EP0918976B1 - Verfahren zur Herstellung von Flugkörpern oder Flugkörperkomponenten - Google Patents

Verfahren zur Herstellung von Flugkörpern oder Flugkörperkomponenten Download PDF

Info

Publication number
EP0918976B1
EP0918976B1 EP97935567A EP97935567A EP0918976B1 EP 0918976 B1 EP0918976 B1 EP 0918976B1 EP 97935567 A EP97935567 A EP 97935567A EP 97935567 A EP97935567 A EP 97935567A EP 0918976 B1 EP0918976 B1 EP 0918976B1
Authority
EP
European Patent Office
Prior art keywords
sic
missile
carbon
silicon carbide
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97935567A
Other languages
English (en)
French (fr)
Other versions
EP0918976A1 (de
Inventor
Manfred Braitinger
Manfred Selzer
Ulrich Papenburg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IABG Industrieanlagen Betriebs GmbH
Original Assignee
IABG Industrieanlagen Betriebs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7802697&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0918976(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by IABG Industrieanlagen Betriebs GmbH filed Critical IABG Industrieanlagen Betriebs GmbH
Publication of EP0918976A1 publication Critical patent/EP0918976A1/de
Application granted granted Critical
Publication of EP0918976B1 publication Critical patent/EP0918976B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • F42B15/34Protection against overheating or radiation, e.g. heat shields; Additional cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/72Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material

Definitions

  • the invention relates to a method for manufacturing of missiles or missile components.
  • the nose tip consists fixed fins or movable rudders or fins, thrusters, thrusters and nozzle neck inserts, Combustion chamber linings, rear cone, grille wing, fluidic elements and the radome from various metals and metal alloys.
  • these missile components are the most thermally and mechanically loaded Missile components.
  • the invention has for its object missiles or missile components such as ceramic nose tips, fixed fins or movable rudders, thrusters, thrusters and nozzle neck inserts, Combustion chamber linings, rear cone, grille wings, fluidic elements and radomes or subcomponents of these for missiles with high temperature, pressure and Abrasion resistance, erosion resistance, low density or low weight, high thermal conductivity, low thermal expansion with an almost unlimited To create a variety of geometries and shapes.
  • object missiles or missile components such as ceramic nose tips, fixed fins or movable rudders, thrusters, thrusters and nozzle neck inserts, Combustion chamber linings, rear cone, grille wings, fluidic elements and radomes or subcomponents of these for missiles with high temperature, pressure and Abrasion resistance, erosion resistance, low density or low weight, high thermal conductivity, low thermal expansion with an almost unlimited To create a variety of geometries and shapes.
  • Bow tip 1 fixed fins 2 or movable rudders [fins] 3, thrusters 4, thrusters or nozzle neck inserts 5, combustion chamber linings 6, rear cone 7, Lattice wings 8, fluidic elements 9 and radomes 10 or subcomponents of these consist of a fiber-reinforced ceramic or a combination of different ones fiber-reinforced ceramics and form a monolithic after infiltration Structure. Overall, the temperature resistance increases at the same time Weight reduction of these missile components.
  • C / SiC and / or C / C and / or SiC / SiC are excellent Strength properties up to high temperatures, which also use enable under severe conditions.
  • C / SiC and C / C and SiC / SiC with continuous fiber reinforcement as well as short fiber reinforced C / SiC and C / C and SiC / SiC.
  • the former material of C / SiC or C / C or SiC / SiC, which are laminated, pressed or wound can, is characterized by particularly high strength and particularly low density out.
  • Surface sealing can be used to increase the resistance to oxidation be worked.
  • Protective layers made of silicon carbide are preferred for this and / or silicon dioxide and / or molybdenum disilicide on the component surfaces upset. The latter is superfluous with short fiber reinforced C / SiC because of the material is particularly resistant to oxidation and corrosion.
  • Bow tips can be made from C / SiC blanks and / or C / C blanks 1, fixed fins 2 or movable rudders [fins] 3, thrusters 4, thrusters or nozzle neck inserts 5, combustion chamber linings 6, rear cone 7, grille wing 8, fluidic elements 9 and radomes 10 or partial components of these in any Geometry from one piece or from different individual segments by mechanical Machining can be easily shaped.
  • This construction is particularly suitable for C / SiC or C / C or SiC / SiC with short fiber reinforcement, the individual segments be mechanically processed before being combined or infiltrated.
  • Such a missile component 1-10 can also be easily made with fasteners such as.
  • Screws or bolts or flanges preferably made of C / SiC and / or C / C and / or SiC / SiC.
  • Cooling channels and / or recesses with round, rectangular or slit-shaped Cross section are introduced.
  • the method according to the invention provides for a design of the missile components 1-10 in hybrid and segment design.
  • raw bodies and sub-segments which are preferably made of C / SiC and / or C / C and / or SiC / SiC or from suitable combinations with continuous fiber reinforcement and / or short fiber reinforcement and by the subsequent Infiltration with silicon and / or silicon carbide and / or carbon of these individual segments monolithic missile components are designed in hybrid construction.
  • the inside wall of the missile or the thermal highly stressed areas of the missile can be suitably with C / SiC or C / C or SiC / SiC segments are lined and by cooling via cooling channels and / or with an insulation material, preferably made of C / SiC or C / C or SiC / SiC or from carbon fiber felts or graphite foil or combinations this is the temperature and pressure load of the metallic missile structure reduced as much as possible, provided and a monolithic missile component 1-10 can be put together.
  • the insulation materials can also under Interposition of spacers, preferably made of C / SiC or C / C or SiC / SiC, with the missile components 1-10 made of C / SiC and / or C / C with each other can be connected to give the desired monolithic structure.
  • the density and porosity of the C / SiC and / or the C / C and / or SiC / SiC material during infiltration or siliconization by the addition amount be adjusted to silicon, carbon or silicon carbide, so that C / SiC and / or C / C and / or SiC / SiC with high density and low porosity than thermomechanical support structure and / or lining and the C / SiC and / or C / C and / or SiC / SiC with low density or high porosity used as thermal insulation can be.
  • Density and porosity gradients over the Wall thickness of the missile components 1-10 can be set.
  • the missile component 1-10 is depending on the system used made from C / SiC and / or C / C and / or SiC / SiC individual segments, which then to a monolithic structure with carbon and / or silicon and / or silicon carbide are infiltrated and / or silicided together or the missile components 1-10 are manufactured in one piece, preferably by mechanical processing of a C / SiC and / or C / C and / or SiC / SiC blank.
  • C / SiC and / or C / C parts and / or SiC / SiC parts can also be the cooling channels (if necessary) or provide recesses to remove the heat.
  • the C / SiC and / or C / C body and / or SiC / SiC body 1-10 and the metallic Missile structures are equipped with suitable connecting elements such as Bolt-, Screw or flange connections, preferably made of C / SiC and / or C / C and / or SiC / SiC to connect with each other. Possibilities for this are in the pictures 2 to 9 shown.
  • Figure 1 shows a missile based on the current state of the art. Due to the high temperature and pressure loads, only heat-resistant metals and metal alloys with a high density are currently suitable, which have to be cooled due to their relatively low temperature resistance. In addition to these thermomechanical requirements, the metallic materials must also meet all requirements with regard to corrosion, machining, surface quality and weldability.
  • Figure 2 shows a nose tip 1 and a radome 10 of a missile.
  • the bow tip is particularly stressed by high pressures and high temperatures.
  • the weight of the nose tip can be reduced by at least 1 kg compared to a metallic nose tip.
  • Radomes are exposed to high pressures and high temperatures.
  • increased radar permeability and surface accuracy e.g. through grindability
  • construction of different wall thicknesses are required.
  • Figure 3 shows the stabilizing fins or fixed fins 2 and the tail cone 7 of a missile. Stresses on the fixed fins are mainly caused by high longitudinal and lateral acceleration forces and high temperatures.
  • the tail cone 7 of a missile is subjected to high pressures and high temperatures and serves to stabilize the missile.
  • the use of fiber-reinforced ceramics saves 3 kg in weight at the rear cone.
  • Figure 4 shows movable rudder or fin 3 and grid fins 8 are shown.
  • the movable rudders or fins 3 are subject to stresses caused by high longitudinal and lateral acceleration forces and high temperatures. They serve as an aerodynamic steering aid. Stresses due to high longitudinal and lateral acceleration forces and high temperatures also occur on the lattice wings 8. They serve both as an aerodynamic steering aid and to maintain the stability of the missile.
  • the grille wing looks like a narrow doormat attached to the tail of the missile, the openings of which are in the direction of flight and can be rotated about the longitudinal axis.
  • Fig. 5 the thrusters 4 according to the invention are shown.
  • a stress caused by high lateral forces, temperatures and abrasion by exhaust gases and solid particles (eg Al 2 O 3 particles) must be taken into account when designing thrusters.
  • the use of thrusters in the exhaust jet serves as an additional steering aid during the propulsion phase of the missile.
  • Jet rudders which are installed in the rear of a rocket nozzle in the exhaust gas jet for beam deflection, are subject to extremely high thermo-mechanical stresses due to the hot, reactive combustion gases and the high lateral forces.
  • Thermal shock resistance and good abrasion behavior against solid particles are additionally required for thrusters, since thrusters can suddenly be exposed to gas / particle flows at temperatures of 2500 ° C depending on the type of engine and type of fuel.
  • Figure 6 shows a thrust nozzle 5 and the typical embodiment of the combustion chamber lining 6 according to the invention.
  • the thruster is subjected to extremely high pressures and temperatures. Often have the engines of missiles for the individual thrust phases (ejection, Acceleration and marching phase) several and different number of thrusters.
  • Figure 7 shows typical fluidic elements 9 that are used as transverse thrust controls.
  • the method according to the invention provides that the thrust nozzle and / or the nozzle neck and / or the combustion chamber are lined with C / SiC and / or C / C segments and / or SiC / SiC segments.
  • the inner walls of the missiles are made of C / SiC and / or C / C and / or SiC / SiC individual segments.
  • the C / SiC and / or C / C and / or SiC / SiC segments are to be designed in such a way that the dividing slots, the gases under high pressure and high temperature, are not let through to the metallic missile structure.
  • the C / SiC and / or C / C parts and / or SiC / SiC parts can be adapted to the inner contour of the missile engine and thus enable a geometrical simplification of the missile structure.
  • the process provides that the C / SiC and / or C / C and / or SiC / SiC individual segments for the missile components (1-10) made of C / SiC and / or C / C and / or SiC / SiC blanks machined and before assembly in the Missile structure combined into a monolithic structure.
  • the cooling can optionally be introduced of cooling channels or recesses in the C / SiC and / or C / C and / or SiC / SiC structure or insulation with carbon felt or graphite foil or C / SiC or C / C or SiC / SiC or combinations of these.
  • the cooling with Depending on the requirements, the cooling channels can be configured in the missile structure on Transition metal to C / SiC and / or C / C and / or SiC / SiC or in C / SiC and / or C / C and / or SiC / SiC part itself. It is also a combination of the two Parts provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Ceramic Products (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Details Of Aerials (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Flugkörpern oder Flugkörperkomponenten.
Ein solches Verfahren ist aus der EP 0 541 917 A bekannt.
An Flugkörpern, die sich mit sehr hoher Geschwindigkeit in der bodennahen Atmosphäre bewegen, treten an exponierten Stellen, wie Kanten, Ecken und Spitzen wegen der aerodynamischen Aufheizung Oberflächentemperaturen von über 1700 °C auf. Sehr hohe Temperaturen von über 2500 °C treten an Bauteilen von Flugkörpermotoren auf, deren Festtreibstoffe teilweise mit Temperaturen von über 3500 °C verbrennen. Die betroffenen Bauteile sollen auch bei diesen Temperaturen noch über hinreichende Strukturfestigkeit und Funktionalität verfügen, um die Gesamtmission des Flugobjektes erfolgreich zu beenden. Bisher wurde die Strukturfestigkeit der meist metallischen Bauteile im Hochtemperatureinsatz durch Verwendung hochtemperaturbeständiger Metalle und Metallegierungen, Kühlung und thermische Isolierung realisiert. Diese Maßnahmen sind aufwendig, teuer und erfordern in allen Fällen zusätzliches Gewicht zur Erfüllung der Aufgabenstellung. Zusätzliches Gewicht ist bei mobilem Gerät, insbesondere bei Flugkörpern, nachteilig, so daß nach gewichtsreduzierten Lösungen gesucht werden muß.
Bei einer bekannten Ausführungsform eines Flugkörpers bestehen die Bugspitze, feste Flossen oder bewegliche Ruder bzw. Fins, Strahlruder, Schubdüsen und Düsenhalseinsätze, Brennkammerauskleidungen, Heckkonus, Gitterflügel, Fluidikelemente und das Radom aus verschiedenen Metallen und Metallegierungen. Dabei sind diese Flugkörperkomponenten die thermisch und mechanisch höchstbelasteten Bauteile des Flugkörpers.
Aufgrund der genannten hohen Temperaturen, hohen mechanischen Belastungen und hohen Drücke muß man bei der heutigen Auslegung dieser Flugkörperkomponenten hoch hitzebeständige Metalle oder Metallegierungen (z.B. Wolfram, Molybdän, Inconnel) mit hoher mechanischer Festigkeit und Temperaturbeständigkeit verwenden. Da diese temperaturbeständigen Metalle und Legierungen schon ab etwa 800 °C unter Festigkeitsverlust erweichen, muß zusätzlich aktiv gekühlt werden. Ein weiterer gravierender Nachteil der Flugkörperkomponenten aus Metall ist ihr hohes Gewicht, welches die Beschleunigung und Geschwindigkeit von Flugkörpern einschränkt.
Der Erfindung liegt die Aufgabe zugrunde, Flugkörper oder Flugkörperkomponenten wie keramische Bugspitzen, feste Flossen oder bewegliche Ruder [Fins], Strahlruder, Schubdüsen und Düsenhalseinsätze, Brennkammerauskleidungen, Heckkonus, Gitterflügel, Fluidikelemente und Radome oder Teilkomponenten aus diesen für Flugkörper mit hoher Temperatur-, Druck- und Abriebfestigkeit, Erosionsbeständigkeit, niedriger Dichte bzw. niedrigem Gewicht, hoher Wärmeleitfähigkeit, niedriger Wärmeausdehnung bei einer nahezu unbegrenzten Geometrie- und Formenvielfalt zu schaffen.
Diese Aufgabe wird gelöst durch die Merkmale des Verfahrens Anspruchs 1.
Bugspitze 1, feste Flossen 2 oder bewegliche Ruder [Fins] 3, Strahlruder 4, Schubdüsen oder Düsenhalseinsätze 5, Brennkammerauskleidungen 6, Heckkonus 7, Gitterflügel 8, Fluidikelemente 9 und Radome 10 oder Teilkomponenten aus diesen bestehen also aus einer faserverstärkten Keramik oder aus Kombinationen verschiedener faserverstärkter Keramiken und bilden nach der Infiltration eine monolithische Struktur. Insgesamt erhöht sich die Temperaturbeständigkeit bei gleichzeitiger Gewichtsreduzierung dieser Flugkörperkomponenten.
Es wurde gefunden, daß C/SiC und/oder C/C und/oder SiC/SiC über hervorragende Festigkeitseigenschaften bis zu hohen Temperaturen verfügt, die einen Einsatz auch unter schweren Bedingungen ermöglichen. Hinzu kommt neben einer geringen Dichte hohe Verschleißfestigkeit, Oxidationsbeständigkeit sowie, neben der ausgezeichneten Temperaturbeständigkeit, eine hohe Temperaturwechselbeständigkeit.
Dabei ist es insbesondere bei Oberflächenversiegelung besonders gas- und flüssigkeitsdicht.
Besonders hervorzuheben sind die große Geometrie- und Formenvielfalt bei gleichzeitig niedrigem Gewicht, sowie die hervorragende Temperaturfestigkeit und hohe bzw. einstellbare Wärmeleitfähigkeit, die entsprechend niedrige Kühlleistungen ermöglichen. In bestimmten Flugkörpern kann aufgrund der hohen Temperaturfestigkeit von C/SiC und C/C und SiC/SiC ganz auf eine Kühlung oder thermische Isolierung verzichtet werden.
Man unterscheidet C/SiC und C/C und SiC/SiC mit kontinuierlicher Faserverstärkung sowie kurzfaserverstärktes C/SiC und C/C und SiC/SiC. Das erstgenannte Material aus C/SiC oder C/C oder SiC/SiC, das laminiert, gepreßt oder gewickelt werden kann, zeichnet sich durch besonders hohe Festigkeit und besonders niedrige Dichte aus. Zur Erhöhung der Oxidationsbeständigkeit kann mit einer Oberflächenversiegelung gearbeitet werden. Vorzugsweise werden dafür Schutzschichten aus Siliciumcarbid und/oder Siliciumdioxid und/oder Molybdändisilizid auf die Bauteiloberflächen aufgebracht. Letztere ist bei kurzfaserverstärktem C/SiC überflüssig, da das Material besonders oxidations- und korrosionsbeständig ist. Auch verfügt es über eine extrem gute Wärmeleitfähigkeit und zeichnet sich durch besonders hohe Thermoschockfestigkeit aus. Es eignet sich vor allen Dingen für eine mechanische Bearbeitung im Grünzustand. Dabei können aus C/SiC-Rohlingen und/oder C/C-Rohlingen Bugspitzen 1, feste Flossen 2 oder bewegliche Ruder [Fins] 3, Strahlruder 4, Schubdüsen oder Düsenhalseinsätze 5, Brennkammerauskleidungen 6, Heckkonus 7, Gitterflügel 8, Fluidikelemente 9 und Radome 10 oder Teilkomponenten aus diesen in beliebiger Geometrie aus einem Stück oder aus verschiedenen Einzelsegmenten durch mechanische Bearbeitung leicht geformt werden.
Vorteilhafterweise sind die Einzelsegmente der Bugspitze 1, festen Flossen 2 oder beweglichen Ruder [Fins] 3, Strahlruder 4, Schubdüsen und Düsenhalseinsätze 5, Brennkammerauskleidungen 6, Heckkonus 7, Gitterflügel 8, Fluidikelemente 9 und der Radome 10 oder Teilkomponenten aus diesen mit Siliciumcarbid und/oder Kohlenstoff und/oder Silicium zusammeninfiltriert oder zusammensiliziert, um die gewünschte monolithische Struktur zu geben. Diese Konstruktion eignet sich insbesondere für C/SiC oder C/C oder SiC/SiC mit Kurzfaserverstärkung, wobei die Einzelsegmente vor dem Zusammensilizieren bzw. Infiltrieren mechanisch bearbeitet werden. Eine derartige Flugkörperkomponente 1-10 kann ohne weiteres auch mit Befestigungselementen wie z.B. Schrauben oder Bolzen oder Flanschen, vorzugsweise aus C/SiC und/oder C/C und/oder SiC/SiC, verbunden werden. Außerdem können in die Flugkörperkomponenten 1-10 durch mechanische Bearbeitung im Grünzustand Kühlkanäle und/oder Ausnehmungen mit runden, rechteckigen oder schlitzförmigen Querschnitt eingebracht werden.
Das erfindungsgemäße Verfahren sieht eine Gestaltung der Flugkörperkomponenten 1-10 in Hybrid- und Segmentbauweise vor. Durch mechanische Bearbeitung von Rohkörpern und Teilsegmenten, die vorzugsweise aus C/SiC und/oder C/C und/oder SiC/SiC oder aus geeigneten Kombinationen mit kontinuierlicher Faserverstärkung und/oder Kurzfaserverstärkung besteht und durch die anschließende Infiltration mit Silicium und/oder Siliciumcarbid und/oder Kohlenstoff dieser Einzelsegmente werden monolithische Flugkörperkomponenten in Hybridbauweise ausgebildet.
Die Innenwand der Flugkörper oder die thermisch hochbelasteten Stellen der Flugkörper kann in geeigneter Weise mit C/SiC- oder C/C- oder SiC/SiC-Segmenten ausgekleidet werden und mittels Kühlung über Kühlkanäle und/oder mit einem Isolationsmaterial, vorzugsweise aus C/SiC oder C/C oder SiC/SiC oder aus Kohlenstoffaserfilzen oder Graphitfolie oder Kombinationen aus diesen, das die Temperatur- und Druckbelastung der metallischen Flugkörperstruktur soweit wie möglich reduziert, versehen sein und zu einer monolithischen Flugkörperkomponente 1-10 zusammensiliziert werden. Die Isolationswerkstoffe können auch unter Zwischenschaltung von Abstandshaltern, vorzugsweise aus C/SiC oder C/C oder SiC/SiC, mit den Flugkörperkomponenten 1-10 aus C/SiC und/oder C/C miteinander verbunden werden, um die gewünschte monolithische Struktur zu ergeben.
Vorteilhafterweise kann die Dichte und Porosität des C/SiC- und/oder des C/C- und/oder SiC/SiC-Materials während der Infiltration oder Silizierung durch die Zugabemenge an Silicium, Kohlenstoff oder Siliciumcarbid eingestellt werden, sodaß das C/SiC und/oder C/C und/oder SiC/SiC mit hoher Dichte und geringer Porosität als thermomechanische Tragstruktur und/oder Auskleidung und das C/SiC und/oder C/C und/oder SiC/SiC mit niedriger Dichte bzw. hoher Porosität als Wärmeisolierung eingesetzt werden kann. Dabei können auch Dichte- und Porositätsgradienten über der Wandstärke der Flugkörperkomponenten 1-10 eingestellt werden.
Durch die Gas- und Flüssigkeitsdichtigkeit der C/SiC- und/oder C/C-Materialien können in die metallische Flugkörperstruktur auch offene Kühlkanäle eingearbeitet werden, die beim Einsetzen der C/SiC- und/oder C/C-Teile und/oder SiC/SiC-Teile geschlossen werden. Die Flugkörperkomponente 1-10 wird je nach verwendetem System aus C/SiC- und/oder C/C- und/oder SiC/SiC-Einzelsegmenten gefertigt, die anschließend zu einer monolithischen Struktur mit Kohlenstoff und/oder Silicium und/oder Siliciumcarbid zusammeninfiltriert und/oder zusammensiliziert werden oder man fertigt die Flugkörperkomponenten 1-10 aus einem Stück, vorzugsweise durch mechanische Bearbeitung eines C/SiC- und/oder C/C- und/oder SiC/SiC-Rohlings. Diese C/SiC- und/oder C/C-Teile und/oder SiC/SiC-Teile können auch die Kühlkanäle (falls notwendig) oder Ausnehmungen bereitstellen, um die Wärme abzutransportieren. Der C/SiC- und/oder C/C-Körper und/oder SiC/SiC-Körper 1-10 und die metallische Flugkörperstruktur sind mit geeigneten Verbindungselementen wie z.B. Bolzen-, Schraub- oder Flanschverbindungen, vorzugsweise aus C/SiC und/oder C/C und/oder SiC/SiC, miteinander zu verbinden. Möglichkeiten hierzu sind in den Bildern 2 bis 9 gezeigt.
Die Erfindung wird im folgenden, anhand bevorzugter Ausführungsbeispiele im Zusammenhang mit den beiliegenden Zeichnungen, näher erläutert. Durch den Einsatz von Flugkörperkomponenten 1-10 aus faserverstärkter Keramik (C/SiC und/oder C/C und/oder SiC/SiC) kommt es zu einer erheblichen Gewichtsreduzierung im Vergleich zu metallischen Flugkörperkomponenten. Durch die Hochtemperaturfestigkeit von C/SiC und/oder C/C und/oder SiC/SiC kann auf die Kühlung ganz oder teilweise verzichtet werden. Das erfindungsgemäße Verfahren erlaubt jegliche Geometrie- und Größenvariationen bei den Flugkörperkomponenten 1-10.
In Bild 1 ist ein Flugkörper nach derzeitigem Stand der Technik dargestellt. Aufgrund der hohen Temperatur- und Druckbelastung kommen derzeit z.B. nur warmfeste Metalle und Metallegierungen mit hoher Dichte infrage, die aufgrund ihrer relativ geringen Temperaturfestigkeit gekühlt werden müssen. Neben diesen thermomechanischen Anforderungen müssen die metallischen Werkstoffe auch allen Anforderungen bezüglich Korrosion, Bearbeitung, Oberflächengüte und Schweißbarkeit genügen.
In Bild 2 ist eine Bugspitze 1 und ein Radom 10 eines Flugkörpers dargestellt. Die Bugspitze wird besonders durch hohe Drücke und hohe Temperaturen beansprucht. Durch den Einsatz von faserverstärkter Keramik kann das Gewicht der Bugspitze um mindestens 1 kg im Vergleich zu einer metallischen Bugspitze reduziert werden.
An Radomen treten Beanspruchungen durch hohe Drücke und hohe Temperaturen auf. Zusätzlich ist bei Radomen eine erhöhte Radardurchlässigkeit und Oberflächengenauigkeit (z.B: durch Schleifbarkeit) sowie der Aufbau unterschiedlicher Wandstärken erforderlich.
In Bild 3 sind die Stabilisierungsfins bzw. festen Flossen 2 und der Heckkonus 7 eines Flugkörpers dargestellt.
An den festen Flossen treten vor allem Beanspruchungen durch hohe Längs- und Querbeschleunigungskräfte und durch hohe Temperaturen auf. Der Heckkonus 7 eines Flugkörpers wird durch hohe Drücke und hohe Temperaturen beansprucht und dient zur Stabilisierung des Flugkörpers. Der Einsatz von faserverstärkter Keramik führt am Heckkonus zu einer Gewichtsersparnis von 3 kg.
In Bild 4 sind bewegliche Ruder bzw. Fins 3 und Gitterflügel 8 dargestellt. An den beweglichen Rudern bzw. Fins 3 treten Beanspruchungen durch hohe Längs- und Querbeschleunigungskräfte und durch hohe Temperaturen auf. Sie dienen als aerodynamische Lenkhilfe. Auch an den Gitterflügeln 8 treten Beanspruchungen durch hohe Längs- und Querbeschleunigungskräfte und durch hohe Temperaturen auf. Sie dienen sowohl als aerodynamische Lenkhilfe als auch zur Erhaltung der Stabilität des Flugkörpers. Der Gitterflügel sieht aus wie ein am Heck des Flugkörpers angebrachter schmaler Fußabstreifer, dessen Öffnungen in Flugrichtung stehen und um die Längsachse gedreht werden kann.
In Bild 5 sind die erfindungsgemäßen Strahlruder 4 abgebildet. Eine Beanspruchung durch hohe Querkräfte, Temperaturen und Abrasion durch Abgase und Feststoffteilchen (z.B. Al2O3-Partikeln) muß bei der Auslegung von Strahlrudern berücksichtigt werden. Der Einsatz von Strahlrudern im Abgasstrahl dient als zusätzliche Lenkhilfe während der Antriebsphase des Flugkörpers. Strahlruder, die im hinteren Bereich einer Raketendüse direkt im Abgasstrahl zur Strahlumlenkung eingebaut sind, unterliegen extrem hohen thermo-mechanischen Beanspruchungen durch die heißen, reaktiven Verbrennungsgase und den hohen Querkräften. Thermoschockbeständigkeit und ein gutes Abrasionsverhalten gegenüber Feststoffteilchen, wie z.B. Al2O3 und Ruß, werden bei Strahlrudern zusätzlich gefordert, da Strahlruder je nach Motortyp und Treibstoffart Gas/Teilchenströmungen mit Temperaturen von 2500 °C plötzlich ausgesetzt sein können.
In Bild 6 sind eine Schubdüse 5 und die typische Ausführungsform der erfindungsgemäßen Brennkammerauskleidung 6 dargestellt.
Die Schubdüse wird durch extrem hohe Drücke und Temperaturen beansprucht. Oft besitzen die Triebwerke von Flugkörpern für die einzelnen Schubphasen (Auswurf-, Beschleunigungs- und Marschphase) mehrere und unterschiedlich viele Schubdüsen.
In Bild 7 sind typische Fluidikelemente 9 abgebildet, die als Querschubsteuerungen eingesetzt werden.
Das erfindungsgemäße Verfahren sieht vor, daß man die Schubdüse und/oder den Düsenhals und/oder die Brennkammer mit C/SiC- und/oder C/C-Segmenten und/oder SiC/SiC-Segmenten auskleidet. Die Innenwände der Flugkörper sind aus C/SiC- und/oder C/C- und/oder SiC/SiC-Einzelsegmenten gestaltet. Die C/SiC- und/oder C/C- und/oder SiC/SiC-Segmente sind so zu gestalten, daß die Teilungsschlitze, die unter hohem Druck und hoher Temperatur stehenden Gase nicht zur metallischen Flugkörperstruktur durchgelassen werden. Die C/SiC- und/oder C/C-Teile und/oder SiC/SiC-Teile können der Innenkontur des Flugkörpermotors angepaßt werden und ermöglichen so eine geometrische Vereinfachung der Flugkörperstruktur.
Das Verfahren sieht vor, daß man die C/SiC- und/oder C/C- und/oder SiC/SiC-Einzelsegmente für die Flugkörperkomponenten (1-10) aus C/SiC- und/oder C/C- und/oder SiC/SiC-Rohlingen mechanisch bearbeitet und vor der Montage in die Flugkörperstruktur zu einer monolithischen Struktur zusammensiliziert.
In den Beispielen kann die Kühlung (falls notwendig) wahlweise über das Einbringen von Kühlkanälen oder Ausnehmungen in die C/SiC- und/oder C/C- und/oder SiC/SiC-Struktur oder die Isolation mit Kohlenstoffilzen oder Graphitfolie oder C/SiC oder C/C oder SiC/SiC oder Kombinationen aus diesen erfolgen. Die Kühlung mit Kühlkanälen kann wahlweise je nach Anforderung in der Flugkörperstruktur am Übergang Metall zu C/SiC und/oder C/C und/oder SiC/SiC oder im C/SiC- und/oder C/C- und/oder SiC/SiC-Teil selbst erfolgen. Es ist auch eine Kombination aus beiden Teilen vorgesehen.

Claims (3)

  1. Verfahren zur Herstellung von thermisch und mechanisch hochbelasteten Flugkörpern oder Flugkörperkomponenten mit folgenden Schritten:
    a) Fertigen von Rohlingen aus faserverstärkter grüner Keramik, nämlich kohlenfaserverstärktem Siliciumcarbid (C/SiC) und/oder kohlenstoffaserverstärktem Kohlenstoff (C/C) und/oder siliciumcarbidfaserverstärktem Siliciumcarbid (SiC/SiC);
    b) Ausformen und mechanisches Bearbeiten der Keramikrohlinge im Grünzustand entsprechend den Teilegeometrien des Flugkörpers oder der Flugkörperkomponenten;
    c) Gemeinsame Infiltration oder gemeinsames Silizieren der Rohlinge mit Silicium und/oder Siliciumcarbid und/oder Kohlenstoff zum Erhalt einer monolithischen Verbundstruktur, wobei die zusammengefügten Rohlinge die Gesamtform des Flugkörpers oder der jeweiligen Flugkörperkomponente bilden.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß die Dichte und Porosität des S/SiC- und/oder des C/C- und/oder SiC/SiC-Materials während des Schrittes der Infiltration oder Silizierung durch die Zugabemenge von Silicium, Kohlenstoff und/oder Siliciumcarbid eingestellt wird, so daß sich eine Tragstruktur mit einerseits hoher Dichte und geringer Porosität als Tragteil und/oder Auskleidung und mit andererseits niedriger Dichte und hoher Porosität als Wärmeisolierung ergibt.
  3. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß in die Keramikrohlinge durch mechanisches Bearbeiten Kühlkanäle eingebracht oder eingeformt werden.
EP97935567A 1996-08-16 1997-08-04 Verfahren zur Herstellung von Flugkörpern oder Flugkörperkomponenten Expired - Lifetime EP0918976B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19632893 1996-08-16
DE19632893A DE19632893C2 (de) 1996-08-16 1996-08-16 Verfahren zur Herstellung von Flugkörperkomponenten aus faserverstärkter Keramik
PCT/EP1997/004235 WO1998008044A1 (de) 1996-08-16 1997-08-04 Flugkörperkomponenten aus faserverstärkter keramik

Publications (2)

Publication Number Publication Date
EP0918976A1 EP0918976A1 (de) 1999-06-02
EP0918976B1 true EP0918976B1 (de) 2000-06-14

Family

ID=7802697

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97935567A Expired - Lifetime EP0918976B1 (de) 1996-08-16 1997-08-04 Verfahren zur Herstellung von Flugkörpern oder Flugkörperkomponenten

Country Status (5)

Country Link
US (1) US6460807B1 (de)
EP (1) EP0918976B1 (de)
AT (1) ATE193942T1 (de)
DE (2) DE19632893C2 (de)
WO (1) WO1998008044A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7037602B2 (en) 2002-07-04 2006-05-02 Sgl Carbon Ag Multilayer composite

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6935594B1 (en) * 2001-11-09 2005-08-30 Advanced Ceramics Research, Inc. Composite components with integral protective casings
DE10157752B4 (de) * 2001-11-27 2006-04-06 Eads Space Transportation Gmbh Düsenverlängerung
WO2004065514A1 (en) * 2003-01-14 2004-08-05 Archer-Daniels-Midland Company Glass-like polysaccharides useful for treating manufactured parts
DE102004037487A1 (de) 2004-07-27 2006-03-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Strahlruder und Verfahren zur Herstellung eines Strahlruders
US7429017B2 (en) * 2005-07-21 2008-09-30 Raytheon Company Ejectable aerodynamic stability and control
US7681834B2 (en) * 2006-03-31 2010-03-23 Raytheon Company Composite missile nose cone
US7800032B1 (en) * 2006-11-30 2010-09-21 Raytheon Company Detachable aerodynamic missile stabilizing system
US7829829B2 (en) * 2007-06-27 2010-11-09 Kazak Composites, Incorporated Grid fin control system for a fluid-borne object
DE102008025355B4 (de) * 2008-05-19 2013-01-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Rheometer und Verfahren zur rheologischen Messung an einem Probenkörper
DE102009013150B4 (de) 2009-03-06 2011-05-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Bauteil zum Einsatz in Heißgasströmungen
CN103979993B (zh) * 2014-05-27 2015-07-29 西安超码科技有限公司 一种大尺寸炭/碳化硅复合材料隔热底板的制备方法
CN108007280B (zh) * 2017-12-28 2023-08-15 北京威标至远科技发展有限公司 一种舵机防热结构
GB2578572B (en) 2018-10-30 2022-08-17 Bae Systems Plc A sabot
US20220411337A1 (en) * 2019-09-20 2022-12-29 Aselsan Elektronik Sanayi Ve Ticaret Anonim Sirketi Fabrication method of multilayer ceramic structures by continuous filaments of identical composition
CN112719804B (zh) * 2020-12-18 2022-06-07 湖北三江航天江北机械工程有限公司 一种训练用空空导弹吊挂组合的加工方法
CN112693623B (zh) * 2020-12-21 2022-05-27 中国空气动力研究与发展中心高速空气动力研究所 导弹栅格舵铰链力矩模型爪盘式自锁定位结构
CN112853250B (zh) * 2020-12-28 2022-08-05 哈尔滨工业大学 一种组合燃气舵构件的制备方法
CN114235321B (zh) * 2022-02-25 2022-04-26 中国空气动力研究与发展中心高速空气动力研究所 一种燃气舵和喷管一体化风洞测力实验装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1229246A (de) * 1967-06-08 1971-04-21
US3676293A (en) * 1970-04-22 1972-07-11 Monsanto Co Laminated article
US3676623A (en) 1970-12-17 1972-07-11 Westinghouse Electric Corp Circuit interrupter
US3796616A (en) * 1972-05-23 1974-03-12 Haveg Industries Inc Porous substrate for fibrous graphite structure produced by addition of degradable material
US4476178A (en) * 1982-06-24 1984-10-09 United Technologies Corporation Composite silicon carbide coatings for carbon-carbon materials
US4425407A (en) 1982-06-24 1984-01-10 United Technologies Corporation CVD SiC pretreatment for carbon-carbon composites
US4477024A (en) * 1983-04-05 1984-10-16 The United States Of America As Represented By The Secretary Of The Air Force Carbon/carbon rocket motor exit cone reinforcement
NO153190C (no) * 1983-10-20 1986-01-29 Raufoss Ammunisjonsfabrikker Anordning ved raketter.
JPS61122162A (ja) 1984-11-14 1986-06-10 日立化成工業株式会社 炭素繊維強化炭素材料の製造法
JPS61247663A (ja) 1985-04-22 1986-11-04 工業技術院長 炭素連続繊維強化SiC複合体の製造方法
US4706912A (en) 1985-12-16 1987-11-17 The United States Of America As Represented By The Secretary Of The Army Structural external insulation for hypersonic missiles
US4961384A (en) * 1986-02-18 1990-10-09 The United States Of America As Represented By The Secretary Of The Army Hypervelocity penetrator for an electromagnetic accelerator
FR2611198B1 (fr) * 1987-02-25 1991-12-06 Aerospatiale Materiau composite a matrice et fibres de renforcement carbonees et son procede de fabrication
DE3927917A1 (de) * 1989-08-24 1991-02-28 Rheinmetall Gmbh Fluegelstabilisiertes geschoss
FR2667591B1 (fr) 1990-10-04 1993-11-05 Ceramiques Composites Procede d'assemblage d'objets en carbure de silicium et assemblages ainsi obtenus.
JPH0813713B2 (ja) * 1990-10-11 1996-02-14 東芝セラミックス株式会社 SiC被覆C/C複合材
JPH07119079B2 (ja) 1991-03-15 1995-12-20 三井造船株式会社 高温耐熱強度部材
JP2704332B2 (ja) * 1991-10-11 1998-01-26 株式会社ノリタケカンパニーリミテド 炭素繊維強化窒化珪素質ナノ複合材及びその製造方法
DE4136880C2 (de) 1991-11-09 1994-02-17 Sintec Keramik Gmbh Verfahren zur Herstellung eines oxidationsbeständigen Bauteils auf CFC-Basis und dessen Anwendung
US5525372A (en) 1992-09-08 1996-06-11 The United States Of America As Represented By The Secretary Of The Army Method of manufacturing hybrid fiber-reinforced composite nozzle material
US5291830A (en) 1992-10-30 1994-03-08 Lockheed Corporation Dual-mode semi-passive nosetip for a hypersonic weapon
US5411763A (en) 1993-01-11 1995-05-02 Martin Marietta Energy Systems, Inc. Method of making a modified ceramic-ceramic composite
JPH06305863A (ja) 1993-04-28 1994-11-01 Mitsubishi Kasei Corp 炭化珪素質被覆炭素繊維強化炭素複合材の製造法
US6037023A (en) * 1994-07-08 2000-03-14 Raytheon Company Broadband composite structure fabricated from inorganic polymer matrix reinforced with glass or ceramic woven cloth
DE19513508A1 (de) * 1995-04-10 1996-10-17 Abb Research Ltd Verdichter
US5806791A (en) * 1995-05-26 1998-09-15 Raytheon Company Missile jet vane control system and method
DE19730674A1 (de) * 1997-07-17 1999-01-21 Deutsch Zentr Luft & Raumfahrt Brennkammer und Verfahren zur Herstellung einer Brennkammer
DE19746598C2 (de) * 1997-10-22 2000-12-07 Dornier Gmbh Keramikverbundwerkstoff und seine Verwendung
DE19804232C2 (de) * 1998-02-04 2000-06-29 Daimler Chrysler Ag Brennkammer für Hochleistungstriebwerke und Düsen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7037602B2 (en) 2002-07-04 2006-05-02 Sgl Carbon Ag Multilayer composite
DE10230231B4 (de) * 2002-07-04 2007-07-05 Sgl Carbon Ag Mehrschichtiger Verbundwerkstoff

Also Published As

Publication number Publication date
ATE193942T1 (de) 2000-06-15
DE19632893C2 (de) 2001-02-08
WO1998008044A1 (de) 1998-02-26
US6460807B1 (en) 2002-10-08
DE59701892D1 (de) 2000-07-20
DE19632893A1 (de) 1998-02-19
EP0918976A1 (de) 1999-06-02

Similar Documents

Publication Publication Date Title
EP0918976B1 (de) Verfahren zur Herstellung von Flugkörpern oder Flugkörperkomponenten
DE60207054T2 (de) Auflösbare schubvektorsteuerungsleitschaufel
DE19804232C2 (de) Brennkammer für Hochleistungstriebwerke und Düsen
DE19858197B4 (de) Triebwerk
EP2255086B1 (de) Platten- und ring-cmc-düse
DE4136880C2 (de) Verfahren zur Herstellung eines oxidationsbeständigen Bauteils auf CFC-Basis und dessen Anwendung
EP3173589A1 (de) Turbinenmotor- und abgassystemverbindung
Doorbar et al. 4.19 development of continuously-reinforced metal matrix composites for aerospace applications
GB2235250A (en) Exhaust flaps for gas turbine engines
US20080237922A1 (en) Composite components with integral protective casings
EP3708486B1 (de) Flugzeugflügelkomponente
DE102007024130A1 (de) Abgasturbolader mit doppelschaligem Gehäuse
EP3708811B1 (de) Motorabgashautverbindungssystem
Berdoyes Snecma Propulsion Solide Advanced Technology SRM Nozzles. History and Future.
US3103784A (en) Plastic internal rocket nozzle
DE19801407C2 (de) Brennkammer für Hochleistungstriebwerke und Düsen
GB2089434A (en) Composite Ducts for Jet Pipes
Vijayaram et al. A review on the processing methods, properties and applications of metal matrix composites
EP1378652A2 (de) Mehrschichtiger Verbundwerkstoff
EP4187191B1 (de) Verbundpulver zur generativen fertigung, verfahren zur herstellung eines verbundpulvers
Kochendöurfer Ceramic Matrix Composites‐From Space to Earth: The Move from Prototype to Serial Production
Ellis et al. Solid rocket motor nozzles
Bashford A review of advanced metallic and ceramic materials suitable for high temperature use in space structures
Mccomb Jr et al. Structures and materials technology for hypersonic aerospacecraft
Driver Materials and process directions for advanced aero-engine design

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK FI FR GB IE IT LI LU NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: PROCESS FOR MANUFACTURING MISSILES OR MISSILE COMPONENTS

RTI1 Title (correction)

Free format text: PROCESS FOR MANUFACTURING MISSILES OR MISSILE COMPONENTS

17Q First examination report despatched

Effective date: 19991001

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK FI FR GB IE IT LI LU NL SE

REF Corresponds to:

Ref document number: 193942

Country of ref document: AT

Date of ref document: 20000615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RITSCHER & SEIFERT

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000601

REF Corresponds to:

Ref document number: 59701892

Country of ref document: DE

Date of ref document: 20000720

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: SGL CARBON GMBH

Effective date: 20010314

NLR1 Nl: opposition has been filed with the epo

Opponent name: SGL CARBON GMBH

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

R26 Opposition filed (corrected)

Opponent name: SGL CARBON GMBH

Effective date: 20010314

NLR1 Nl: opposition has been filed with the epo

Opponent name: SGL CARBON GMBH

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SGL CARBON GMBH

Effective date: 20010314

NLR1 Nl: opposition has been filed with the epo

Opponent name: SGL CARBON GMBH

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

27O Opposition rejected

Effective date: 20041026

NLR2 Nl: decision of opposition

Effective date: 20041026

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20090126

Year of fee payment: 12

Ref country code: IE

Payment date: 20090127

Year of fee payment: 12

Ref country code: DK

Payment date: 20090128

Year of fee payment: 12

Ref country code: AT

Payment date: 20090123

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090131

Year of fee payment: 12

Ref country code: FI

Payment date: 20090126

Year of fee payment: 12

Ref country code: DE

Payment date: 20090123

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090212

Year of fee payment: 12

Ref country code: CH

Payment date: 20090130

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090213

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090121

Year of fee payment: 12

Ref country code: IT

Payment date: 20090129

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090122

Year of fee payment: 12

BERE Be: lapsed

Owner name: *INDUSTRIEANLAGEN-BETRIEBSG.- M.B.H.

Effective date: 20090831

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100301

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090804

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090804

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090805