EP0910676B1 - Process for producing a grain-orientated electrical steel sheet - Google Patents

Process for producing a grain-orientated electrical steel sheet Download PDF

Info

Publication number
EP0910676B1
EP0910676B1 EP97930498A EP97930498A EP0910676B1 EP 0910676 B1 EP0910676 B1 EP 0910676B1 EP 97930498 A EP97930498 A EP 97930498A EP 97930498 A EP97930498 A EP 97930498A EP 0910676 B1 EP0910676 B1 EP 0910676B1
Authority
EP
European Patent Office
Prior art keywords
temperature
annealing
strip
cold
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97930498A
Other languages
German (de)
French (fr)
Other versions
EP0910676A1 (en
Inventor
Manfred Espenhahn
Andreas Böttcher
Klaus Günther
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Stahl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Stahl AG filed Critical ThyssenKrupp Stahl AG
Publication of EP0910676A1 publication Critical patent/EP0910676A1/en
Application granted granted Critical
Publication of EP0910676B1 publication Critical patent/EP0910676B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling

Definitions

  • the invention relates to a method for producing grain-oriented electrical sheet from which a slab is made a steel with (in mass%) more than 0.005 to 0.10% C, 2.5 to 4.5% Si, 0.03 to 0.15% Mn, more than 0.01 to 0.05% S, 0.01 to 0.035% Al, 0.0045 to 0.012% N, 0.02 up to 0.3% Cu, balance Fe including unavoidable Contamination at a temperature lower than that Solubility temperature for manganese sulfides, anyway below 1320 ° C, but above the solubility temperature for copper sulfides, is heated through, then with an initial temperature of at least 960 ° C and with a final temperature in the range of 880 to 1000 ° C up to the final hot strip thickness in the range from 1.5 to 7.0 mm is hot rolled, the hot strip then 100 to 600 s long at a temperature in the range of 880 to 1150 ° C annealed, then at a cooling rate greater than 15 K / s cooled and in one or more Cold
  • the aim of lowering the temperature before hot rolling is Avoiding liquid slag on the slabs, which Wear on the glow devices is reduced and that Production output increased.
  • EP-B-0 219 611 describes a method which a lowering of the slab preheating temperature in advantageously allows.
  • (Al, Si) N particles used as grain growth inhibitors which via a nitriding process into the finished strip thickness cold-rolled and decarburized strip can be introduced.
  • the measure to carry out this nitriding process is the Annealing atmosphere in the high-temperature annealing selected so that this has a nitriding ability, or it becomes nitriding Additives for glow repair, or combinations of cited both.
  • EP-B-0 321 695 describes a similar process described. As grain growth inhibitors only (Al, Si) N particles are used. It will additional information on the chemical composition made and another way one Nitriding treatment in connection with the Decarburization annealing demonstrated. Furthermore, the hint given that the slab preheating temperatures are preferred should be below 1200 ° C.
  • EP-B-0 339 474 also describes a process, but a nitriding treatment in the form of continuous annealing in the temperature range from 500 to 900 ° C. is carried out in detail in the presence of a sufficient amount of NH 3 in the annealing gas. Furthermore, it is described in detail how the annealing nitriding treatment can be connected directly after the decarburization annealing. The goal here is the formation of (Al, Si) N particles as an effective grain growth inhibitor. It is particularly emphasized that with such a nitriding treatment, at least 100 ppm, but preferably more than 180 ppm, of nitrogen must be introduced. The slab preheating temperature should be below 1200 ° C.
  • EP-B-0 390 140 represents the special meaning of the Grain size distribution of the decarburized cold strip in particular and gives different methods for their determination on.
  • the slab preheating temperature is always one Temperature specified below 1280 ° C. However Always recommended that the slabs be below 1200 ° C preheat all of the exemplary embodiments listed indicate 1150 ° C as preheating temperature.
  • the hot rolled strip is subjected to annealing in order to to excrete the copper sulfide particles, which the Form inhibitor phase. Then there is a Cold rolling to the finished strip thickness.
  • you can the hot-rolled strip is first a first Cold rolling step are then subjected to the inhibitor-eliminating annealing and the last cold rolling to carry out the finished strip thickness.
  • This band eventually becomes a continuous one Decarburization annealing treatment carried out in a moist Nitrogen and hydrogen containing annealing atmosphere.
  • the structure recrystallized and decarburized the tape. Then will an essentially containing MgO Anti-stick coating on the surface of decarburized Cold tape applied and the tape wound up Coils.
  • the decarburized cold strip coils thus produced are then subjected to a high temperature hood annealing in order to Formation of the Goss Texture on the Process of Initiate secondary recrystallization.
  • the coils with a heating rate of about 10 to 30 K / h slowly heated up in a glowing atmosphere There is hydrogen and nitrogen.
  • the dew point of the hot gas rises sharply because then the crystal water of the essentially MgO containing adhesive protection coating is released.
  • secondary recrystallization takes place at around 950 to 1020 ° C from.
  • a mixture of hydrogen and nitrogen is generally used as the annealing gas, a mixture of 75% hydrogen and 25% nitrogen being particularly common.
  • this gas composition a certain nitrogen nitriding of the tape is effected, because with this stoichiometric composition there are enough NH 3 molecules that are necessary for nitrogen nitriding. This increases the known inhibition based on AlN.
  • the cold strip for high-temperature annealing in an atmosphere containing less than 25% by volume of H 2 the rest nitrogen and / or noble gas, such as argon, is heated at least until the holding temperature is reached. After reaching the holding temperature, the H 2 content can be steadily increased to 100%.
  • heating up phase also significantly increases that Oxidation potential of the annealing atmosphere, which is reflected in Individual cases unfavorable to the later training of the insulating phosphate layer and their adhesion can.
  • This problem only occurs at the beginning of the Heating phase noticeable when the dew point of the hot gas by releasing water vapor from the Anti-adhesive coating increases significantly.
  • a Change in the inhibitor phase occurs through desulfurization but not yet in at these low temperatures Appearance, but occurs only at higher temperatures on. To adversely affect the To avoid surface texture, the Gas composition changed during the heating phase become.
  • Reference The first high-temperature annealing referred to as “reference” corresponded to the prior art and contained an atmosphere of 75% by volume H 2 + 25% by volume N 2 in the heating phase. The temperature was raised from 15 K / h to a holding temperature of 1200 ° C., held at this temperature for 20 hours and then slowly cooled. An atmosphere of 100% H 2 was switched over from the start of the holding time.
  • New variant The second high-temperature annealing, referred to as “new”, represented the measure according to the invention and, in contrast to “Reference”, contained an atmosphere of 10% by volume H 2 + 90% by volume N 2 in the heating phase.
  • inert The third high-temperature annealing, referred to as “inert”, also represented the measure according to the invention, however, in contrast to “new", the inert gas argon was used instead of N 2 in the heating phase.
  • Fig. 1 shows the steep drops of the Coercive field strength that in all three cases one Secondary recrystallization has taken place.
  • the Individual recrystallization test samples were chemical analyzed for their nitrogen and sulfur content.
  • Fig. 3 shows the development of the nitrogen content
  • Fig. 4 shows the development of the sulfur content in Temperature interval from 900 ° C to 1045 ° C during the Warm-up phase of the high glow.
  • Table 1 Table 1 listed melts A to E.
  • the bands were rolled to a finished strip thickness of 0.30 mm.
  • the development of the sulfur content differs between the inventive and the non-inventive annealing variants in a noteworthy manner only from strip temperatures above 900 ° C.
  • the advantageous effect of the variant according to the invention also arises if the low-hydrogen incandescent atmosphere is only used at a later point in time during heating. If, for example, the use of very low-hydrogen glow atmospheres in the heating phase (e.g. 5% by volume hydrogen) should cause problems with the surface properties of the strip due to its very high oxidation potential, the method according to the invention can be modified as follows: The annealing starts with a hydrogen-rich one Annealing atmosphere.
  • the composition of the annealing gas is changed and the annealing continued in a low-hydrogen atmosphere.
  • the gas atmosphere is changed again and the hydrogen content is greatly increased, preferably to 100%.
  • the effect of this modification of the method according to the invention is identical to that of the method according to the invention described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Formation And Processing Of Food Products (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PCT No. PCT/EP97/03510 Sec. 371 Date Oct. 26, 1998 Sec. 102(e) Date Oct. 26, 1998 PCT Filed Jul. 3, 1997 PCT Pub. No. WO98/02591 PCT Pub. Date Jan. 22, 1998A process for producing a grain-oriented magnetic steel sheet in which a slab, made from a steel containing (in mass %) more than 0.005 to 0.10% C, 2.5 to 4.5% Si, 0.03 to 0.15% Mn, more than 0.01 to 0.05% S, 0.01 to 0.035% Al, 0.0045 to 0.012% N, 0.02 to 0.3% Cu, the remainder being Fe, including unavoidable impurities, is heated through and hot rolled to a final thickness between 1.5 and 7.0 mm. The hot strip is annealed and immediately cooled and cold rolled in one or several cold-rolling steps to the final thickness of the cold strip. The cold strip is subjected to a recrystallizing annealing process in a humid atmosphere containing hydrogen and nitrogen, with synchronous decarburization. A non-stick layer, essentially containing MgO, is applied to the surface of the decarburized cold strip which is then subjected to final annealing. The cold strip is then rolled into coils.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von kornorientiertem Elektroblech, bei dem eine Bramme aus einem Stahl mit (in Masse-%) mehr als 0,005 bis 0,10 % C, 2,5 bis 4,5 % Si, 0,03 bis 0,15 % Mn, mehr als 0,01 bis 0,05 % S, 0,01 bis 0,035 % Al, 0,0045 bis 0,012 % N, 0,02 bis 0,3 % Cu, Rest Fe einschl. unvermeidbarer Verunreinigungen bei einer Temperatur, die tiefer als die Löslichkeitstemperatur für Mangansulfide, jedenfalls unter 1320 °C, aber oberhalb der Löslichkeitstemperatur für Kupfersulfide liegt, durcherwärmt wird, im Anschluß daran mit einer Anfangstemperatur von mindestens 960 °C und mit einer Endtemperatur im Bereich von 880 bis 1000 °C bis auf Warmband-Enddicke im Bereich von 1,5 bis 7,0 mm warmgewalzt wird, das Warmband danach 100 bis 600 s lang bei einer Temperatur im Bereich von 880 bis 1150 °C geglüht, sodann mit einer Abkühlrate von größer als 15 K/s abgekühlt und in einem oder mehreren Kaltwalzschritten bis auf Kaltband-Enddicke kaltgewalzt wird, worauf das Kaltband einer rekristallisierenden Glühung in feuchter, Wasserstoff und Stickstoff enthaltender Atmosphäre mit gleichzeitiger Entkohlung unterworfen wird und nach dem beidseitigen Aufbringen eines im wesentlichen MgO enthaltenden Trennmittels hochtemperaturgeglüht und nach dem Aufbringen einer Isolierbeschichtung schlußgeglüht wird. The invention relates to a method for producing grain-oriented electrical sheet from which a slab is made a steel with (in mass%) more than 0.005 to 0.10% C, 2.5 to 4.5% Si, 0.03 to 0.15% Mn, more than 0.01 to 0.05% S, 0.01 to 0.035% Al, 0.0045 to 0.012% N, 0.02 up to 0.3% Cu, balance Fe including unavoidable Contamination at a temperature lower than that Solubility temperature for manganese sulfides, anyway below 1320 ° C, but above the solubility temperature for copper sulfides, is heated through, then with an initial temperature of at least 960 ° C and with a final temperature in the range of 880 to 1000 ° C up to the final hot strip thickness in the range from 1.5 to 7.0 mm is hot rolled, the hot strip then 100 to 600 s long at a temperature in the range of 880 to 1150 ° C annealed, then at a cooling rate greater than 15 K / s cooled and in one or more Cold rolling steps cold rolled to the final strip thickness is what the cold strip of a recrystallizing Annealing in moist, hydrogen and nitrogen containing atmosphere with simultaneous decarburization is subjected and after the double-sided application a release agent essentially containing MgO high temperature annealed and after applying one Insulating coating is finally annealed.

Ein solches Verfahren ist in der DE 43 11 151 C1 offenbart. Die Absenkung der Brammenvorwärmtemperatur auf unterhalb der Löslichkeitstemperatur von MnS, in jedem Fall aber unterhalb von 1320 °C, ist durch die Anwendung von Kupfersulfid als wesentlichem Kornwachstumsinhibitor möglich. Dessen Löslichkeitstemperatur liegt derart tief, daß auch durch die Vorwärmung bei dieser abgesenkten Temperatur und dem nachfolgenden Warmwalzen in Verbindung mit der Glühung des warmgewalzten Bandes eine hinreichende Bildung dieser Inhibitorphase möglich ist. MnS spielt wegen seiner sehr viel höheren Löslichkeitstemperatur als Inhibitor keine Rolle und AlN, dessen Löslichkeits- und Ausscheidungseigenschaften zwischen denen von Mn- und Cu-Sulfid liegen, hat nur einen unbedeutenden Anteil an der Inhibition.Such a method is described in DE 43 11 151 C1 disclosed. The slab preheating temperature drops to below the solubility temperature of MnS, in each Fall below 1320 ° C is due to the application of copper sulfide as an essential grain growth inhibitor possible. Its solubility temperature is so low that also lowered by preheating this Temperature and subsequent hot rolling in connection with the annealing of the hot rolled strip sufficient formation of this inhibitor phase is possible. MnS plays because of its much higher Solubility temperature as inhibitor and AlN, its solubility and excretion properties between those of Mn and Cu sulfide has only an insignificant part of the inhibition.

Ziel der Temperaturabsenkung vor dem Warmwalzen ist die Vermeidung flüssiger Schlacke auf den Brammen, was den Verschleiß der Glüheinrichtungen verringert und das stoffwirtschaftliche Ausbringen der Produktion erhöht.The aim of lowering the temperature before hot rolling is Avoiding liquid slag on the slabs, which Wear on the glow devices is reduced and that Production output increased.

Die EP-B-0 219 611 beschreibt ein Verfahren, das ebenfalls eine Absenkung der Brammenvorwärmtemperatur in vorteilhafter Weise ermöglicht. Dabei werden (Al,Si)N-Partikel als Kornwachstumsinhibitoren verwendet, die über einen Nitrierprozeß in das auf Fertigbanddicke kaltgewalzte und entkohlte Band eingebracht werden. Als Maßnahme, diesen Nitrierprozeß durchzuführen, wird die Glühatmosphäre bei der Hochglühung so gewählt, daß diese ein Nitriervermögen besitzt, oder es werden nitrierende Zusätze zum Glühseparatur, bzw. auch Kombinationen aus beiden angeführt. EP-B-0 219 611 describes a method which a lowering of the slab preheating temperature in advantageously allows. In doing so (Al, Si) N particles used as grain growth inhibitors, which via a nitriding process into the finished strip thickness cold-rolled and decarburized strip can be introduced. As The measure to carry out this nitriding process is the Annealing atmosphere in the high-temperature annealing selected so that this has a nitriding ability, or it becomes nitriding Additives for glow repair, or combinations of cited both.

In der EP-B-0 321 695 ist ein ähnliches Verfahren beschrieben. Als Kornwachstumsinhibitoren werden ausschließlich (Al,Si)N-Partikel verwendet. Es werden zusätzliche Angaben zur chemischen Zusammensetzung gemacht und eine weitere Möglichkeit einer Nitrierbehandlung in Verbindung mit der Entkohlungsglühung aufgezeigt. Weiterhin wird der Hinweis gegeben, daß die Brammenvorwärmtemperaturen vorzugsweise unter 1200 °C liegen sollten.EP-B-0 321 695 describes a similar process described. As grain growth inhibitors only (Al, Si) N particles are used. It will additional information on the chemical composition made and another way one Nitriding treatment in connection with the Decarburization annealing demonstrated. Furthermore, the hint given that the slab preheating temperatures are preferred should be below 1200 ° C.

Die EP-B-0 339 474 beschreibt ebenfalls ein Verfahren, wobei jedoch detailliert eine Nitrierbehandlung in Form einer Durchlaufglühung im Temperaturbereich von 500 bis 900 °C unter Anwesenheit einer ausreichenden Menge von NH3 im Glühgas durchgeführt wird. Weiterhin wird detailliert beschrieben, wie die Glüh-Nitrierbehandlung direkt der Entkohlungsglühung nachgeschaltet werden kann. Ziel ist auch hier die Bildung von (Al,Si)N-Partikeln als wirksamer Kornwachstumsinhibitor. Dabei wird besonders betont, daß bei einer solchen Nitrierbehandlung mindestens 100 ppm, vorzugsweise aber mehr als 180 ppm Stickstoff eingebracht werden muß. Die Brammenvorwärmtemperatur sollte unter 1200 °C liegen.EP-B-0 339 474 also describes a process, but a nitriding treatment in the form of continuous annealing in the temperature range from 500 to 900 ° C. is carried out in detail in the presence of a sufficient amount of NH 3 in the annealing gas. Furthermore, it is described in detail how the annealing nitriding treatment can be connected directly after the decarburization annealing. The goal here is the formation of (Al, Si) N particles as an effective grain growth inhibitor. It is particularly emphasized that with such a nitriding treatment, at least 100 ppm, but preferably more than 180 ppm, of nitrogen must be introduced. The slab preheating temperature should be below 1200 ° C.

Die EP-B-0 390 140 stellt die besondere Bedeutung der Korngrößenverteilung des entkohlten Kaltbandes besonders heraus und gibt verschiedene Methoden zu ihrer Bestimmung an. Als Brammenvorwärmtemperatur wird in jedem Falle eine Temperatur von kleiner 1280 °C angegeben. Jedoch wird immer die Empfehlung gegeben, die Brammen unter 1200 °C vorzuwärmen, sämtliche angeführten Ausführungsbeispiele geben 1150 °C als Vorwärmtemperatur an.EP-B-0 390 140 represents the special meaning of the Grain size distribution of the decarburized cold strip in particular and gives different methods for their determination on. The slab preheating temperature is always one Temperature specified below 1280 ° C. However Always recommended that the slabs be below 1200 ° C preheat all of the exemplary embodiments listed indicate 1150 ° C as preheating temperature.

Demgegenüber hat das aus der DE 43 11 151 C1 bekannte Verfahren den wesentlichen Vorteil, die Vorwärmtemperaturen nicht derart tief wie die oben erwähnten 1150 bis 1200 °C wählen zu müssen. Im oft angewendeten mixed-rolling-Betrieb eines modernen Warmwalzwerkes werden häufig Brammenvorwärmtemperaturen von 1250 bis 1300 °C eingestellt, weil dieser Temperaturbereich aus warmwalz- und energietechnischer Sicht besonders günstig ist. Zum anderen hat die Anwendung von Kupfersulfid als Inhibitor den entscheidenden Vorteil, nicht durch eine zusätzliche Technologie eine Nitrierbehandlung durchführen und beherrschen zu müssen, sondern kann den Kornwachstumsinhibitor bereits am Anfang des Herstellungsweges direkt erzeugen. Die Weiterverarbeitung des Warmbandes bis zum Fertigprodukt wird auf diese Weise erheblich vereinfacht.In contrast, that known from DE 43 11 151 C1 Procedure the main advantage that Preheating temperatures are not as low as those above 1150 to 1200 ° C mentioned to have to choose. Im often applied mixed-rolling operation of a modern Hot rolling mill are often slab preheating temperatures from 1250 to 1300 ° C because of this Temperature range from hot rolling and energy technology View is particularly favorable. On the other hand, the Use of copper sulfide as an inhibitor decisive advantage, not by an additional one Technology to perform a nitriding treatment and to have to master, but can Grain growth inhibitor already at the beginning of the Generate production route directly. Further processing the hot strip to the finished product is made in this way considerably simplified.

Das warmgewalzte Band wird einer Glühung unterzogen, um die Kupfersulfidpartikel auszuscheiden, welche die Inhibitorphase bilden sollen. Danach erfolgt ein Kaltwalzen auf die Fertigbanddicke. Alternativ dazu kann das warmgewalzte Band zunächst einem ersten Kaltwalzschritt unterzogen werden, um danach die inhibitorausscheidende Glühung und das letzte Kaltwalzen auf die Fertigbanddicke durchzuführen. Mit diesem Band wird schließlich eine kontinuierliche Entkohlungsglühbehandlung durchgeführt in einer feuchten Stickstoff und Wasserstoff enthaltenden Glühatmosphäre. Zu Beginn dieser Glühbehandlung wird das Gefüge rekristallisiert und das Band entkohlt. Anschließend wird eine im wesentlichen MgO enthaltende Klebschutzbeschichtung auf die Oberfläche des entkohlten Kaltbandes aufgebracht und das Band aufgewickelt zu Coils.The hot rolled strip is subjected to annealing in order to to excrete the copper sulfide particles, which the Form inhibitor phase. Then there is a Cold rolling to the finished strip thickness. Alternatively, you can the hot-rolled strip is first a first Cold rolling step are then subjected to the inhibitor-eliminating annealing and the last cold rolling to carry out the finished strip thickness. With this band eventually becomes a continuous one Decarburization annealing treatment carried out in a moist Nitrogen and hydrogen containing annealing atmosphere. At the beginning of this annealing treatment, the structure recrystallized and decarburized the tape. Then will an essentially containing MgO Anti-stick coating on the surface of decarburized Cold tape applied and the tape wound up Coils.

Die so erzeugten entkohlten Kaltbandcoils werden dann einer Hochtemperatur-Haubenglühung unterzogen, um die Bildung der Gosstextur über den Prozeß der Sekundärrekristallisation einzuleiten. Üblicherweise werden die Coils mit einer Aufheizrate von etwa 10 bis 30 K/h langsam aufgeheizt in einer Glühatmosphäre, die aus Wasserstoff und Stickstoff besteht. Bei etwa 400 °C Bandtemperatur steigt der Taupunkt des Glühgases stark an, weil dann das Kristallwasser der im wesentlichen MgO enthaltenden Klebschutzbeschichtung freigesetzt wird. Bei etwa 950 bis 1020 °C läuft die Sekundärrekristallisation ab. Damit ist zwar die Gosstexturbildung bereits abgeschlossen, jedoch wird noch weiter bis auf eine Temperatur von mindestens 1150 °C, vorzugsweise mindestens 1180 °C aufgeheizt und bei dieser Temperatur mindestens 2 bis 20 h gehalten. Dies ist notwendig, um das Band von den nicht mehr benötigten Inhibitorpartikeln zu reinigen, weil diese sonst im Material verbleiben und im Fertigprodukt den Ummagnetisierungsprozeß behindern würden. Für einen optimalen Reinigungsvorgang wird nach Beendigung der Sekundärrekristallisation, üblicherweise ab Beginn der Haltephase der Wasserstoffanteil in der Glühatmosphäre stark erhöht, z.B. auf 100 %.The decarburized cold strip coils thus produced are then subjected to a high temperature hood annealing in order to Formation of the Goss Texture on the Process of Initiate secondary recrystallization. Usually the coils with a heating rate of about 10 to 30 K / h slowly heated up in a glowing atmosphere There is hydrogen and nitrogen. At around 400 ° C Strip temperature, the dew point of the hot gas rises sharply because then the crystal water of the essentially MgO containing adhesive protection coating is released. At secondary recrystallization takes place at around 950 to 1020 ° C from. This is already the formation of the cast texture completed, but will continue except for one Temperature of at least 1150 ° C, preferably heated to at least 1180 ° C and at this temperature held for at least 2 to 20 h. This is necessary to the band of the inhibitor particles that are no longer required to clean, because otherwise they remain in the material and hinder the magnetization process in the finished product would. For an optimal cleaning process, after Completion of secondary recrystallization, usually from the beginning of the holding phase the hydrogen content in the Annealing atmosphere greatly increased, e.g. to 100%.

In der Aufheizphase der Hochglühung wird im allgemeinen ein Gemisch aus Wasserstoff und Stickstoff als Glühgas verwendet, wobei vor allem eine Mischung aus 75 % Wasserstoff und 25 % Stickstoff üblich ist. Bei dieser Gaszusammensetzung wird eine gewisse Aufstickung des Bandes bewirkt, weil bei dieser stöchiometrischen Zusammensetzung genügend viele NH3-Moleküle vorhanden sind, die für eine Aufstickung notwendig sind. Dadurch wird die bekanntermaßen auf AlN basierende Inhibition noch weiter verstärkt.In the heating phase of the high-temperature annealing, a mixture of hydrogen and nitrogen is generally used as the annealing gas, a mixture of 75% hydrogen and 25% nitrogen being particularly common. With this gas composition, a certain nitrogen nitriding of the tape is effected, because with this stoichiometric composition there are enough NH 3 molecules that are necessary for nitrogen nitriding. This increases the known inhibition based on AlN.

Bei Anwendung des in DE 43 11 151 C1 offenbarten Verfahrens, bei dem die Inhibition nicht auf AlN-Partikeln, sondern auf Kupfersulfid beruht, treten jedoch bei Anwendung dieser Art der Hochglühung gelegentlich Streuungen beim Ablauf der Texturbildung (Sekundärrekristallisation) während der Hochtemperaturglühung auf. Diese Streuungen wirken sich direkt auf die magnetischen Werte ungünstig aus. Die Aufgabe der Erfindung besteht nun darin, während der Hochglühung diese Streuungen deutlich zu verringern und dadurch den Ablauf der Sekundärrekristallisation zu stabilisieren, wodurch die magnetischen Werte auf ein sehr gutes Niveau gebracht werden.When using the one disclosed in DE 43 11 151 C1 Process in which the inhibition is not on AlN particles, but based on copper sulfide occur occasionally when using this type of annealing Scattering in the course of texture formation (secondary recrystallization) during high temperature annealing. This scatter has a direct effect on the magnetic Evaluate unfavorably. The object of the invention is now in this, during the high-glow these scatters to significantly reduce and thereby the expiry of Secondary recrystallization to stabilize the brought magnetic values to a very good level become.

Zur Lösung dieser Aufgabe wird erfindungsgemäß bei dem gattungsgemäßen Verfahren vorgeschlagen, daß das Kaltband zur Hochtemperaturglühung in einer weniger als 25 Vol.-% H2, Rest Stickstoff und/oder Edelgas, wie Argon, enthaltenden Atmosphäre mindestens bis zum Erreichen der Haltetemperatur aufgeheizt wird. Nach dem Erreichen der Haltetemperatur kann der H2-Anteil stetig bis auf 100 % erhöht werden.To achieve this object, it is proposed according to the invention in the generic method that the cold strip for high-temperature annealing in an atmosphere containing less than 25% by volume of H 2 , the rest nitrogen and / or noble gas, such as argon, is heated at least until the holding temperature is reached. After reaching the holding temperature, the H 2 content can be steadily increased to 100%.

Um den Ablauf der Sekundärrekristallisation bewerten und vergleichen zu können, wurde eine Anzahl identisch entkohlter Kaltbandproben einer Laborsimulation der betrieblichen Hochtemperatur-Haubenglühung unterzogen. Bei Erreichen bestimmter, zuvor festgelegter Temperaturen während der Aufheizung wurden einzelne Proben diesem Stapel entnommen. In diesen Proben waren Teilzustände des Materials in dieser Phase der Hochglühung eingefroren. Als Temperaturintervall wurde der Bereich zwischen 900 und 1045 °C gewählt, weil dort die Sekundärrekristallisation abläuft. An allen Proben wurde die Koerzitivfeldstärke bestimmt und gegen die Entnahmetemperatur in Fig. 1 grafisch aufgetragen. Die Koerzitivfeldstärke verhält sich umgekehrt proportional zur mittleren Korngröße des Gefüges. To evaluate the course of secondary recrystallization and To be able to compare, a number became identical decarburized cold strip samples from a laboratory simulation of subjected to operational high temperature hood annealing. When certain predetermined temperatures are reached during the heating, individual samples were given to this Stack removed. In these samples there were partial states of the Frozen material in this phase of annealing. The range between 900 was used as the temperature interval and 1045 ° C because there is secondary recrystallization expires. On all samples the Coercivity determined and against the Extraction temperature plotted in Fig. 1. The Coercivity is inversely proportional to the average grain size of the structure.

Danach läßt sich der Beginn der Sekundärrekritallisation als ein plötzlicher Steilabfall der Koerzitivfeldstärke bei einer bestimmten Probenentnahmetemperatur erkennen. Dieser Steilabfall als Indikator für den Beginn der Sekundärrekristallisation ist in Fig. 1 sichtbar. Diese Art der Untersuchung wird als "Rekristallisationstest" bezeichnet (vgl. M. Hastenrath et al., Anales de Fisika B, Vol. 86 (1990), pp. 229-231). Gleichzeitig wurden an diesen Rekristallisationstestproben die Gehalte an Stickstoff und Schwefel bestimmt. Diese Untersuchungen zeigten, daß auch entkohltes Kaltband, das gemäß DE 43 11 151 erzeugt wurde, in hohem Maße aufgestickt wird, wenn es mit der üblichen Hochglühung, die 75 % Wasserstoff und 25 % Stickstoff in der Aufheizphase enthält, geglüht wird. Gleichzeitig jedoch fällt der Schwefelgehalt im Verlaufe dieser Hochglühung stark ab. Dies bedeutet aber eine Schwächung der Inhibition, die auf der Wirkung von Kupfersulfiden beruht. Diese Entschwefelung erfolgt außerdem in inhomogener Weise, woraus die beobachteten Streuungen der magnetischen Werte erklärbar sind. Wird aber die Hochglühung in erfindungsgemäßer Weise verändert und der Wasserstoffanteil während der Aufheizung auf maximal 25 Vol.-% begrenzt, so tritt nur eine sehr viel schwächere Entschwefelung auf. Der Schwefelgehalt nimmt erst bei höheren Temperaturen merklich ab, wenn die Sekundärrekristallisation bereits beendet ist. Dieser Sachverhalt wird weiter unten anhand der Beispiele demonstriert.Then you can start secondary recrystallization as a sudden drop in the coercive force detect at a certain sampling temperature. This steep drop as an indicator of the beginning of the Secondary recrystallization is visible in Fig. 1. This Type of examination is called a "recrystallization test" referred to (see M. Hastenrath et al., Anales de Fisika B, Vol. 86 (1990), pp. 229-231). At the same time were on the contents of these recrystallization test samples Determines nitrogen and sulfur. This research showed that decarburized cold strip, which according to DE 43 11 151 was embroidered to a high degree when it with the usual annealing, which is 75% hydrogen and Contains 25% nitrogen in the heating phase, annealed becomes. At the same time, however, the sulfur content in the The course of this glow from strongly. But this means a weakening of inhibition due to the effect of Copper sulfides is based. This desulfurization takes place also in an inhomogeneous manner, from which the observed Variations in the magnetic values can be explained. Becomes but changed the high glow in the manner according to the invention and the hydrogen content during heating up limited to a maximum of 25 vol .-%, only one very much occurs weaker desulfurization. The sulfur content increases only noticeably decrease at higher temperatures when the Secondary recrystallization has already ended. This The situation is explained below using the examples demonstrated.

Die Anwendung niedriger Wasserstoffanteile während der Aufheizphase erhöht jedoch auch deutlich das Oxidationspotential der Glühatmosphäre, was sich in Einzelfällen ungünstig auf die spätere Ausbildung der isolierenden Phosphatschicht und deren Haftung auswirken kann. Dieses Problem tritt aber nur am Anfang der Aufheizphase merklich in Erscheinung, wenn der Taupunkt des Glühgases durch Freisetzung von Wasserdampf aus der Klebschutzbeschichtung deutlich ansteigt. Eine Veränderung der Inhibitorphase durch Entschwefelung tritt aber bei diesen tiefen Temperaturen noch nicht in Erscheinung, sondern tritt erst bei höheren Temperaturen auf. Um eine ungünstige Beeinflussung der Oberflächenbeschaffenheit zu vermeiden, sollte die Gaszusammensetzung während der Aufheizphase gewechselt werden. So ist es günstig, eine Hochglühung mit einer Glühatmosphäre zu beginnen, die einen hohen Wasserstoffanteil besitzt, und unter diesen Bedingungen bis zu einer Temperatur von 450 bis 750 °C aufzuheizen. Dann sollte die Glühatmosphäre gewechselt und ein niedriger Wasserstoffanteil, z.B. 5 bis 10 Vol.-% eingestellt und die Aufheizung bis zum Erreichen der Haltestufe fortgesetzt werden. Ab Beginn der Haltephase wird dann in gewohnter Weise der Wasserstoffanteil auf 100 % erhöht.The use of low levels of hydrogen during the However, heating up phase also significantly increases that Oxidation potential of the annealing atmosphere, which is reflected in Individual cases unfavorable to the later training of the insulating phosphate layer and their adhesion can. This problem only occurs at the beginning of the Heating phase noticeable when the dew point of the hot gas by releasing water vapor from the Anti-adhesive coating increases significantly. A Change in the inhibitor phase occurs through desulfurization but not yet in at these low temperatures Appearance, but occurs only at higher temperatures on. To adversely affect the To avoid surface texture, the Gas composition changed during the heating phase become. So it is cheap to have a high-temperature glow Annealing atmosphere to start with a high Has hydrogen content, and under these conditions heat up to a temperature of 450 to 750 ° C. Then the glow atmosphere should change and on low hydrogen content, e.g. 5 to 10 vol% set and the heating until reaching the Hold level to be continued. From the beginning of the holding phase the hydrogen content is then increased in the usual way 100% increased.

Aus den Beispielen wird die Wirkung der erfinderischen Maßnahme deutlich. Warmbänder aus Schmelzen mit den in Tafel 1 aufgeführten chemischen Zusammensetzungen wurden gemäß dem in DE 43 11 151 C1 beschriebenen Verfahren zu entkohltem Kaltband weiterverarbeitet. Dieses entkohlte Kaltband wurde aufgeteilt und in Betriebsversuchen drei unterschiedlichen Hochglühungen unterzogen:From the examples, the effect of the inventive Measure clearly. Hot strips from melting with the in Chemical compositions listed in Table 1 according to the method described in DE 43 11 151 C1 decarburized cold rolled strip processed. This decarburized Cold strip was divided and three in operational trials subjected to different heat treatment:

Variante "Referenz": Die erste als "Referenz" bezeichnete Hochglühung entsprach dem Stand der Technik und beinhaltete eine Atmosphäre von 75 Vol.-% H2 + 25 Vol.-% N2 in der Aufheizphase. Von Umgebungstemperatur wurde mit 15 K/h bis auf eine Haltetemperatur von 1200 °C aufgeheizt, 20 h lang diese Temperatur gehalten und anschließend langsam abgekühlt. Von Beginn der Haltezeit an wurde auf eine Atmosphäre von 100 % H2 umgeschaltet. "Reference" variant: The first high-temperature annealing referred to as "reference" corresponded to the prior art and contained an atmosphere of 75% by volume H 2 + 25% by volume N 2 in the heating phase. The temperature was raised from 15 K / h to a holding temperature of 1200 ° C., held at this temperature for 20 hours and then slowly cooled. An atmosphere of 100% H 2 was switched over from the start of the holding time.

Variante "neu": Die zweite als "neu" bezeichnete Hochglühung repräsentierte die erfindungsgemäße Maßnahme und beinhaltete im Unterschied zu "Referenz" eine Atmosphäre von 10 Vol.-% H2 + 90 Vol.-% N2 in der Aufheizphase. "New" variant: The second high-temperature annealing, referred to as "new", represented the measure according to the invention and, in contrast to "Reference", contained an atmosphere of 10% by volume H 2 + 90% by volume N 2 in the heating phase.

Variante "inert": Die dritte als "inert" bezeichnete Hochglühung repräsentierte ebenfalls die erfindungsgemäße Maßnahme, jedoch wurde im Unterschied zu "neu" anstelle von N2 in der Aufheizphase das Inertgas Argon benutzt. Variant "inert": The third high-temperature annealing, referred to as "inert", also represented the measure according to the invention, however, in contrast to "new", the inert gas argon was used instead of N 2 in the heating phase.

Dabei wurden die in Tafel 2 zusammengestellten magnetischen Eigenschaften erzielt. Diese Werte sind in den Fig. 2a und 2b grafisch dargestellt. Gegenüber der "Referenz"-Hochglühung (Stand der Technik) zeigen die erfindungsgemäßen Hochglühvarianten "neu" und "inert" wesentlich einheitlichere magnetische Werte, repräsentiert durch die Polarisation, woraus der stabilisierende Effekt ersichtlich wird. Diese Werte liegen außerdem auf einem hohen Niveau. Der Vergleich der beiden erfindungsgemäßen Varianten "neu" und "inert" zeigt, daß Stickstoff als Hauptbestandteil des Glühgases am besten geeignet ist. Die Verwendung eines Inertgases wie Argon ist aus Kostengründen nicht sinnvoll. Die "inert"-Variante zeigt aber ebenfalls eine Verbesserung und Stabilisierung der magnetischen Eigenschaften, was beweist, daß der Stickstoff als Hauptbestandteil der Glühatmosphäre nicht entscheidend dafür ist, sondern der geringe Wasserstoffanteil.The ones compiled in Table 2 were used achieved magnetic properties. These values are in 2a and 2b graphically. Opposite the "Reference" high-temperature annealing (prior art) show the "New" and "inert" heat treatment variants according to the invention much more uniform magnetic values, represented by the polarization from which the stabilizing effect can be seen. These values are also at a high level. The comparison of the two variants according to the invention "new" and "inert" shows that nitrogen is the main component of the annealing gas is most suitable. The use of an inert gas like argon is not useful for cost reasons. The The "inert" variant also shows an improvement and stabilization of the magnetic properties what proves that nitrogen is the main component of Annealing atmosphere is not decisive for this, but the low hydrogen content.

Vor den durchgeführten Hochglühungen wurden Proben von entkohltem Kaltband Rekristallisationstests der oben beschriebenen Art durchgeführt. Dabei wurden ebenfalls drei Varianten gebildet mit den entsprechenden Gasatmosphären in der Aufheizphase wie bei den oben beschriebenen Versuchen. Samples of decarburized cold strip recrystallization tests the above described type performed. It was also three variants formed with the corresponding ones Gas atmospheres in the heating phase as in the above described experiments.

Fig. 1 zeigt anhand der Steilabfälle der Koerzitivfeldstärke, daß in allen drei Fällen eine Sekundärrekristallisation stattgefunden hat. Die einzelnen Rekristallisationstestproben wurden chemisch auf ihren Gehalt an Stickstoff und Schwefel analysiert.Fig. 1 shows the steep drops of the Coercive field strength that in all three cases one Secondary recrystallization has taken place. The Individual recrystallization test samples were chemical analyzed for their nitrogen and sulfur content.

Fig. 3 zeigt die Entwicklung des Stickstoffgehaltes und Fig. 4 die Entwicklung des Schwefelgehaltes im Temperaturintervall von 900 °C bis 1045 °C während der Aufheizphase der Hochglühung. Für beide Darstellungen wurden Mittelwerte der Meßwerte aller Bänder der in Tafel 1 aufgeführten Schmelzen A bis E gebildet. Die Bänder wurden auf eine Fertigbanddicke von 0,30 mm gewalzt.Fig. 3 shows the development of the nitrogen content and Fig. 4 shows the development of the sulfur content in Temperature interval from 900 ° C to 1045 ° C during the Warm-up phase of the high glow. For both representations were mean values of the measured values of all bands in the table 1 listed melts A to E. The bands were rolled to a finished strip thickness of 0.30 mm.

Die Entwicklung des Stickstoffgehaltes während der Aufheizphase in Fig. 3 zeigt bei der "Referenz"-Variante den erwartet hohen Anstieg bereits bei Temperaturen unterhalb von 1020 °C. Demgegenüber ist der Anstieg bei der erfindungsgemäßen Variante "neu" deutlich schwächer ausgeprägt und wird erst bei hohen Temperaturen dominierend, dann wenn die Sekundärrekristallisation bereits abgeschlossen ist. Im Falle der ebenfalls erfindungsgemäßen Variante "inert" tritt überhaupt keine Erhöhung des Stickstoffgehaltes auf, weil das Glühgas keinen Stickstoff enthält. Eine merkliche Entstickung tritt aber erst bei hohen Temperaturen oberhalb der Sekundärrekristallisation auf. Die Wirkungen der beiden erfindungsgemäßen Hochglühvarianten auf die Entwicklung des Stickstoffgehaltes im Verlaufe der Glühung ist somit gegensätzlich. Die Wirkungen auf die magnetischen Eigenschaften jedoch ist ungefähr dieselbe. Somit kann die Beeinflussung des Stickstoffgehaltes bei Material, das nach dem in DE 43 11 151 C1 offenbarten Verfahren hergestellt wird, nicht die Ursache für die erfindungswesentliche Verbesserung sein. The development of the nitrogen content during the The heating-up phase in FIG. 3 shows the "reference" variant the expected high rise already at temperatures below 1020 ° C. In contrast, the increase is the "new" variant of the invention significantly weaker pronounced and is only at high temperatures dominant then when the secondary recrystallization has already been completed. In the case of also The variant "inert" according to the invention does not occur at all Increase in nitrogen content because of the glow gas does not contain nitrogen. Noticeable denitrification but occurs only at high temperatures above Secondary recrystallization. The effects of the two Hochglühvarianten invention on development the nitrogen content in the course of the annealing contrary. The effects on the magnetic Properties, however, is roughly the same. So can influencing the nitrogen content of material, the method disclosed in DE 43 11 151 C1 is not the cause of that improvement essential to the invention.

Betrachtet man jedoch die Entwicklung des Schwefelgehaltes während der Aufheizung und vergleicht dabei die drei hier betrachteten Varianten, so läßt sich der Wirkungsmechanismus des erfindungsgemäßen Verfahrens leicht erkennen: Während bei der "Referenz"-Variante der Schwefelgehalt recht schnell im Verlaufe der Aufheizung, noch vor Beginn der Sekundärrekristallisation, abfällt, ist dieser Abfall bei den erfindungsgemäßen Varianten "neu" und "inert" wesentlich schwächer ausgeprägt. Eine Verringerung des Schwefelgehaltes ist nur mit einem entsprechenden Abbau der als Inhibitoren wirkenden Kupfersulfide zu erklären. Im Falle der "Referenz"-Hochglühvariante vollzieht sich dieser Abfall recht schnell, wodurch die Inhibitionswirkung frühzeitig nachläßt und dadurch der Texturselektionsprozeß zu Beginn der Sekundärrekristallisation gewissen Streuungen unterworfen wird. Durch Anwendung einer erfindungsgemäßen Hochglühvariante wird die Wirkung der Inhibitorphase zeitlich verlängert, was sich dementsprechend günstig auf den Selektionsprozeß bei der Sekundärrekristallisation auswirkt.However, if one looks at the development of the Sulfur content during heating and compares the three variants considered here can be the mechanism of action of the method according to the invention easy to recognize: While in the "reference" variant the Sulfur content quite quickly in the course of heating, falls before the start of secondary recrystallization, is this drop in the variants according to the invention "New" and "inert" are much less pronounced. A The sulfur content is reduced with only one corresponding degradation of those acting as inhibitors Explain copper sulfides. In the case of the "reference" high-temperature variant this waste takes place quite well quickly, reducing the inhibitory effect early subsides and thereby the texture selection process at the beginning the secondary recrystallization certain scatter is subjected. By using an inventive The effect of the inhibitor phase becomes a high-glow variant extended in time, which is accordingly cheap the selection process in secondary recrystallization affects.

Die Entwicklung der Schwefelgehalte unterscheidet sich zwischen den erfindungsgemäßen und den nicht erfindungsgemäßen Hochglühvarianten in nennenswerter Weise erst ab Bandtemperaturen oberhalb von 900 °C. Somit stellt sich die vorteilhafte Wirkung der erfindungsgemäßen Variante auch dann ein, wenn die wasserstoffarme Glühatmospähre erst zu einem späteren Zeitpunkt während der Aufheizung zur Anwendung kommt. Wenn beispielsweise die Anwendung sehr wasserstoffarmer Glühatmospähren in der Aufheizphase (z.B. 5 Vol.-% Wasserstoff) aufgrund ihres sehr hohen Oxidationspotentials Probleme mit der Oberflächenbeschaffenheit des Bandes machen sollte, so läßt sich das erfindungsgemäße Verfahren in folgender Weise abändern: Die Glühung beginnt mit einer wasserstoffreichen Glühatmosphäre. Nach Erreichen einer Bandtemperatur von mindestens 450 °C und höchstens 750 °C wird die Zusammensetzung des Glühgases gewechselt und die Glühung in einer wasserstoffarmen Atmosphäre fortgesetzt. Prinzipiell wäre es möglich, den Wechsel der Glühatmosphäre erst bei 900 °C vorzunehmen, jedoch dürfte es schwierig sein, bei einer Haubenglüheinrichtung, die für derartige Hochglühungen verwendet wird, wegen der hohen Wärmekapazität des eingesetzten gecoilten Materials und der daraus sich ergebenden Temperaturgradienten die Bandtemperatur hinreichend genau festzulegen. Ab Erreichen der Haltetemperatur von mindestens 1150 °C wird die Gasatmosphäre wiederum gewechselt und der Wasserstoffanteil stark erhöht, vorzugsweise auf 100 %. Diese Abänderung des erfindungsgemäßen Verfahrens ist hinsichtlich seiner Wirkung mit dem weiter oben beschriebenen erfindungsgemäßen Verfahren identisch. Chemische Zusammensetzung des Versuchsmaterials in Masse-% C Mn S Si Cu Al N Schmelze A: 0,061 0,080 0,023 3,08 0,068 0,020 0,0079 Schmelze B: 0,048 0,089 0,024 3,20 0,077 0,022 0,0086 Schmelze C: 0,058 0,097 0,022 3,21 0,070 0,021 0,0073 Schmelze D: 0,057 0,081 0,027 3,12 0,078 0,022 0,0074 Schmelze E: 0,085 0,081 0,023 3,20 0,071 0,023 0,0085

Figure 00130001
The development of the sulfur content differs between the inventive and the non-inventive annealing variants in a noteworthy manner only from strip temperatures above 900 ° C. Thus, the advantageous effect of the variant according to the invention also arises if the low-hydrogen incandescent atmosphere is only used at a later point in time during heating. If, for example, the use of very low-hydrogen glow atmospheres in the heating phase (e.g. 5% by volume hydrogen) should cause problems with the surface properties of the strip due to its very high oxidation potential, the method according to the invention can be modified as follows: The annealing starts with a hydrogen-rich one Annealing atmosphere. After a strip temperature of at least 450 ° C and at most 750 ° C has been reached, the composition of the annealing gas is changed and the annealing continued in a low-hydrogen atmosphere. In principle, it would be possible to change the annealing atmosphere only at 900 ° C, but it would be difficult to adequately achieve the strip temperature in a hood annealing device that is used for such annealing processes because of the high thermal capacity of the coiled material used and the resulting temperature gradients to specify exactly. Once the holding temperature of at least 1150 ° C. has been reached, the gas atmosphere is changed again and the hydrogen content is greatly increased, preferably to 100%. The effect of this modification of the method according to the invention is identical to that of the method according to the invention described above. Chemical composition of the test material in mass% C. Mn S Si Cu Al N Melt A: 0.061 0.080 0.023 3.08 0.068 0.020 0.0079 Melt B: 0.048 0.089 0.024 3.20 0.077 0.022 0.0086 Melt C: 0.058 0.097 0.022 3.21 0.070 0.021 0.0073 Melt D: 0.057 0.081 0.027 3.12 0.078 0.022 0.0074 Melt E: 0.085 0.081 0.023 3.20 0.071 0.023 0.0085
Figure 00130001

Claims (3)

  1. A process for the production of grain-oriented electrical quality steel sheet, wherein a slab of steel containing (in % by weight)
    more than 0.005 to 0.10 % C,
    2.5 to 4.5 % Si,
    0.03 to 0.15 % Mn,
    more than 0.01 to 0.05 % S,
    0.01 to 0.035 % Al,
    0.0045 to 0.012 % N,
    0.02 to 0.3 % Cu,
    residue Fe, incl. unavoidable impurities
    is thoroughly heated at a temperature which is lower than the solubility temperature of manganese sulphide, at any rate below 1320 °C, but above the solubility temperature of copper sulphides, whereafter hot rolling is performed to a hot strip final thickness in the range of 1.5 to 7.0 mm from a starting temperature of at least 960 °C and with an end temperature in the range of 880 to 1000 °C, the hot strip then being annealed for 100 to 600 sec at a temperature in the range of 880 to 1150 °C and then cooled at a cooling rate higher than 15 K/sec and cold rolled to cold strip the final thickness in one or more cold rolling steps, whereafter the cold strip is subjected to a recrystallising annealing in a moist atmosphere containing hydrogen and nitrogen, accompanied by decarburisation, and after a separating agent containing mainly MgO has been applied to both sides, the cold strip is high temperature annealed, final annealing being performed after the application of an insulating coating,
    characterised in that for high temperature annealing the cold strip is heated in an atmosphere containing less than 25% by volume H2, residue nitrogen and/or rare gas such as argon, until a holding temperature has been reached of 1150 to 1200 °C, preferably 1180 °C.
  2. A process according to claim 1,
    characterised in that when the holding temperature has been reached, the H2 component of the annealing gas atmosphere is steadily increased to 100%.
  3. A process according to claims 1 and 2,
    characterised in that until a temperature in the range of 450 to 750 °C has been reached, the annealing gas atmosphere contains more than 50 % by volume H2, the H2 component being reduced to below 25 % by volume when said temperature has been exceeded, the H2 component being increased to 100% when the holding temperature has been reached.
EP97930498A 1996-07-12 1997-07-03 Process for producing a grain-orientated electrical steel sheet Expired - Lifetime EP0910676B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19628136 1996-07-12
DE19628136A DE19628136C1 (en) 1996-07-12 1996-07-12 Production of grain-orientated electrical sheets
PCT/EP1997/003510 WO1998002591A1 (en) 1996-07-12 1997-07-03 Process for producing a grain-orientated electrical steel sheet

Publications (2)

Publication Number Publication Date
EP0910676A1 EP0910676A1 (en) 1999-04-28
EP0910676B1 true EP0910676B1 (en) 2001-01-10

Family

ID=7799653

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97930498A Expired - Lifetime EP0910676B1 (en) 1996-07-12 1997-07-03 Process for producing a grain-orientated electrical steel sheet

Country Status (18)

Country Link
US (1) US6153019A (en)
EP (1) EP0910676B1 (en)
JP (1) JP4369536B2 (en)
CN (1) CN1078256C (en)
AT (1) ATE198629T1 (en)
AU (1) AU710053B2 (en)
BR (1) BR9710302A (en)
CZ (1) CZ288875B6 (en)
DE (2) DE19628136C1 (en)
ES (1) ES2154904T3 (en)
ID (2) ID19071A (en)
IN (1) IN191758B (en)
PL (1) PL183750B1 (en)
RU (1) RU2190025C2 (en)
SK (1) SK283881B6 (en)
TW (1) TW425429B (en)
WO (1) WO1998002591A1 (en)
ZA (1) ZA976001B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011119395A1 (en) 2011-06-06 2012-12-06 Thyssenkrupp Electrical Steel Gmbh Method for producing a grain-oriented electrical steel flat product intended for electrotechnical applications
DE102011107304A1 (en) 2011-07-06 2013-01-10 Thyssenkrupp Electrical Steel Gmbh Method for producing a grain-oriented electrical steel flat product intended for electrotechnical applications

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19628136C1 (en) * 1996-07-12 1997-04-24 Thyssen Stahl Ag Production of grain-orientated electrical sheets
DE19735062A1 (en) * 1997-08-13 1999-02-18 Thyssen Stahl Ag Grain oriented electrical steel sheet production
DE19745445C1 (en) * 1997-10-15 1999-07-08 Thyssenkrupp Stahl Ag Process for the production of grain-oriented electrical sheet with low magnetic loss and high polarization
DE19821299A1 (en) * 1998-05-13 1999-11-18 Abb Patent Gmbh Arrangement and method for producing hot-rolled steel strip
JP4258349B2 (en) * 2002-10-29 2009-04-30 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
CN100436042C (en) * 2006-05-18 2008-11-26 武汉科技大学 Thin slab process high magnetic induction oriented electrical steel sheet and its manufacturing method
CN100418697C (en) * 2006-05-18 2008-09-17 武汉科技大学 High magentic induction oriented electrical steel sheet and its manufacturing method
CN101545072B (en) * 2008-03-25 2012-07-04 宝山钢铁股份有限公司 Method for producing oriented silicon steel having high electromagnetic performance
EP2304061A1 (en) * 2008-06-13 2011-04-06 LOI Thermprocess GmbH Process for the high-temperature annealing of grain-oriented magnetic steel strip in an inert gas atmosphere in a heat treatment furnace
CN101333589B (en) * 2008-07-04 2010-10-06 武汉钢铁工程技术集团有限责任公司 Method for nonoxidizing heating thin steel plate and special heating furnace
CN101603148B (en) * 2009-07-28 2011-01-05 首钢总公司 Method for producing economic low-temperature heating oriented electrical steel
JP5772410B2 (en) * 2010-11-26 2015-09-02 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
CN102127708A (en) * 2011-01-16 2011-07-20 首钢总公司 Method for producing oriented electrical steel by heating low-temperature slab
CN102294358B (en) * 2011-08-19 2012-12-05 江苏新中信电器设备有限公司 Pressure continuous-casting rolling process for sectional material of copper-clad aluminium bar
DE102011054004A1 (en) * 2011-09-28 2013-03-28 Thyssenkrupp Electrical Steel Gmbh Method for producing a grain-oriented electrical tape or sheet intended for electrical applications
RU2610204C1 (en) 2013-02-27 2017-02-08 ДжФЕ СТИЛ КОРПОРЕЙШН Method of making plate of textured electrical steel
EP2933350A1 (en) * 2014-04-14 2015-10-21 Mikhail Borisovich Tsyrlin Production method for high-permeability grain-oriented electrical steel
CZ305521B6 (en) * 2014-05-12 2015-11-11 Arcelormittal Ostrava A.S. Strip of oriented transformer steel and process for producing thereof
CN104294155B (en) * 2014-09-28 2016-05-11 东北大学 A kind of Ultra-low carbon orientation silicon steel and preparation method thereof
JP6354957B2 (en) * 2015-07-08 2018-07-11 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
CN106048411A (en) * 2016-06-27 2016-10-26 马鞍山钢铁股份有限公司 Cold-rolled oriented electrical steel for transformer and production method of cold-rolled oriented electrical steel
KR102405173B1 (en) * 2019-12-20 2022-06-02 주식회사 포스코 Grain oriented electrical steel sheet and method of manufacturing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT52811B (en) * 1911-03-18 1912-03-26 Franz Anderle Facility for multiplex telegraphy.
JPS59208020A (en) * 1983-05-12 1984-11-26 Nippon Steel Corp Manufacture of grain-oriented electrical steel sheet with small iron loss
JPS6475627A (en) * 1987-09-18 1989-03-22 Nippon Steel Corp Production of grain oriented electrical steel sheet having extremely high magnetic flux density
EP0321695B1 (en) * 1987-11-20 1993-07-21 Nippon Steel Corporation Process for production of grain oriented electrical steel sheet having high flux density
JPH0717961B2 (en) * 1988-04-25 1995-03-01 新日本製鐵株式会社 Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
JPH0717960B2 (en) * 1989-03-31 1995-03-01 新日本製鐵株式会社 Method for producing unidirectional electrical steel sheet with excellent magnetic properties
DE69025417T3 (en) * 1989-04-04 2000-03-30 Nippon Steel Corp Process for the production of grain-oriented electrical steel sheets with excellent magnetic properties
JPH0753886B2 (en) * 1989-05-13 1995-06-07 新日本製鐵株式会社 Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
DE4311151C1 (en) * 1993-04-05 1994-07-28 Thyssen Stahl Ag Grain-orientated electro-steel sheets with good properties
EP0709470B1 (en) * 1993-11-09 2001-10-04 Pohang Iron & Steel Co., Ltd. Production method of directional electromagnetic steel sheet of low temperature slab heating system
FR2731713B1 (en) * 1995-03-14 1997-04-11 Ugine Sa PROCESS FOR THE MANUFACTURE OF A SHEET OF ELECTRIC STEEL WITH ORIENTED GRAINS FOR THE PRODUCTION OF MAGNETIC TRANSFORMER CIRCUITS IN PARTICULAR
DE19628136C1 (en) * 1996-07-12 1997-04-24 Thyssen Stahl Ag Production of grain-orientated electrical sheets

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011119395A1 (en) 2011-06-06 2012-12-06 Thyssenkrupp Electrical Steel Gmbh Method for producing a grain-oriented electrical steel flat product intended for electrotechnical applications
WO2012168253A1 (en) 2011-06-06 2012-12-13 Thyssenkrupp Electrical Steel Gmbh Method for producing a grain-oriented electrical steel sheet product intended for electrical engineering applications
DE102011107304A1 (en) 2011-07-06 2013-01-10 Thyssenkrupp Electrical Steel Gmbh Method for producing a grain-oriented electrical steel flat product intended for electrotechnical applications
WO2013004747A1 (en) 2011-07-06 2013-01-10 Thyssenkrupp Electrical Steel Gmbh Method for producing a grain-oriented electrical steel flat product intended for electrotechnical applications

Also Published As

Publication number Publication date
AU710053B2 (en) 1999-09-09
JP4369536B2 (en) 2009-11-25
WO1998002591A1 (en) 1998-01-22
PL183750B1 (en) 2002-07-31
CN1078256C (en) 2002-01-23
DE19628136C1 (en) 1997-04-24
CN1219977A (en) 1999-06-16
BR9710302A (en) 1999-08-17
IN191758B (en) 2003-12-27
ES2154904T3 (en) 2001-04-16
EP0910676A1 (en) 1999-04-28
AU3442897A (en) 1998-02-09
RU2190025C2 (en) 2002-09-27
PL331166A1 (en) 1999-06-21
ID17500A (en) 1998-01-08
DE59702901D1 (en) 2001-02-15
SK283881B6 (en) 2004-04-06
US6153019A (en) 2000-11-28
SK1899A3 (en) 2000-02-14
JP2000514506A (en) 2000-10-31
TW425429B (en) 2001-03-11
ID19071A (en) 1998-06-11
ZA976001B (en) 1998-09-01
CZ6899A3 (en) 1999-10-13
CZ288875B6 (en) 2001-09-12
ATE198629T1 (en) 2001-01-15

Similar Documents

Publication Publication Date Title
EP0910676B1 (en) Process for producing a grain-orientated electrical steel sheet
EP0619376B1 (en) Method for manufacturing grain oriented electrical sheets with improved core loss
EP1025268B1 (en) Method for producing a magnetic grain oriented steel sheet with low level loss by magnetic reversal and high polarisation
DE2848867C2 (en) Application of a process for the production of non-oriented silicon steel sheets with particularly good electromagnetic properties
EP2761041B1 (en) Method for producing a grain-oriented electrical steel strip or sheet intended for electrotechnical applications
DE2409895C3 (en) Process for the production of a silicon steel with a cube-edged structure and a permeability at H = 10 Oersted of more than 1820
EP2729588B1 (en) Method for producing a grain-oriented electrical steel flat product intended for electrotechnical applications
DE69021110T2 (en) Process for the production of grain-oriented electrical steel sheets with excellent magnetic properties.
DE19881070C2 (en) Method for producing a steel sheet with a preferred magnetic direction with a high magnetic flux density based on a low-temperature plate heating method
DE3220255C2 (en) Process for the production of grain-oriented electrical steel sheet or strip
WO2012168253A1 (en) Method for producing a grain-oriented electrical steel sheet product intended for electrical engineering applications
DE68916980T2 (en) Process for producing grain-oriented electrical steel sheets with high flux density.
DE2726045A1 (en) METHOD FOR PRODUCING SILICON STEEL WITH CUBE ON EDGE ORIENTATION
DE69738447T2 (en) Method for producing grain-oriented silicon-chromium electrical steel
DE10221793C1 (en) Non-grain oriented electrical steel or sheet and process for its manufacture
DE2747660C2 (en) A method of manufacturing non-oriented silicon steel sheets with high magnetic induction and low core loss
DE3147584C2 (en) Process for the production of grain-oriented silicon steel in strip or sheet form
DE69823771T2 (en) METHOD FOR PRODUCING CORNORATED ELECTROSTAHLBELCHEN, ESPECIALLY FOR MAGNETIC CORDS OF TRANSFORMERS
DE1583326A1 (en) Process for the production of a silicon iron with cube-edge orientation
EP2942417B1 (en) Method for producing high permeability grain-oriented electrical strip
DE4116240C2 (en)
DE19628137C1 (en) Grain-oriented electrical steel sheet prodn.
DE2841961C2 (en)
WO1999053106A1 (en) Method for producing grain-oriented anisotropic electrotechnical steel sheets
DE2508877C3 (en) Process for the production of grain-oriented electrical steel sheets or strips

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20000630

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSEN KRUPP STAHL AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010110

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010110

REF Corresponds to:

Ref document number: 198629

Country of ref document: AT

Date of ref document: 20010115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010118

REF Corresponds to:

Ref document number: 59702901

Country of ref document: DE

Date of ref document: 20010215

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010410

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010413

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2154904

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

26N No opposition filed
BERE Be: lapsed

Owner name: THYSSEN KRUPP STAHL A.G.

Effective date: 20010731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080730

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080729

Year of fee payment: 12

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100723

Year of fee payment: 14

Ref country code: FR

Payment date: 20100806

Year of fee payment: 14

Ref country code: DE

Payment date: 20100723

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100723

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090703

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110703

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59702901

Country of ref document: DE

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140710

Year of fee payment: 18

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 198629

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150703