,8 mm, et en ce que sa teneur en chlore est comprise entre 4,5 et 15%, de préférence entre 5 et 12%, en poids.
Le support du catalyseur selon l'invention est à base d'alumine, c'est-à-dire qu'il comprend essentiellement de l'alumine. Le support d'alumine est de l'alumine gamma à laquelle s'ajoute éventuellement de l'alumine êta. Lorsque l'on ajoute de l'alumine êta à l'alumine gamma, l'alumine du support comprend généralement entre 50 et 100% (borne exclue), de préférence entre 80 et 100% (borne exclue) (% poids) d'alumine êta, le complément étant de l'alumine gamma.
La plus petite dimension moyenne du support du catalyseur selon l'invention est comprise entre 0,8 et 2mm, de préférence entre 1 et 1,8 mm. De préférence, ledit support est formé essentiellement de billes de diamètre moyen compris entre 0,8 et 2 mm, de préférence entre 1 et 1,8 mm, ou bien ledit support est formé essentiellement d'extrudés dont la plus petite dimension est comprise entre 0,8 et 2 mm, de préférence entre 1 et 1,8 mm, c'est-à-dire que les extrudés ont été mis en forme à partir de toute technique d'extrusion connue de l'homme du métier, comme par exemple une filière de diamètre compris entre 0,8 et 2 mm, de préférence entre 1 et 1,8 mm.
L'alumine gamma présente dans le support du catalyseur selon l'invention possède une surface spécifique généralement comprise entre 150 et 300 m2/g et de préférence entre 180 et 250 m2/g , et un volume poreux total généralement compris entre 0,4 et 0,8 cm3/g et de manière préférée entre 0,45 et 0,7 cm3/g.
L'alumine êta éventuellement présente dans le support du catalyseur selon l'invention possède une surface spécifique généralement comprise entre 400 et 600 m2/g et de préférence entre 420 et 550 m2/g et un volume poreux total généralement compris entre 0,3 et 0,5 cm3/g et de manière préférée entre 0,35 et 0,45 cm3/g.
Le métal du groupe VIII est choisi dans le groupe formé par le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium, l'osmium, l'iridium et le platine, de préférence choisi dans le groupe formé par le platine, le palladium et le nickel. Dans le cas préféré où ledit métal est le platine ou le palladium, la teneur en poids est comprise entre 0,05 et 1 % et de manière préférée entre 0,1 et 0,6 %. Dans le cas préféré où ledit métal est le nickel, la teneur pondérale est comprise entre 0,1 et 10 % et de manière préférée entre 0,2 et 5 %.
Le catalyseur selon l'invention comprend au moins du chlore, à une teneur comprise entre 4,5 et 15% poids de préférence comprise entre 5 et 12 % poids.
La préparation du catalyseur selon l'invention s'effectue généralement par mise en forme du support, puis par dépôt sur ledit support mis en forme d'au moins un métal du groupe VIII, et enfin par chloration, après une étape éventuelle préférée d'activation sous hydrogène. Chaque étape du procédé de préparation du support selon l'invention est explicitée ci-après.
Dans le cas où de l'alumine êta est présente dans le support du catalyseur selon l'invention, les deux types d'alumine sont de préférence mélangées et mises en forme ensemble, selon toute technique connue de l'homme du métier, par exemple par extrusion au travers d'une filière, par pastillage ou par dragéification. Mais il est aussi possible de mettre les deux types d'alumine en forme séparément, puis de procéder au mélange des deux alumines mises en forme. Dans tous les cas, la plus petite dimension de la forme géométrique décrite par le support après mise en forme est comprise entre 0,8 et 2 mm, de préférence entre 1 et 1,8 mm, ce qui permet d'obtenir, lors de l'étape de chloration du support, une teneur en chlore suffisante pour une durée de chloration réduite.
Au moins un métal hydrogénant du groupe VIII, de préférence choisi dans le groupe formé par le platine, le palladium, et le nickel, est ensuite déposé sur ce support par toute technique connue de l'homme du métier, par exemple par échange anionique sous forme d'acide hexachloroplatinique dans le cas du platine ou sous forme de chlorure dans le cas du palladium.
Une fois le dépôt du (des) métal (métaux) effectué, le catalyseur peut éventuellement subir un traitement d'activation sous air à haute température, par exemple à une température comprise entre 300 et 700°C, puis un traitement sous hydrogène afin d'obtenir une phase métallique active. La procédure de ce traitement sous hydrogène comprend par exemple une montée lente de la température sous courant d'hydrogène jusqu'à la température maximale de réduction comprise généralement entre environ 300 et 700°C, de préférence entre environ 340 et 680°C, suivie d'un maintien de cette température, généralement pendant 1 à 6 heure(s), de préférence pendant 1,5 à 4,5 heures.
La chloration, de l'alumine est effectuée en dehors de ou directement dans l'unité de réaction où l'on utilise le catalyseur, de préférence une unité d'isomérisation, par le tétrachlorure de carbone ou le chloroforme, ainsi qu'il est exemplifié ci-après.
Le traitement de chloration, peut être effectué directement dans l'unité d'utilisation du catalyseur selon l'invention, avant injection de la charge, ou hors site.
L'utilisation d'un support caractérisé en ce que sa plus petite dimension moyenne est comprise entre 0,8 et 2 mm, de préférence entre 1 et 1,8 mm, et en ce que sa teneur en chlore, est comprise entre 4,5 et 15%, de préférence entre 5 et 12%, en poids, l'agent chlorant étant le tétrachlorure de carbone ou le chloroforme permet avantageusement d'obtenir une chloration, rapide et uniforme. L'utilisation d'un support dont la plus petite dimension moyenne est supérieure à 2 mm ne permet pas une halogénation rapide et totale du support; la teneur en halogène (pourcentage poids) du support restant alors inférieure à 4,5 % même après un temps d'halogénation très long, ce qui ne permet pas d'obtenir l'activité et la sélectivité maximale pour ce type de catalyseur.
Dans le procédé de préparation du catalyseur selon l'invention, il est aussi possible de procéder au traitement de chloration préalablement au traitement d'activation puis de réduction sous hydrogène. Dans ce cas, le traitement de réduction sous hydrogène peut avoir lieu en dehors de l'unité (ex situ"), ce qui implique de prendre des précautions particulières pour le transport dudit catalyseur jusqu'à ladite unité, ou bien ledit traitement peut avoir lieu au sein de l'unité ("in-situ") juste avant l'utilisation dudit catalyseur.
Le catalyseur selon l'invention est utilisé dans un procédé conventionnel d'isomérisation d'une charge comprenant en majeure partie des normales paraffines comportant de 4 à 6 atomes de carbone par molécule, de préférence de 5 à 6 atomes de carbone par molécule, dont on indique ci-après les conditions opératoires usuelles.
L'isomérisation a lieu dans au moins un réacteur. La température est comprise entre 100 et 300°C, de préférence entre 120 et 280°C, et la pression partielle d'hydrogène est comprise entre la pression atmosphérique et 7 MPa, de préférence entre 0,5 et 5 MPa. La vitesse spatiale est comprise entre 0,2 et 10 litres, de préférence entre 0,5 et 5 litres d'hydrocarbures liquides par litre de catalyseur et par heure. Le rapport molaire hydrogène/charge à l'entrée du réacteur est tel que le rapport molaire hydrogène/charge dans l'effluent sortant du réacteur est supérieur à 0,06, de préférence compris entre 0,06 et 10.
Les exemples qui suivent précisent l'invention sans en limiter la portée.
EXEMPLE 1 Catalyseur A (conforme à l'invention)
L'alumine gamma est mise en forme par extrusion au travers d'une filière de diamètre 1,2 mm. Après calcination sous air préalable, on dépose sur ladite alumine mise en forme 0,3 % de platine par échange ionique avec de l'acide hexachloroplatinique en présence d'HCI comme agent compétiteur. Le solide ainsi préparé est calciné sous air puis réduit sous hydrogène à 600°C.
On procède ensuite à la chloration du solide obtenu, à une température de 250°C, par injection de tétrachlorure de carbone.
EXEMPLE 2 Catalyseur B (non conforme à l'invention)
L'alumine gamma est mise en forme par extrusion au travers d'une filière de diamètre 1,2 mm. Après calcination sous air préalable, on dépose sur ladite alumine mise en forme 0,3 % de platine par échange ionique avec de l'acide hexachloroplatinique en présence d'HCl comme agent compétiteur. Le solide ainsi préparé est calciné sous air puis réduit sous hydrogène à 600°C.
On procède ensuite à la chloration du solide obtenu, à une température de 250°C, par injection de chlorure d'hydrogène.
L'utilisation de chlorure d'hydrogène rend non conforme à l'invention le catalyseur ainsi préparé.
EXEMPLE 3 Catalyseur C (non conforme à l'invention)
L'alumine gamma est mise en forme par extrusion au travers d'une filière de diamètre 2,4mm. Après calcination sous air préalable, on dépose sur ladite alumine mise en forme 0,3 % de platine par échange ionique avec de l'acide hexachloroplatinique en présence d'HCI comme agent compétiteur. Le solide ainsi préparé est calciné sous air puis réduit sous hydrogène à 600°C.
On procède ensuite à la chloration du solide obtenu, à une température de 250°C, par Injection de tétrachlorure de carbone.
L'utilisation d'une filière de diamètre 2,4 mm rend non conforme à l'invention le catalyseur ainsi préparé.
EXEMPLE 4 Catalyseur D (non conforme à l'invention)
L'alumine gamma est mise en forme par extrusion au travers d'une filière de diamètre 2,4 mm. Après calcination sous air préalable, on dépose sur ladite alumine mise en forme 0,3 % de platine par échange ionique avec de l'acide hexachloroplatinique en présence d'HCI comme agent compétiteur. Le solide ainsi préparé est calciné sous air puis réduit sous hydrogène à 600°C.
On procède ensuite à la chloration du solide obtenu, à une température de 250°C, par injection de chlorure d'hydrogène.
L'utilisation d'une filière de diamètre 2,4 mm et du chlorure d'hydrogène comme agent chlorant rend non conforme à l'invention le catalyseur ainsi préparé.
EXEMPLE 5 Catalyseur E (conforme à l'invention)
L'alumine gamma est mise en forme par extrusion au travers d'une filière de diamètre 1,2 mm. Après calcination sous air préalable, on dépose sur ladite alumine mise en forme 0,3 % de platine par échange ionique avec de l'acide hexachloroplatinique en présence d'HCI comme agent compétiteur. Le solide ainsi préparé est calciné sous air puis réduit sous hydrogène à 600°C.
On procède ensuite à la chloration du solide obtenu, à une température de 250°C, par injection du chloroforme.
EXEMPLE 6 Catalyseur F (conforme à l'invention)
Un mélange 90 % poids d'alumine êta et 10 % d'alumine gamma est mis en forme par extrusion au travers d'une filière de diamètre 1,2 mm. Après calcination sous air préalable, on dépose sur ladite alumine mise en forme 0,3 % de platine par échange ionique avec de l'acide hexachloroplatinique en présence d'HCl comme agent compétiteur. Le solide ainsi préparé est calciné sous air puis réduit sous hydrogène à 600°C.
On procède ensuite à la chloration du solide obtenu, à une température de 250°C, par injection de tétrachlorure de carbone.
EXEMPLE 7 Catalyseur G (conforme à l'invention)
Un mélange 90 % poids d'alumine êta et 10 % d'alumine gamma est mis en forme par extrusion au travers d'une filière de diamètre 1,2 mm. Après calcination sous air préalable, on dépose sur ladite alumine mise en forme 0,3 % de platine par échange ionique avec de l'acide hexachloroplatinique en présence d'HCI comme agent compétiteur. Le solide ainsi préparé est calciné sous air puis réduit sous hydrogène à 600°C.
On procède ensuite à la chloration du solide obtenu, à une température de 250°C, par injection de chloroforme.
EXEMPLE 8 Comparaison de la chloration des catalyseurs A, B , C, D, E, F, G
La teneur en chlore en pourcentage poids pour les catalyseurs A, B, C, D, E, F, G est suivie en fonction de la durée de chloration par fluorescence X.
Seuls les catalyseur A,E,F,G sont conformes å l'invention.
Durée de chloration 1 heure 3 heures 6 heures 9 heures
Teneur Cl catalyseur A 5,4 % 5,9% 6,2% 6,4%
Teneur Cl catalyseur B 2,9% 3,5% 3,7% 3,8%
Teneur Cl catalyseur C 2,7% 3,7% 4,3% 4,4%
Teneur Cl catalyseur D 2,8% 3,2% 3,5% 3,7%
Teneur Cl catalyseur E 5,0% 5,7% 6,1% 6,2%
Teneur Cl catalyseur F 8,5% 8,7% 9,1% 9,8%
Teneur Cl catalyseur G 7,9% 8,4% 8,9% 9,2%
Pour les deux catalyseurs chlorés par le tétrachlorure de carbone (A et C) il apparaít nettement dans le tableau 1 que le catalyseur A atteint une teneur en chlore plus forte que le catalyseur C, et ceci beaucoup plus rapidement.
Pour les deux catalyseurs chlorés par le chlorure d'hydrogène (B et D), on ne voit pratiquement pas d'écart entre les teneurs en chlore des catalyseurs B et D. Toutefois la chloration par HCI donne une teneur en chlore maximale inférieure à celle obtenue par chloration avec CCl4.
Dans le cas de la chloration par HCI, le diamètre des extrudés semble peu jouer sur la teneur en chlore maximale et sur la vitesse de chloration. Par contre dans le cas de la chloration par CCl4, le diamètre des extrudés joue considérablement sur la teneur en chlore maximale et sur la vitesse de chloration.
Les catalyseurs E et G chlorés par le chloroforme ont des teneurs en chlore obtenues proches de celles obtenues par chloration avec le tétrachlorure de carbone (catalyseurs A et F).
Les catalyseurs F et G contenant de l'alumine êta et de l'alumine gamma ont des teneurs en chlore obtenues sensiblement égales.
Finalement, l'utilisation selon les exemples 1 à 8 d'un support extrudé dans une filière à 1,2 mm permet de réduire les temps de chloration tout en maintenant une teneur en chlore maximale sur le catalyseur (qui atteint rapidement un minimum de 4,5 % poids de chlore).
EXEMPLE 9 Test d'isomérisation des normales paraffines C5-C6
Les catalyseurs A et C préparés précédemment sont chacun testés en isomérisation d'une charge formée d'environ 60 % de normales paraffines C5 et de 40 % de normales paraffines C6, ladite charge contenant 100 ppm de CCl4 exprimé en poids de chlore pour maintenir la teneur en chlore du catalyseur utilisé.
Les conditions opératoires sont les suivantes :
  • Température   : 150°C
  • Pression   : 2 MPa
  • v.v.h   :2h-1
  • H2/HC (dans l'effluent)   : 0,07
Les performances obtenues après 24 heures de fonctionnement sont reportées dans le tableau 2.
Les rapports iCx/(i + n) Cx où x = 5,6, où iCx représente la quantité d'isoparaffines à x atomes de carbone dans l'effluent et (i + n)Cx représente la quantité d'isoparaffines et de normales paraffines à x atomes de carbone dans l'effluent.
Les approches à l'équilibre sur les différents isomères sont définies comme suit : AEQix= iCx/(i + n) Cx dans l'effluent iCx/(i + n) Cx à l'équilibre avec ix = isoparaffine à x atomes de carbone (x = 5 ou 6)
Catalyseur A (selon l'invention) Catalyseur C (comparatif)
Teneur en Cl (%poids) 5,9 3,7
iC5/(i + n)C5 0,78 0,59
iC6/(i + n)C6 0,89 0,73
AEQi5 (%) 94,0 71,0
AEQ 2,2 diméthylbutane (%) 88,0 60,0
Craquage (% poids) (réaction secondaire) 2,0 1,2
Le catalyseur A conforme à l'invention avec une teneur en chlore supérieure à 4,5% donne de meilleures performances que le catalyseur C dont la teneur en chlore est plus faible.

Claims (10)

  1. Catalyseur contenant au moins un métal du groupe VIII, un support mis en forme comprenant de l'alumine gamma et de plus petite dimension moyenne comprise entre 0,8 et 2 mm et du chlore à une teneur comprise entre 4,5 et 15 % en poids déposé à partir de tétrachlorure de carbone ou de chloroforme.
  2. Catalyseur selon la revendication 1 tel que le support comprend en outre de l'alumine êta.
  3. Catalyseur selon l'une des revendications 1 ou 2 tel que le support est formé essentiellement d'extrudés.
  4. Catalyseur selon l'une des revendications 1 ou 2 tel que le support est formé essentiellement de billes de diamètre moyen compris entre 0,8 et 2 mm.
  5. Catalyseur selon l'une des revendications 1 à 4 tel que l'alumine gamma a une surface spécifique comprise entre 150 et 300 m2/g et un volume poreux compris entre 0,4 et 0,8 cm3/g
  6. Catalyseur selon l'une des revendications 1 à 5 tel que l'alumina êta, si elle est présente dans le support dudit catalyseur, a une surface spécifique comprise entre 400 et 600 m2/g et un volume poreux compris entre 0,3 et 0,5 cm3/g.
  7. Catalyseur selon l'une des revendications 1 à 6 tel que le métal du groupe VIII est choisi dans le groupe formé par le platine, le palladium et le nickel.
  8. Catalyseur selon l'une des revendications 1 à 7 dans lequel la teneur en chlore est comprise entre 5 et 12 % poids.
  9. Utilisation du catalyseur selon l'une des revendications 1 à 8, dans un procédé d'isomérisation d'une charge comprenant en majeure partie des normales paraffines comprenant de 4 à 6 atomes de carbone par molécule.
  10. Utilisation selon la revendication 9 dans laquelle la charge comprend en majeure partie des normales paraffines comprenant de 5 à 6 atomes de carbone par molécules.
EP96401327A 1995-06-28 1996-06-19 Catalyseur à base d'alumine chlorée, et son utilisation en isomérisation des normales paraffines C4-C6 Expired - Lifetime EP0750941B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9507887 1995-06-28
FR9507887A FR2735993B1 (fr) 1995-06-28 1995-06-28 Catalyseur a base d'alumine halogenee, sa preparation et son utilisation en isomerisation des normales paraffines c4-c6

Publications (2)

Publication Number Publication Date
EP0750941A1 EP0750941A1 (fr) 1997-01-02
EP0750941B1 true EP0750941B1 (fr) 2003-11-12

Family

ID=9480553

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96401327A Expired - Lifetime EP0750941B1 (fr) 1995-06-28 1996-06-19 Catalyseur à base d'alumine chlorée, et son utilisation en isomérisation des normales paraffines C4-C6

Country Status (6)

Country Link
EP (1) EP0750941B1 (fr)
JP (1) JPH0910590A (fr)
KR (1) KR970000337A (fr)
CA (1) CA2179925A1 (fr)
DE (1) DE69630632T2 (fr)
FR (1) FR2735993B1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744458B1 (fr) 1996-02-05 1998-03-27 Inst Francais Du Petrole Procede d'isomerisation de paraffines par distillation reactive
FR2744441B1 (fr) 1996-02-05 1998-03-27 Inst Francais Du Petrole Procede d'isomerisation de paraffines
EP0823275B1 (fr) * 1996-02-27 2003-01-15 Nippon Paint Co., Ltd. Procede de suppression de mousses dans l'eau circulant en cabine
FR2771307B1 (fr) * 1997-11-25 1999-12-31 Inst Francais Du Petrole Preparation et utilisation en isomerisation des normales paraffines c4-c8 d'un catalyseur halogene a base d'alumine traitee a la vapeur d'eau

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963643A (en) * 1974-04-22 1976-06-15 Universal Oil Products Company Method of catalyst manufacture
US4003849A (en) * 1974-11-25 1977-01-18 Phillips Petroleum Company Lead/chloride/alumina isomerization catalyst for gasoline
US4039604A (en) * 1975-08-18 1977-08-02 Phillips Petroleum Company Hydrocarbon isomerization with increased temperature and lowered hydrogen/hydrocarbon ratio
EP0530275A4 (en) * 1990-05-21 1993-06-09 Engelhard Corporation Catalytic compositions

Also Published As

Publication number Publication date
DE69630632T2 (de) 2004-05-13
EP0750941A1 (fr) 1997-01-02
DE69630632D1 (de) 2003-12-18
FR2735993A1 (fr) 1997-01-03
KR970000337A (ko) 1997-01-21
CA2179925A1 (fr) 1996-12-29
FR2735993B1 (fr) 1997-08-14
JPH0910590A (ja) 1997-01-14

Similar Documents

Publication Publication Date Title
US6214764B1 (en) Paraffin-isomerization catalyst and process
EP0507656A1 (fr) Catalyseur de type galloaluminosilicate contenant du gallium, un métal noble de la famille du platine et au moins un métal additionnel, et son utilisation en aromatisation des hydrocarbures
EP0256945B1 (fr) Catalyseur à base de mordénite pour l'isomérisation de paraffines normales
FR2548204A1 (fr) Procede de transformation d'hydrocarbures
EP0514527B1 (fr) Catalyseur a base d'alumine eta chloree et son utilisation en isomerisation des n-paraffines en c4-c6
EP0750941B1 (fr) Catalyseur à base d'alumine chlorée, et son utilisation en isomérisation des normales paraffines C4-C6
EP0661370B1 (fr) Catalyseur pour la réduction de la teneur en benzène dans les essences
US6320089B1 (en) Paraffin-isomerization catalyst and process
CA1334980C (fr) Procede d'isomerisation du butene-1 en butenes-2 dans une coupe d'hydrocarbures en c _ contenant du butadiene et des composes sulfures
FR2704773A1 (fr) Procédé de préparation de catalyseurs utilisables en déshydrogénation.
EP2448671B1 (fr) Catalyseur multi-metallique presentant une forte interaction metallique
FR2686095A1 (fr) Production de base pour carburant exempt de benzene, presentant un indice d'octane eleve.
EP0922747B1 (fr) Procédé d'isomérisation des coupes paraffiniques C5-C8 riches en paraffines à plus de sept atomes de carbone
FR2771307A1 (fr) Preparation et utilisation en isomerisation des normales paraffines c4-c8 d'un catalyseur halogene a base d'alumine traitee a la vapeur d'eau
EP1063012B1 (fr) Nouveaux catalyseurs contenant des hétéropolyanions utilisables dans des procédés de conversion de paraffines
US6297418B1 (en) Catalyst based on a halogenated alumina, its preparation and use for the isomerization of normal C4-C6 paraffins
EP1243332A1 (fr) Catalyseur d'isomérisation de paraffines, sa préparation et son utilisation
EP0542613A1 (fr) Catalyseur à structure MFI et son utilisation en aromatisation d'hydrocarbures comportant 2 à 12 atomes de carbone
EP0552072B1 (fr) Réduction de la teneur en benzène dans les essences
FR2744441A1 (fr) Procede d'isomerisation de paraffines
EP0542625A1 (fr) Catalyseur de type aluminosilicate et son utilisation en aromatisation d'hydrocarbures comportant 2 à 12 atomes de carbone
EP0240480A2 (fr) Procédé de traitement d'hydrocarbures avec des catalyseurs de type silicalite ou TEA-silicate stabilisés par halogénation
FR2683815A1 (fr) Procede d'aromatisation d'hydrocarbures comportant 2 a 4 atomes de carbone en presence d'un catalyseur du type aluminosilicate.
CA2340821A1 (fr) Catalyseur et processus d'isomerisation de paraffine
FR2683816A1 (fr) Procede d'aromatisation d'hydrocarbures contenant 2 a 4 atomes de carbone en presence d'un catalyseur a structure mfi.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT NL

17P Request for examination filed

Effective date: 19970702

17Q First examination report despatched

Effective date: 19981126

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: CHLORINATED ALUMINA BASED CATALYST, AND ITS USE IN THE ISOMERIZATION OF NORMAL C4-C6 PARAFFINS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69630632

Country of ref document: DE

Date of ref document: 20031218

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 69630632

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150622

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150621

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150630

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150630

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69630632

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20160618

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160618