EP0910676A1 - Process for producing a grain-orientated electrical steel sheet - Google Patents

Process for producing a grain-orientated electrical steel sheet

Info

Publication number
EP0910676A1
EP0910676A1 EP97930498A EP97930498A EP0910676A1 EP 0910676 A1 EP0910676 A1 EP 0910676A1 EP 97930498 A EP97930498 A EP 97930498A EP 97930498 A EP97930498 A EP 97930498A EP 0910676 A1 EP0910676 A1 EP 0910676A1
Authority
EP
European Patent Office
Prior art keywords
temperature
annealing
cold
strip
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97930498A
Other languages
German (de)
French (fr)
Other versions
EP0910676B1 (en
Inventor
Manfred Espenhahn
Andreas Böttcher
Klaus Günther
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
Thyssen Stahl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssen Stahl AG filed Critical Thyssen Stahl AG
Publication of EP0910676A1 publication Critical patent/EP0910676A1/en
Application granted granted Critical
Publication of EP0910676B1 publication Critical patent/EP0910676B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling

Definitions

  • the invention relates to a method for producing grain-oriented electrical sheet, in which a slab made of steel with (in mass%) more than 0.005 to 0.10% C, 2.5 to 4.5% Si, 0.03 to 0 , 15% Mn, more than 0.01 to 0.05% S, 0.01 to 0.035% Al, 0.0045 to 0.012% N, 0.02 to 0.3% Cu, balance Fe including unavoidable impurities a temperature which is lower than the solubility temperature for manganese sulfides, in any case below 1320 ° C, but above the solubility temperature for copper sulfides, is subsequently heated, with an initial temperature of at least 960 ° C and a final temperature in the range from 880 to 1000 ° C is hot-rolled to a final hot strip thickness in the range from 1.5 to 7.0 mm, the hot strip is then annealed for 100 to 600 s at a temperature in the range from 880 to 1150 ° C., then at a cooling rate of greater than 15 K.
  • the slab preheating temperature can be reduced to below the solubility temperature of MnS, but in any case below 1320 ° C., by using copper sulfide as an essential grain growth inhibitor.
  • MnS plays no role as an inhibitor because of its much higher solubility temperature and A1N, whose solubility and excretion properties lie between those of Mn and Cu sulfide, has only an insignificant part in the inhibition.
  • the aim of lowering the temperature before hot rolling is to avoid liquid slag on the slabs, which reduces the wear on the annealing devices and increases the material production output.
  • EP-B-0 219 611 describes a method which also advantageously enables the slab preheating temperature to be reduced.
  • (AI, Si) N particles are used as grain growth inhibitors, which are introduced into the strip cold-rolled and decarburized to a finished strip thickness using a nitriding process.
  • the annealing atmosphere during the high-temperature annealing is selected so that it has a nitriding ability, or nitriding additives for annealing, or combinations of the two, are mentioned.
  • a similar process is described in EP-B-0 321 695. Only (AI, Si) N particles are used as grain growth inhibitors. Additional information on the chemical composition is given and another option for nitriding treatment in connection with the
  • the slab preheating temperatures should preferably be below 1200 ° C.
  • EP-B-0 339 474 also describes a process, but a nitriding treatment in the form of continuous annealing in the temperature range from 500 to 900 ° C. is carried out in detail in the presence of a sufficient amount of NH 3 in the annealing gas. Furthermore, it is described in detail how the annealing nitriding treatment can be connected directly after the decarburization annealing. The goal here is also the formation of (Al, Si) particles as an effective grain growth inhibitor. It is particularly emphasized that with such a nitriding treatment at least 100 ppm, but preferably more than 180 pp, nitrogen must be introduced. The slab preheating temperature should be below 1200 ° C.
  • EP-B-0 390 140 emphasizes the particular importance of the grain size distribution of the decarburized cold strip and specifies various methods for its determination. In any case, a temperature of less than 1280 ° C is specified as the slab preheating temperature. However, the recommendation is always given to preheat the slabs below 1200 ° C, all of the exemplary embodiments mentioned indicate 1150 ° C as the preheating temperature.
  • the method known from DE 43 11 151 Cl has the essential advantage that the preheating temperatures are not as low as those above 1150 to 1200 ° C mentioned to have to choose.
  • slab preheating temperatures of 1250 to 1300 ° C are often set, because this temperature range is particularly favorable from the point of view of hot rolling and energy technology.
  • the use of copper sulfide as an inhibitor has the decisive advantage of not having to carry out and control a nitriding treatment using additional technology, but can generate the grain growth inhibitor directly at the beginning of the production process. The further processing of the hot strip to the finished product is considerably simplified in this way.
  • the hot rolled strip is annealed to remove the copper sulfide particles that are to form the inhibitor phase. This is followed by cold rolling to the finished strip thickness.
  • the hot-rolled strip can first be subjected to a first cold rolling step in order to then carry out the annealing process which inhibits the inhibitor and the last cold rolling to the finished strip thickness. With this tape, it becomes a continuous one
  • Decarburization annealing treatment carried out in a humidifying atmosphere containing nitrogen and hydrogen. At the beginning of this annealing treatment, the structure is recrystallized and the strip decarburized. Then one containing essentially MgO
  • Anti-adhesive coating applied to the surface of the decarburized cold strip and the strip wound up into coils.
  • the decarburized cold-rolled coils thus produced are then subjected to high-temperature hood annealing in order to form the cast texture via the process of Initiate secondary recrystallization.
  • the coils are slowly heated up at a heating rate of about 10 to 30 K / h in an annealing atmosphere consisting of hydrogen and nitrogen.
  • an annealing atmosphere consisting of hydrogen and nitrogen.
  • the dew point of the annealing gas rises sharply because then the crystal water of the anti-adhesive coating essentially containing MgO is released.
  • the secondary recrystallization takes place.
  • the formation of the cast texture has already been completed, heating is continued to a temperature of at least 1150 ° C., preferably at least 1180 ° C., and the mixture is kept at this temperature for at least 2 to 20 hours. This is necessary in order to clean the belt from the inhibitor particles that are no longer required, because these would otherwise remain in the material and would impede the remagnetization process in the finished product.
  • the hydrogen content in the annealing atmosphere is greatly increased, for example to 100%.
  • a mixture of hydrogen and nitrogen is generally used as the annealing gas, a mixture of 75% hydrogen and 25% nitrogen being particularly common.
  • this gas composition a certain nitrogen nitriding of the tape is brought about because with this stoichiometric composition there are enough NH 3 molecules that are necessary for nitrogen nitriding. This increases the known inhibition based on AlN.
  • the cold strip for high-temperature annealing in an atmosphere containing less than 25% by volume of H 2 the rest nitrogen and / or noble gas, such as argon, is heated at least until the holding temperature is reached. After reaching the holding temperature, the H 2 content can be steadily increased to 100%.
  • decarburized cold strip which was produced in accordance with DE 43 11 151, is embroidered to a high degree when it is annealed with the usual high-temperature annealing which contains 75% hydrogen and 25% nitrogen in the heating phase.
  • the sulfur content drops sharply in the course of this high-temperature annealing.
  • This desulfurization also takes place in an inhomogeneous manner, which explains the observed scatter in the magnetic values.
  • the use of low amounts of hydrogen during the heating phase also significantly increases the oxidation potential of the annealing atmosphere, which in individual cases can have an unfavorable effect on the subsequent formation of the insulating phosphate layer and its adhesion.
  • this problem only becomes noticeable at the beginning of the heating phase, when the dew point of the annealing gas increases significantly due to the release of water vapor from the adhesive protective coating.
  • a change in the inhibitor phase due to desulfurization does not yet appear at these low temperatures, but only occurs at higher temperatures.
  • the gas composition should be changed during the heating phase.
  • Reference The first high-temperature annealing referred to as “reference” corresponded to the prior art and contained an atmosphere of 75% by volume H 2 + 25% by volume N 2 in the heating phase. The temperature was raised from 15 K / h to a holding temperature of 1200 ° C., held at this temperature for 20 hours and then slowly cooled. From the beginning of the cold period, an atmosphere of 100% H 2 was used .
  • New The second high-temperature annealing, referred to as “new”, represented the measure according to the invention and, in contrast to “Reference”, contained an atmosphere of 10% by volume H 2 + 90% by volume N 2 in the heating phase.
  • inert The third high-temperature annealing, referred to as “inert”, also represented the measure according to the invention, however, in contrast to “new", the inert gas argon was used instead of N 2 in the heating phase.
  • the magnetic properties shown in Table 2 were achieved. These values are shown graphically in FIGS. 2a and 2b.
  • the high-temperature annealing variants according to the invention “new” and “inert” show significantly more uniform magnetic values, represented by the polarization, from which the stabilizing effect can be seen. These values are also at a high level.
  • the comparison of the two variants "new” and “inert” according to the invention shows that nitrogen is the most suitable as the main constituent of the glow gas.
  • an inert gas such as argon does not make sense for cost reasons.
  • the "inert” variant also shows an improvement and stabilization of the magnetic properties, which proves that the nitrogen as the main component of the annealing atmosphere is not decisive for this, but the low hydrogen content.
  • FIG. 3 shows the development of the nitrogen content
  • FIG. 4 shows the development of the sulfur content in the temperature interval from 900 ° C. to 1045 ° C. during the heating phase of the high-temperature annealing.
  • mean values of the measured values of all bands of the melts A to E listed in Table 1 were formed. The strips were rolled to a finished strip thickness of 0.30 mm.
  • the development of the sulfur content differs between the inventive and the non-inventive annealing variants in a noteworthy manner only from strip temperatures above 900 ° C.
  • the advantageous effect of the variant according to the invention also arises if the low-hydrogen incandescent atmosphere is only used at a later point in time during heating. If, for example, the use of very low-hydrogen glow atmospheres in the heating phase (e.g. 5 vol.% Hydrogen) should cause problems with the surface properties of the strip due to its very high oxidation potential, the method according to the invention can be modified in the following way:
  • the annealing begins with a hydrogen-rich annealing atmosphere.
  • the composition of the annealing gas is changed and the annealing continued in a low-hydrogen atmosphere.
  • the gas atmosphere is changed again and the hydrogen content is greatly increased, preferably to 100%.
  • the effect of this modification of the method according to the invention is identical to that of the method according to the invention described above.
  • Table 2 Magnetic properties of the strips shown in the examples after different annealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Hard Magnetic Materials (AREA)
  • Formation And Processing Of Food Products (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PCT No. PCT/EP97/03510 Sec. 371 Date Oct. 26, 1998 Sec. 102(e) Date Oct. 26, 1998 PCT Filed Jul. 3, 1997 PCT Pub. No. WO98/02591 PCT Pub. Date Jan. 22, 1998A process for producing a grain-oriented magnetic steel sheet in which a slab, made from a steel containing (in mass %) more than 0.005 to 0.10% C, 2.5 to 4.5% Si, 0.03 to 0.15% Mn, more than 0.01 to 0.05% S, 0.01 to 0.035% Al, 0.0045 to 0.012% N, 0.02 to 0.3% Cu, the remainder being Fe, including unavoidable impurities, is heated through and hot rolled to a final thickness between 1.5 and 7.0 mm. The hot strip is annealed and immediately cooled and cold rolled in one or several cold-rolling steps to the final thickness of the cold strip. The cold strip is subjected to a recrystallizing annealing process in a humid atmosphere containing hydrogen and nitrogen, with synchronous decarburization. A non-stick layer, essentially containing MgO, is applied to the surface of the decarburized cold strip which is then subjected to final annealing. The cold strip is then rolled into coils.

Description

Verfahren zur Herstellung von kornorientiertem ElektroblechProcess for the production of grain-oriented electrical sheet
Die Erfindung betrifft ein Verfahren zur Herstellung von kornorientiertem Elektroblech, bei dem eine Bramme aus einem Stahl mit (in Masse-%) mehr als 0,005 bis 0,10 % C, 2,5 bis 4,5 % Si, 0,03 bis 0,15 % Mn, mehr als 0,01 bis 0,05 % S, 0,01 bis 0,035 % AI, 0,0045 bis 0,012 % N, 0,02 bis 0,3 % Cu, Rest Fe einschl. unvermeidbarer Verunreinigungen bei einer Temperatur, die tiefer als die Löslichkeitstemperatur für Mangansulfide, jedenfalls unter 1320 °C, aber oberhalb der Löslichkeitstemperatur für Kupfersulfide liegt, durcherwärmt wird, im Anschluß daran mit einer Anfangstemperatur von mindestens 960 °C und mit einer Endtemperatur im Bereich von 880 bis 1000 °C bis auf Warmband-Enddicke im Bereich von 1,5 bis 7,0 mm warmgewalzt wird, das Warmband danach 100 bis 600 s lang bei einer Temperatur im Bereich von 880 bis 1150 °C geglüht, sodann mit einer Abkühlrate von größer als 15 K/s abgekühlt und in einem oder mehreren Kaltwalzschritten bis auf Kaltband-Enddicke kaltgewalzt wird, worauf das Kaltband einer rekristallisierenden Glühung in feuchter Wasserstoff und Stickstoff enthaltender Atmosphäre mit gleichzeitiger Entkohlung unterworfen wird und nach dem beidseitigen Aufbringen eines, im wesentlichen MgO enthaltenden Trennmittels hochtemperaturgeglüht und nach dem Aufbringen einer Isolierbeschichtung schlußgeglüht wird. Ein solches Verfahren ist in der DE 43 11 151 Cl offenbart. Die Absenkung der Brammenvorwärmtemperatur auf unterhalb der Löslichkeitstemperatur von MnS, in jedem Fall aber unterhalb von 1320 °C, ist durch die Anwendung von Kupfersulfid als wesentlichem Kornwachstumsinhibitor möglich. Dessen Löslichkeitstemperatur liegt derart tief, daß auch durch die Vorwärmung bei dieser abgesenkten Temperatur und dem nachfolgenden Warmwalzen in Verbindung mit der Glühung des warmgewalzten Bandes eine hinreichende Bildung dieser Inhibitorphase möglich ist. MnS spielt wegen seiner sehr viel höheren Löslichkeitstemperatur als Inhibitor keine Rolle und A1N, dessen Löslichkeits- und Ausscheidungseigenschaften zwischen denen von Mn- und Cu-Sulfid liegen, hat nur einen unbedeutenden Anteil an der Inhibition.The invention relates to a method for producing grain-oriented electrical sheet, in which a slab made of steel with (in mass%) more than 0.005 to 0.10% C, 2.5 to 4.5% Si, 0.03 to 0 , 15% Mn, more than 0.01 to 0.05% S, 0.01 to 0.035% Al, 0.0045 to 0.012% N, 0.02 to 0.3% Cu, balance Fe including unavoidable impurities a temperature which is lower than the solubility temperature for manganese sulfides, in any case below 1320 ° C, but above the solubility temperature for copper sulfides, is subsequently heated, with an initial temperature of at least 960 ° C and a final temperature in the range from 880 to 1000 ° C is hot-rolled to a final hot strip thickness in the range from 1.5 to 7.0 mm, the hot strip is then annealed for 100 to 600 s at a temperature in the range from 880 to 1150 ° C., then at a cooling rate of greater than 15 K. / s cooled and cold rolled in one or more cold rolling steps to the final cold strip thickness is, whereupon the cold strip is subjected to a recrystallizing annealing in a humid hydrogen and nitrogen-containing atmosphere with simultaneous decarburization and after high-temperature annealing on both sides of an essentially MgO-containing release agent is annealed and finally annealed after applying an insulating coating. Such a method is disclosed in DE 43 11 151 Cl. The slab preheating temperature can be reduced to below the solubility temperature of MnS, but in any case below 1320 ° C., by using copper sulfide as an essential grain growth inhibitor. Its solubility temperature is so low that preheating at this reduced temperature and the subsequent hot rolling in conjunction with the annealing of the hot-rolled strip also enable this inhibitor phase to be adequately formed. MnS plays no role as an inhibitor because of its much higher solubility temperature and A1N, whose solubility and excretion properties lie between those of Mn and Cu sulfide, has only an insignificant part in the inhibition.
Ziel der Temperaturabsenkung vor dem Warmwalzen ist die Vermeidung flüssiger Schlacke auf den Brammen, was den Verschleiß der Glüheinrichtungen verringert und das stoffwirtschaftliche Ausbringen der Produktion erhöht.The aim of lowering the temperature before hot rolling is to avoid liquid slag on the slabs, which reduces the wear on the annealing devices and increases the material production output.
Die EP-B-0 219 611 beschreibt ein Verfahren, das ebenfalls eine Absenkung der Brammenvorwärmtemperatur in vorteilhafter Weise ermöglicht. Dabei werden (AI , Si) N-Partikel als Kornwachstu sinhibitoren verwendet, die über einen Nitrierprozeß in das auf Fertigbanddicke kaltgewalzte und entkohlte Band eingebracht werden. Als Maßnahme, diesen Nitrierprozeß durchzuführen, wird die Glühatmosphäre bei der Hochglühung so gewählt, daß diese ein Nitriervermögen besitzt, oder es werden nitrierende Zusätze zum Glühεeparatur, bzw. auch Kombinationen aus beiden angeführt. In der EP-B-0 321 695 ist ein ähnliches Verfahren beschrieben. Als Kornwachstumsinhibitoren werden ausschließlich (AI , Si) N-Partikel verwendet. Es werden zusätzliche Angaben zur chemischen Zusammensetzung gemacht und eine weitere Möglichkeit einer Nitrierbehandlung in Verbindung mit derEP-B-0 219 611 describes a method which also advantageously enables the slab preheating temperature to be reduced. (AI, Si) N particles are used as grain growth inhibitors, which are introduced into the strip cold-rolled and decarburized to a finished strip thickness using a nitriding process. As a measure to carry out this nitriding process, the annealing atmosphere during the high-temperature annealing is selected so that it has a nitriding ability, or nitriding additives for annealing, or combinations of the two, are mentioned. A similar process is described in EP-B-0 321 695. Only (AI, Si) N particles are used as grain growth inhibitors. Additional information on the chemical composition is given and another option for nitriding treatment in connection with the
Entkohlungsglühung aufgezeigt. Weiterhin wird der Hinweis gegeben, daß die Brammenvorwärmtemperaturen vorzugsweise unter 1200 °C liegen sollten.Decarburization annealing demonstrated. Furthermore, it is indicated that the slab preheating temperatures should preferably be below 1200 ° C.
Die EP-B-0 339 474 beschreibt ebenfalls ein Verfahren, wobei jedoch detailliert eine Nitrierbehandlung in Form einer Durchlaufglühung im Temperaturbereich von 500 bis 900 °C unter Anwesenheit einer ausreichenden Menge von NH3 im Glühgas durchgeführt wird. Weiterhin wird detailliert beschrieben, wie die Glüh-Nitrierbehandlung direkt der Entkohlungsglühung nachgeschaltet werden kann. Ziel ist auch hier die Bildung von (AI , Si) -Partikeln als wirksamer Kornwachstumsinhibitor. Dabei wird besonders betont, daß bei einer solchen Nitrierbehandlung mindestens 100 ppm, vorzugsweise aber mehr als 180 pp Stickstoff eingebracht werden muß. Die Brammenvorwärmtemperatur sollte unter 1200 °C liegen.EP-B-0 339 474 also describes a process, but a nitriding treatment in the form of continuous annealing in the temperature range from 500 to 900 ° C. is carried out in detail in the presence of a sufficient amount of NH 3 in the annealing gas. Furthermore, it is described in detail how the annealing nitriding treatment can be connected directly after the decarburization annealing. The goal here is also the formation of (Al, Si) particles as an effective grain growth inhibitor. It is particularly emphasized that with such a nitriding treatment at least 100 ppm, but preferably more than 180 pp, nitrogen must be introduced. The slab preheating temperature should be below 1200 ° C.
Die EP-B-0 390 140 stellt die besondere Bedeutung der Korngrößenverteilung des entkohlten Kaltbandes besonders heraus und gibt verschiedene Methoden zu ihrer Bestimmung an. Als Brammenvorwärmtemperatur wird in jedem Falle eine Temperatur von kleiner 1280 °C angegeben. Jedoch wird immer die Empfehlung gegeben, die Brammen unter 1200 °C vorzuwärmen, sämtliche angeführten Ausführungsbeispiele geben 1150 °C als Vorwärmtemperatur an.EP-B-0 390 140 emphasizes the particular importance of the grain size distribution of the decarburized cold strip and specifies various methods for its determination. In any case, a temperature of less than 1280 ° C is specified as the slab preheating temperature. However, the recommendation is always given to preheat the slabs below 1200 ° C, all of the exemplary embodiments mentioned indicate 1150 ° C as the preheating temperature.
Demgegenüber hat das aus der DE 43 11 151 Cl bekannte Verfahren den wesentlichen Vorteil, die Vorwärmtemperaturen nicht derart tief wie die oben erwähnten 1150 bis 1200 °C wählen zu müssen. Im oft angewendeten mixed-rolling-Betrieb eines modernen Warmwalzwerkes werden häufig Brammenvorwärmtemperaturen von 1250 bis 1300 °C eingestellt, weil dieser Temperaturbereich aus warmwalz- und energietechnischer Sicht besonders günstig ist. Zum anderen hat die Anwendung von Kupfersulfid als Inhibitor den entscheidenden Vorteil, nicht durch eine zusätzliche Technologie eine Nitrierbehandlung durchführen und beherrschen zu müssen, sondern kann den Kornwachstumsinhibitor bereits am Anfang des Herstellungsweges direkt erzeugen. Die Weiterverarbeitung des Warmbandes bis zum Fertigprodukt wird auf diese Weise erheblich vereinfacht.In contrast, the method known from DE 43 11 151 Cl has the essential advantage that the preheating temperatures are not as low as those above 1150 to 1200 ° C mentioned to have to choose. In the often used mixed-rolling operation of a modern hot rolling mill, slab preheating temperatures of 1250 to 1300 ° C are often set, because this temperature range is particularly favorable from the point of view of hot rolling and energy technology. On the other hand, the use of copper sulfide as an inhibitor has the decisive advantage of not having to carry out and control a nitriding treatment using additional technology, but can generate the grain growth inhibitor directly at the beginning of the production process. The further processing of the hot strip to the finished product is considerably simplified in this way.
Das warmgewalzte Band wird einer Glühung unterzogen, um die Kupfersulfidpartikel auszuscheiden, welche die Inhibitorphase bilden sollen. Danach erfolgt ein Kaltwalzen auf die Fertigbanddicke. Alternativ dazu kann das warmgewalzte Band zunächst einem ersten Kaltwalzschritt unterzogen werden, um danach die inhibitorausscheidende Glühung und das letzte Kaltwalzen auf die Fertigbanddicke durchzuführen. Mit diesem Band wird schließlich eine kontinuierlicheThe hot rolled strip is annealed to remove the copper sulfide particles that are to form the inhibitor phase. This is followed by cold rolling to the finished strip thickness. As an alternative to this, the hot-rolled strip can first be subjected to a first cold rolling step in order to then carry out the annealing process which inhibits the inhibitor and the last cold rolling to the finished strip thickness. With this tape, it becomes a continuous one
Entkohlungsglühbehandlung durchgeführt in einer feuchten Stickstoff und Wasserstoff enthaltenden Glühatmosphäre. Zu Beginn dieser Glühbehandlung wird das Gefüge rekristallisiert und das Band entkohlt . Anschließend wird eine im wesentlichen MgO enthaltendeDecarburization annealing treatment carried out in a humidifying atmosphere containing nitrogen and hydrogen. At the beginning of this annealing treatment, the structure is recrystallized and the strip decarburized. Then one containing essentially MgO
Klebschutzbeschichtung auf die Oberfläche des entkohlten Kaltbandes aufgebracht und das Band aufgewickelt zu Coils .Anti-adhesive coating applied to the surface of the decarburized cold strip and the strip wound up into coils.
Die so erzeugten entkohlten Kaltbandcoils werden dann einer Hochtemperatur-Haubenglühung unterzogen, um die Bildung der Gosstextur über den Prozeß der Sekundärrekristallisation einzuleiten. Üblicherweise werden die Coils mit einer Aufheizrate von etwa 10 bis 30 K/h langsam aufgeheizt in einer Glühatmosphäre, die aus Wasserstoff und Stickstoff besteht. Bei etwa 400 °C Bandtemperatur steigt der Taupunkt des Glühgases stark an, weil dann das Kristallwasser der im wesentlichen MgO enthaltenden Klebschutzbeschichtung freigesetzt wird. Bei etwa 950 bis 1020 °C läuft die Sekundärrekristallisation ab. Damit ist zwar die Gosstexturbildung bereits abgeschlossen, jedoch wird noch weiter bis auf eine Temperatur von mindestens 1150 °C, vorzugsweise mindestens 1180 °C aufgeheizt und bei dieser Temperatur mindestens 2 bis 20 h gehalten. Dies ist notwendig, um das Band von den nicht mehr benötigten Inhibitorpartikeln zu reinigen, weil diese sonst im Material verbleiben und im Fertigprodukt den Ummagnetisierungsprozeß behindern würden. Für einen optimalen Reinigungsvorgang wird nach Beendigung der Sekundärrekristallisation, üblicherweise ab Beginn der Haltephase der Wasserstoffanteil in der Glühatmosphäre stark erhöht, z.B. auf 100 %.The decarburized cold-rolled coils thus produced are then subjected to high-temperature hood annealing in order to form the cast texture via the process of Initiate secondary recrystallization. Usually, the coils are slowly heated up at a heating rate of about 10 to 30 K / h in an annealing atmosphere consisting of hydrogen and nitrogen. At a strip temperature of around 400 ° C, the dew point of the annealing gas rises sharply because then the crystal water of the anti-adhesive coating essentially containing MgO is released. At about 950 to 1020 ° C, the secondary recrystallization takes place. Although the formation of the cast texture has already been completed, heating is continued to a temperature of at least 1150 ° C., preferably at least 1180 ° C., and the mixture is kept at this temperature for at least 2 to 20 hours. This is necessary in order to clean the belt from the inhibitor particles that are no longer required, because these would otherwise remain in the material and would impede the remagnetization process in the finished product. For an optimal cleaning process, after the secondary recrystallization has ended, usually from the beginning of the holding phase, the hydrogen content in the annealing atmosphere is greatly increased, for example to 100%.
In der Aufheizphase der Hochglühung wird im allgemeinen ein Gemisch aus Wasserstoff und Stickstoff als Glühgas verwendet, wobei vor allem eine Mischung aus 75 % Wasserstoff und 25 % Stickstoff üblich ist. Bei dieser Gaszusammensetzung wird eine gewisse Aufstickung des Bandes bewirkt, weil bei dieser stöchiometrischen Zusammensetzung genügend viele NH3-Moleküle vorhanden sind, die für eine Aufstickung notwendig sind. Dadurch wird die bekanntermaßen auf AlN basierende Inhibition noch weiter verstärkt.In the heating phase of the high-temperature annealing, a mixture of hydrogen and nitrogen is generally used as the annealing gas, a mixture of 75% hydrogen and 25% nitrogen being particularly common. With this gas composition, a certain nitrogen nitriding of the tape is brought about because with this stoichiometric composition there are enough NH 3 molecules that are necessary for nitrogen nitriding. This increases the known inhibition based on AlN.
Bei Anwendung des in DE 43 11 151 Cl offenbarten Verfahrens, bei dem die Inhibition nicht auf AlN- Partikeln, sondern auf Kupfersulfid beruht, treten jedoch bei Anwendung dieser Art der Hochglühung gelegentlich Streuungen beim Ablauf der Texturbildung (Sekundärrekristallisation) während der Hochtemperaturglühung auf. Diese Streuungen wirken sich direkt auf die magnetischen Werte ungünstig aus. Die Aufgabe der Erfindung besteht nun darin, während der Hochglühung diese Streuungen deutlich zu verringern und dadurch den Ablauf der Sekundärrekristallisation zu stabilisieren, wodurch die magnetischen Werte auf ein sehr gutes Niveau gebracht werden.When using the method disclosed in DE 43 11 151 Cl, in which the inhibition is based not on AlN particles but on copper sulfide, this type of high-temperature annealing occasionally occurs Scatters during the course of texture formation (secondary recrystallization) during high-temperature annealing. This scatter has a direct adverse effect on the magnetic values. The object of the invention is now to significantly reduce these scatterings during the high-temperature annealing and thereby to stabilize the course of the secondary recrystallization, as a result of which the magnetic values are brought to a very good level.
Zur Lösung dieser Aufgabe wird erfindungsgemäß bei dem gattungsgemäßen Verfahren vorgeschlagen, daß das Kaltband zur Hochtemperaturglühung in einer weniger als 25 Vol.-% H2, Rest Stickstoff und/oder Edelgas, wie Argon, enthaltenden Atmosphäre mindestens bis zum Erreichen der Haltetemperatur aufgeheizt wird. Nach dem Erreichen der Haltetemperatur kann der H2-Anteil stetig bis auf 100 % erhöht werden.To achieve this object, it is proposed according to the invention in the generic method that the cold strip for high-temperature annealing in an atmosphere containing less than 25% by volume of H 2 , the rest nitrogen and / or noble gas, such as argon, is heated at least until the holding temperature is reached. After reaching the holding temperature, the H 2 content can be steadily increased to 100%.
Um den Ablauf der Sekundärrekristallisation bewerten und vergleichen zu können, wurde eine Anzahl identisch entkohlter Kaltbandproben einer Laborsimulation der betrieblichen Hochtemperatur-Haubenglühung unterzogen. Bei Erreichen bestimmter, zuvor festgelegter Temperaturen während der Aufheizung wurden einzelne Proben diesem Stapel entnommen. In diesen Proben waren Teilzustände des Materials in dieser Phase der Hochglühung eingefroren. Als Temperaturintervall wurde der Bereich zwischen 900 und 1045 °C gewählt, weil dort die Sekundärrekristallisation abläuft. An allen Proben wurde die Koerzitivfeldstärke bestimmt und gegen die Entnahmetemperatur in Fig. 1 grafisch aufgetragen. Die Koerzitivfeldstärke verhält sich umgekehrt proportional zur mittleren Korngröße des Gefüges . Danach läßt sich der Beginn der Sekundärrekritallisation als ein plötzlicher Steilabfall der Koerzitivfeldstärke bei einer bestimmten Probenentnahmetemperatur erkennen. Dieser Steilabfall als Indikator für den Beginn der Sekundärrekristallisation ist in Fig. 1 sichtbar. Diese Art der Untersuchung wird als "Rekristallisationstest" bezeichnet (vgl. M. Hastenrath et al . , Anales de Fisika B, Vol. 86 (1990), pp . 229-231). Gleichzeitig wurden an diesen Rekristallisationstestproben die Gehalte an Stickstoff und Schwefel bestimmt. Diese Untersuchungen zeigten, daß auch entkohltes Kaltband, das gemäß DE 43 11 151 erzeugt wurde, in hohem Maße aufgestickt wird, wenn es mit der üblichen Hochglühung, die 75 % Wasserstoff und 25 % Stickstoff in der Aufheizphase enthält, geglüht wird. Gleichzeitig jedoch fällt der Schwefelgehalt im Verlaufe dieser Hochglühung stark ab. Dies bedeutet aber eine Schwächung der Inhibition, die auf der Wirkung von Kupfersulfiden beruht. Diese Entschwefelung erfolgt außerdem in inhomogener Weise, woraus die beobachteten Streuungen der magnetischen Werte erklärbar sind. Wird aber die Hochglühung in erfindungsgemäßer Weise verändert und der Wasserstoffanteil während der Aufheizung auf maximal 25 Vol.-% begrenzt, so tritt nur eine sehr viel schwächere Entschwefelung auf. Der Schwefelgehalt nimmt erst bei höheren Temperaturen merklich ab, wenn die Sekundärrekristallisation bereits beendet ist. Dieser Sachverhalt wird weiter unten anhand der Beispiele demonstriert .In order to be able to evaluate and compare the process of secondary recrystallization, a number of identically decarburized cold-strip samples were subjected to a laboratory simulation of the operational high-temperature hood annealing. When certain, predetermined temperatures were reached during heating, individual samples were taken from this stack. In these samples, partial states of the material were frozen in this phase of the annealing. The temperature range between 900 and 1045 ° C was chosen because the secondary recrystallization takes place there. The coercive field strength was determined on all samples and plotted against the removal temperature in FIG. 1. The coercive field strength is inversely proportional to the average grain size of the structure. Thereafter, the beginning of secondary recrystallization can be recognized as a sudden drop in the coercive field strength at a certain sampling temperature. This steep drop as an indicator of the start of secondary recrystallization is visible in FIG. 1. This type of examination is referred to as a "recrystallization test" (cf. M. Hastenrath et al., Anales de Fisika B, Vol. 86 (1990), pp. 229-231). At the same time, the nitrogen and sulfur contents were determined on these recrystallization test samples. These investigations showed that decarburized cold strip, which was produced in accordance with DE 43 11 151, is embroidered to a high degree when it is annealed with the usual high-temperature annealing which contains 75% hydrogen and 25% nitrogen in the heating phase. At the same time, however, the sulfur content drops sharply in the course of this high-temperature annealing. However, this means a weakening of the inhibition, which is based on the action of copper sulfides. This desulfurization also takes place in an inhomogeneous manner, which explains the observed scatter in the magnetic values. However, if the high-temperature annealing is changed in the manner according to the invention and the hydrogen portion is limited to a maximum of 25% by volume during the heating, only a much weaker desulfurization occurs. The sulfur content only drops noticeably at higher temperatures when the secondary recrystallization has already ended. This is demonstrated below using the examples.
Die Anwendung niedriger Wasserstoffanteile während der Aufheizphase erhöht jedoch auch deutlich das Oxidationspotential der Glühatmosphäre, was sich in Einzelfällen ungünstig auf die spätere Ausbildung der isolierenden Phosphatschicht und deren Haftung auswirken kann. Dieses Problem tritt aber nur am Anfang der Aufheizphase merklich in Erscheinung, wenn der Taupunkt des Glühgases durch Freisetzung von Wasserdampf aus der Klebschutzbeschichtung deutlich ansteigt. Eine Veränderung der Inhibitorphase durch Entschwefelung tritt aber bei diesen tiefen Temperaturen noch nicht in Erscheinung, sondern tritt erst bei höheren Temperaturen auf. Um eine ungünstige Beeinflussung der Oberflächenbeschaffenheit zu vermeiden, sollte die Gaszusammensetzung während der Aufheizphase gewechselt werden. So ist es günstig, eine Hochglühung mit einer Glühatmosphäre zu beginnen, die einen hohen Wasserstoffanteil besitzt, und unter diesen Bedingungen bis zu einer Temperatur von 450 bis 750 °C aufzuheizen. Dann sollte die Glühatmosphäre gewechselt und ein niedriger Wasserstoffanteil, z.B. 5 bis 10 Vol.-% eingestellt und die Aufheizung bis zum Erreichen der Haltestufe fortgesetzt werden. Ab Beginn der Haltephase wird dann in gewohnter Weise der Wasserstoffanteil auf 100 % erhöht.However, the use of low amounts of hydrogen during the heating phase also significantly increases the oxidation potential of the annealing atmosphere, which in individual cases can have an unfavorable effect on the subsequent formation of the insulating phosphate layer and its adhesion. However, this problem only becomes noticeable at the beginning of the heating phase, when the dew point of the annealing gas increases significantly due to the release of water vapor from the adhesive protective coating. A change in the inhibitor phase due to desulfurization does not yet appear at these low temperatures, but only occurs at higher temperatures. In order to avoid an unfavorable influence on the surface properties, the gas composition should be changed during the heating phase. It is therefore favorable to start a high-temperature annealing with an annealing atmosphere which has a high hydrogen content and to heat up to a temperature of 450 to 750 ° C under these conditions. The annealing atmosphere should then be changed and a low hydrogen content, for example 5 to 10% by volume, set and the heating continued until the holding level has been reached. From the beginning of the holding phase, the hydrogen content is increased to 100% in the usual way.
Aus den Beispielen wird die Wirkung der erfinderischen Maßnahme deutlich. Warmbänder aus Schmelzen mit den in Tafel 1 aufgeführten chemischen Zusammensetzungen wurden gemäß dem in DE 43 11 151 Cl beschriebenen Verfahren zu entkohltem Kaltband weiterverarbeitet. Dieses entkohlte Kaltband wurde aufgeteilt und in Betriebsversuchen drei unterschiedlichen Hochglühungen unterzogen:The effect of the inventive measure becomes clear from the examples. Hot strips from melts with the chemical compositions listed in Table 1 were further processed to decarburized cold strip according to the process described in DE 43 11 151 Cl. This decarburized cold strip was split up and subjected to three different annealing tests:
Variante "Referenz": Die erste als "Referenz" bezeichnete Hochglühung entsprach dem Stand der Technik und beinhaltete eine Atmosphäre von 75 Vol.-% H2 + 25 Vol.-% N2 in der Aufheizphase . Von Umgebungstemperatur wurde mit 15 K/h bis auf eine Haltetemperatur von 1200 °C aufgeheizt, 20 h lang diese Temperatur gehalten und anschließend langsam abgekühlt. Von Beginn der Kaltezeit an wurde auf eine Atmosphäre von 100 % H2 umgeschaltet . Variante "neu" : Die zweite als "neu" bezeichnete Hochglühung repräsentierte die erfindungsgemäße Maßnahme und beinhaltete im Unterschied zu "Referenz" eine Atmosphäre von 10 Vol.-% H2 + 90 Vol.-% N2 in der Aufheizphase."Reference" variant: The first high-temperature annealing referred to as "reference" corresponded to the prior art and contained an atmosphere of 75% by volume H 2 + 25% by volume N 2 in the heating phase. The temperature was raised from 15 K / h to a holding temperature of 1200 ° C., held at this temperature for 20 hours and then slowly cooled. From the beginning of the cold period, an atmosphere of 100% H 2 was used . "New" variant: The second high-temperature annealing, referred to as "new", represented the measure according to the invention and, in contrast to "Reference", contained an atmosphere of 10% by volume H 2 + 90% by volume N 2 in the heating phase.
Variante "inert": Die dritte als "inert" bezeichnete Hochglühung repräsentierte ebenfalls die erfindungsgemäße Maßnahme, jedoch wurde im Unterschied zu "neu" anstelle von N2 in der Aufheizphase das Inertgas Argon benutzt.Variant "inert": The third high-temperature annealing, referred to as "inert", also represented the measure according to the invention, however, in contrast to "new", the inert gas argon was used instead of N 2 in the heating phase.
Dabei wurden die in Tafel 2 zusammengestellten magnetischen Eigenschaften erzielt. Diese Werte sind in den Fig. 2a und 2b grafisch dargestellt. Gegenüber der "Referenz" -Hochglühung (Stand der Technik) zeigen die erfindungsgemäßen Hochglühvarianten "neu" und "inert" wesentlich einheitlichere magnetische Werte, repräsentiert durch die Polarisation, woraus der stabilisierende Effekt ersichtlich wird. Diese Werte liegen außerdem auf einem hohen Niveau. Der Vergleich der beiden erfindungsgemäßen Varianten "neu" und "inert" zeigt, daß Stickstoff als Hauptbestandteil des Glühgaseε am besten geeignet ist . Die Verwendung eines Inertgases wie Argon ist aus Kostengründen nicht sinnvoll. Die " inert" -Variante zeigt aber ebenfalls eine Verbesserung und Stabilisierung der magnetischen Eigenschaften, was beweist, daß der Stickstoff als Hauptbestandteil der Glühatmosphare nicht entscheidend dafür ist, sondern der geringe Wasserstoffanteil .The magnetic properties shown in Table 2 were achieved. These values are shown graphically in FIGS. 2a and 2b. Compared to the "reference" high-temperature annealing (prior art), the high-temperature annealing variants according to the invention "new" and "inert" show significantly more uniform magnetic values, represented by the polarization, from which the stabilizing effect can be seen. These values are also at a high level. The comparison of the two variants "new" and "inert" according to the invention shows that nitrogen is the most suitable as the main constituent of the glow gas. The use of an inert gas such as argon does not make sense for cost reasons. However, the "inert" variant also shows an improvement and stabilization of the magnetic properties, which proves that the nitrogen as the main component of the annealing atmosphere is not decisive for this, but the low hydrogen content.
Vor den durchgeführten Hochglühungen wurden Proben von entkohltem Kaltband Rekristallisationstests der oben beschriebenen Art durchgeführt. Dabei wurden ebenfalls drei Varianten gebildet mit den entsprechenden Gasatmosphären in der Aufheizphase wie bei den oben beschriebenen Versuchen. Fig. 1 zeigt anhand der Steilabfälle der Koerzitivfeldstärke, daß in allen drei Fällen eine Sekundärrekristallisation stattgefunden hat . Die einzelnen Rekristallisationstestproben wurden chemisch auf ihren Gehalt an Stickstoff und Schwefel analysiert .Before the annealing was carried out, samples of decarburized cold strip recrystallization tests of the type described above were carried out. Three variants were also formed with the corresponding gas atmospheres in the heating phase as in the experiments described above. 1 shows on the basis of the steep drops in the coercive field strength that a secondary recrystallization has taken place in all three cases. The individual recrystallization test samples were chemically analyzed for their nitrogen and sulfur content.
Fig. 3 zeigt die Entwicklung des Stickstoffgehaltes und Fig. 4 die Entwicklung des Schwefelgehaltes im Temperaturintervall von 900 °C bis 1045 °C während der Aufheizphase der Hochglühung. Für beide Darstellungen wurden Mittelwerte der Meßwerte aller Bänder der in Tafel 1 aufgeführten Schmelzen A bis E gebildet. Die Bänder wurden auf eine Fertigbanddicke von 0,30 mm gewalzt.FIG. 3 shows the development of the nitrogen content and FIG. 4 shows the development of the sulfur content in the temperature interval from 900 ° C. to 1045 ° C. during the heating phase of the high-temperature annealing. For both representations, mean values of the measured values of all bands of the melts A to E listed in Table 1 were formed. The strips were rolled to a finished strip thickness of 0.30 mm.
Die Entwicklung des Stickstoffgehaltes während der Aufheizphase in Fig. 3 zeigt bei der "Referenz " -Variante den erwartet hohen Anstieg bereits bei Temperaturen unterhalb von 1020 °C. Demgegenüber ist der Anstieg bei der erfindungsgemäßen Variante "neu" deutlich schwächer ausgeprägt und wird erst bei hohen Temperaturen dominierend, dann wenn die Sekundärrekristallisation bereits abgeschlossen ist. Im Falle der ebenfalls erfindungsgemäßen Variante "inert" tritt überhaupt keine Erhöhung des Stickstoffgehaltes auf, weil das Glühgas keinen Stickstoff enthält. Eine merkliche Entstickung tritt aber erst bei hohen Temperaturen oberhalb der Sekundärrekristallisation auf. Die Wirkungen der beiden erfindungsgemäßen Hochglühvarianten auf die Entwicklung des Stickstoffgehaltes im Verlaufe der Glühung ist somit gegensätzlich. Die Wirkungen auf die magnetischen Eigenschaften jedoch ist ungefähr dieselbe. Somit kann die Beeinflussung des Stickstoffgehaltes bei Material, das nach dem in DE 43 11 151 Cl offenbarten Verfahren hergestellt wird, nicht die Ursache für die erfindungswesentliche Verbesserung sein. Betrachtet man jedoch die Entwicklung des Schwefelgehaltes während der Aufheizung und vergleicht dabei die drei hier betrachteten Varianten, so läßt sich der Wirkungsmechanismus des erfindungsgemäßen Verfahrens leicht erkennen: Während bei der "Referenz" -Variante der Schwefelgehalt recht schnell im Verlaufe der Aufheizung, noch vor Beginn der Sekundärrekristallisation, abfällt, ist dieser Abfall bei den erfindungsgemäßen Varianten "neu" und "inert" wesentlich schwächer ausgeprägt. Eine Verringerung des Schwefelgehaltes ist nur mit einem entsprechenden Abbau der als Inhibitoren wirkenden Kupfersulfide zu erklären. Im Falle der "Referenz "- Hochglühvariante vollzieht sich dieser Abfall recht schnell, wodurch die Inhibitionswirkung frühzeitig nachläßt und dadurch der Texturselektionsprozeß zu Beginn der Sekundärrekristallisation gewissen Streuungen unterworfen wird. Durch Anwendung einer erfindungsgemäßen Hochglühvariante wird die Wirkung der Inhibitorphase zeitlich verlängert, was sich dementsprechend günstig auf den Selektionsprozeß bei der Sekundärrekristallisation auswirkt .The development of the nitrogen content during the heating-up phase in FIG. 3 shows the expected high increase in the “reference” variant even at temperatures below 1020 ° C. In contrast, the increase in the "new" variant according to the invention is markedly weaker and becomes dominant only at high temperatures, then when the secondary recrystallization has already been completed. In the case of the "inert" variant according to the invention, there is no increase in the nitrogen content at all because the annealing gas contains no nitrogen. Noticeable denitrification only occurs at high temperatures above secondary recrystallization. The effects of the two high-glow variants according to the invention on the development of the nitrogen content in the course of the annealing are therefore opposite. However, the effects on the magnetic properties are approximately the same. Thus, influencing the nitrogen content in material which is produced by the process disclosed in DE 43 11 151 Cl cannot be the cause of the improvement essential to the invention. However, if one looks at the development of the sulfur content during heating and compares the three variants considered here, the mechanism of action of the method according to the invention can be easily recognized: while in the "reference" variant the sulfur content is quite rapid during the heating process, even before the start of secondary recrystallization, this drop is much less pronounced in the “new” and “inert” variants according to the invention. A reduction in the sulfur content can only be explained by a corresponding breakdown of the copper sulfides acting as inhibitors. In the case of the "reference" high-glow variant, this drop takes place very quickly, as a result of which the inhibitory effect wears off at an early stage and the texture selection process at the beginning of the secondary recrystallization is subjected to certain scattering. By using a high-glow variant according to the invention, the effect of the inhibitor phase is prolonged, which has a correspondingly favorable effect on the selection process in the secondary recrystallization.
Die Entwicklung der Schwefelgehalte unterscheidet sich zwischen den erfindungsgemäßen und den nicht erfindungsgemäßen Hochglühvarianten in nennenswerter Weise erst ab Bandtemperaturen oberhalb von 900 °C. Somit stellt sich die vorteilhafte Wirkung der erfindungsgemäßen Variante auch dann ein, wenn die wasserstoffarme Glühatmospähre erst zu einem späteren Zeitpunkt während der Aufheizung zur Anwendung kommt. Wenn beispielsweise die Anwendung sehr wasserstoffarmer Glühatmospähren in der Aufheizphase (z.B. 5 Vol.-% Wasserstoff) aufgrund ihres sehr hohen Oxidationspotentials Probleme mit der Oberflächenbeschaffenheit des Bandes machen sollte, so läßt sich das erfindungsgemäße Verfahren in folgender Weise abändern: Die Glühung beginnt mit einer wasserstoffreichen Glühatmosphäre. Nach Erreichen einer Bandtemperatur von mindestens 450 °C und höchstens 750 °C wird die Zusammensetzung des Glühgases gewechselt und die Glühung in einer wasserstoffarmen Atmosphäre fortgesetzt. Prinzipiell wäre es möglich, den Wechsel der Glühatmosphäre erst bei 900 °C vorzunehmen, jedoch dürfte es schwierig sein, bei einer Haubenglüheinrichtung, die für derartige Hochglühungen verwendet wird, wegen der hohen Wärmekapazität des eingesetzten gecoilten Materials und der daraus sich ergebenden Temperaturgradienten die Bandtemperatur hinreichend genau festzulegen. Ab Erreichen der Haltetemperatur von mindestens 1150 °C wird die Gasatmosphäre wiederum gewechselt und der Wasserstoffanteil stark erhöht, vorzugsweise auf 100 %. Diese Abänderung des erfindungsgemäßen Verfahrens ist hinsichtlich seiner Wirkung mit dem weiter oben beschriebenen erfindungsgemäßen Verfahren identisch. The development of the sulfur content differs between the inventive and the non-inventive annealing variants in a noteworthy manner only from strip temperatures above 900 ° C. Thus, the advantageous effect of the variant according to the invention also arises if the low-hydrogen incandescent atmosphere is only used at a later point in time during heating. If, for example, the use of very low-hydrogen glow atmospheres in the heating phase (e.g. 5 vol.% Hydrogen) should cause problems with the surface properties of the strip due to its very high oxidation potential, the method according to the invention can be modified in the following way: The annealing begins with a hydrogen-rich annealing atmosphere. After a strip temperature of at least 450 ° C and at most 750 ° C has been reached, the composition of the annealing gas is changed and the annealing continued in a low-hydrogen atmosphere. In principle, it would be possible to change the annealing atmosphere only at 900 ° C, but it would be difficult to adequately achieve the strip temperature in a hood annealing device that is used for such annealing processes because of the high thermal capacity of the coiled material used and the resulting temperature gradients to specify exactly. Once the holding temperature of at least 1150 ° C. has been reached, the gas atmosphere is changed again and the hydrogen content is greatly increased, preferably to 100%. The effect of this modification of the method according to the invention is identical to that of the method according to the invention described above.
Tafel 1 : Chemische Zusammensetzung des Versuchsmaterials in Masse-%Table 1: Chemical composition of the test material in mass%
Tafel 2: Magnetische Eigenschaften der in den Beispielen vorgeführten Bänder nach unterschiedlichen Hochglühungen Table 2: Magnetic properties of the strips shown in the examples after different annealing

Claims

Patentansprüche claims
l. Verfahren zur Herstellung von kornorientiertem Elektroblech, bei dem eine Bramme aus einem Stahl mit (in Masse-%) mehr als 0,005 bis 0,10 % C,l. Process for the production of grain-oriented electrical sheet, in which a slab made of steel with (in mass%) more than 0.005 to 0.10% C,
2,5 bis 4,5 % Si,2.5 to 4.5% Si,
0,03 bis 0, 15 % Mn, mehr als 0,01 bis 0,05 % S,0.03 to 0.15% Mn, more than 0.01 to 0.05% S,
0, 01 bis 0, 035 % AI,0.01 to 0.035% AI,
0, 0045 bis 0, 012 % N,0.0045 to 0.012% N,
0,02 bis 0,3 % Cu,0.02 to 0.3% Cu,
Rest Fe einschl. unvermeidbarerRest Fe including unavoidable
Verunreinigungen bei einer Temperatur, die tiefer als dieContamination at a temperature lower than that
Löslichkeitstemperatur für Mangansulfid, jedenfalls unter 1320 °C, aber oberhalb der Löslichkeitstemperatur für Kupfersulfide liegt, durcherwärmt wird, im Anschluß daran mit einer Anfangstemperatur von mindestens 960 °C und mit einer Endtemperatur im Bereich von 880 bis 1000 °C bis auf Warmband-Enddicke im Bereich von 1,5 bis 7,0 mm warmgewalzt wird, das Warmband danach 100 bis 600 s lang bei einer Temperatur im Bereich von 880 bis 1150 °C geglüht, sodann mit einer Abkühlrate von größer als 15 K/s abgekühlt und in einem oder mehreren Kaltwalzschritten bis auf Kal band-Enddicke kaltgewalzt wird, worauf das Kaltband einer rekristallisierenden Glühung in feuchter Wasserstoff und Stickstoff enthaltender Atmosphäre mit gleichzeitiger Entkohlung unterworfen wird und nach dem beidseitigen Aufbringen eines im wesentlichen MgO enthaltenden Trennmittelε hochtemperaturgeglüht und nach dem Aufbringen einer Isolierbeschichtung schlußgeglüht wird, d a d u r c h g e k e n n z e i c h n e t, daß das Kaltband zur Hochtemperaturglühung in einer weniger als 25 Vol.-% H2, Rest Stickstoff und/oder Edelgas, wie Argon, enthaltenden Atmosphäre mindestens bis zum Erreichen der Haltetemperatur bei mindestens 1150 ... 1200 °C, vorzugsweise 1180 °C, aufgeheizt wird.Solubility temperature for manganese sulfide, in any case below 1320 ° C, but above the solubility temperature for copper sulfide, is heated through, then with an initial temperature of at least 960 ° C and with a final temperature in the range from 880 to 1000 ° C to the final hot strip thickness Is hot rolled in the range of 1.5 to 7.0 mm, the hot strip is then annealed for 100 to 600 s at a temperature in the range of 880 to 1150 ° C, then cooled at a cooling rate of greater than 15 K / s and in one or several cold rolling steps are cold-rolled to the final cal-band thickness, whereupon the cold-strip is subjected to recrystallizing annealing in a humid hydrogen and nitrogen-containing atmosphere with simultaneous decarburization and after high-temperature annealing on both sides of an essentially MgO-containing release agent and finally annealing after the application of an insulating coating, characterized in that the cold strip for high-temperature annealing in an atmosphere containing less than 25% by volume of H 2 , the rest nitrogen and / or noble gas, such as argon, at least until the holding temperature is reached at at least 1150 ... 1200 ° C, preferably 1180 ° C, is heated.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß nach dem Erreichen der Haltetemperatur der H2-Anteil der Glühgasatmosphäre stetig auf bis zu 100 % erhöht wird.2. The method according to claim 1, characterized in that after reaching the holding temperature, the H 2 portion of the annealing gas atmosphere is continuously increased to up to 100%.
3. Verfahren nach Anspruch 1 und 2, d a d u r c h g e k e n n z e i c h n e t, daß die Glühgasatmosphäre bis zum Erreichen einer Temperatur im Bereich von 450 bis 750 °C mehr als 50 Vol.-% H2 enthält, daß nach dem Überschreiten dieser Temperatur der H2-Anteil auf unter 25 Vol.- % gesenkt wird und nach dem Erreichen der Haltete peratur der H2-Anteil auf bis zu 100 % erhöht wird. 3. The method according to claim 1 and 2, characterized in that the annealing gas atmosphere contains up to a temperature in the range of 450 to 750 ° C more than 50 vol .-% H 2 , that after exceeding this temperature, the H 2 portion is reduced below 25% by volume and, after reaching the holding temperature, the H 2 content is increased to up to 100%.
EP97930498A 1996-07-12 1997-07-03 Process for producing a grain-orientated electrical steel sheet Expired - Lifetime EP0910676B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19628136A DE19628136C1 (en) 1996-07-12 1996-07-12 Production of grain-orientated electrical sheets
DE19628136 1996-07-12
PCT/EP1997/003510 WO1998002591A1 (en) 1996-07-12 1997-07-03 Process for producing a grain-orientated electrical steel sheet

Publications (2)

Publication Number Publication Date
EP0910676A1 true EP0910676A1 (en) 1999-04-28
EP0910676B1 EP0910676B1 (en) 2001-01-10

Family

ID=7799653

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97930498A Expired - Lifetime EP0910676B1 (en) 1996-07-12 1997-07-03 Process for producing a grain-orientated electrical steel sheet

Country Status (18)

Country Link
US (1) US6153019A (en)
EP (1) EP0910676B1 (en)
JP (1) JP4369536B2 (en)
CN (1) CN1078256C (en)
AT (1) ATE198629T1 (en)
AU (1) AU710053B2 (en)
BR (1) BR9710302A (en)
CZ (1) CZ288875B6 (en)
DE (2) DE19628136C1 (en)
ES (1) ES2154904T3 (en)
ID (2) ID19071A (en)
IN (1) IN191758B (en)
PL (1) PL183750B1 (en)
RU (1) RU2190025C2 (en)
SK (1) SK283881B6 (en)
TW (1) TW425429B (en)
WO (1) WO1998002591A1 (en)
ZA (1) ZA976001B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19628136C1 (en) * 1996-07-12 1997-04-24 Thyssen Stahl Ag Production of grain-orientated electrical sheets
DE19735062A1 (en) * 1997-08-13 1999-02-18 Thyssen Stahl Ag Grain oriented electrical steel sheet production
DE19745445C1 (en) * 1997-10-15 1999-07-08 Thyssenkrupp Stahl Ag Process for the production of grain-oriented electrical sheet with low magnetic loss and high polarization
DE19821299A1 (en) * 1998-05-13 1999-11-18 Abb Patent Gmbh Arrangement and method for producing hot-rolled steel strip
JP4258349B2 (en) * 2002-10-29 2009-04-30 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
CN100418697C (en) * 2006-05-18 2008-09-17 武汉科技大学 High magentic induction oriented electrical steel sheet and its manufacturing method
CN100436042C (en) * 2006-05-18 2008-11-26 武汉科技大学 Thin slab process high magnetic induction oriented electrical steel sheet and its manufacturing method
CN101545072B (en) * 2008-03-25 2012-07-04 宝山钢铁股份有限公司 Method for producing oriented silicon steel having high electromagnetic performance
WO2009149903A1 (en) * 2008-06-13 2009-12-17 Loi Thermoprocess Gmbh Process for the high-temperature annealing of grain-oriented magnetic steel strip in an inert gas atmosphere in a heat treatment furnace
CN101333589B (en) * 2008-07-04 2010-10-06 武汉钢铁工程技术集团有限责任公司 Method for nonoxidizing heating thin steel plate and special heating furnace
CN101603148B (en) * 2009-07-28 2011-01-05 首钢总公司 Method for producing economic low-temperature heating oriented electrical steel
JP5772410B2 (en) * 2010-11-26 2015-09-02 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
CN102127708A (en) * 2011-01-16 2011-07-20 首钢总公司 Method for producing oriented electrical steel by heating low-temperature slab
DE102011119395A1 (en) 2011-06-06 2012-12-06 Thyssenkrupp Electrical Steel Gmbh Method for producing a grain-oriented electrical steel flat product intended for electrotechnical applications
DE102011107304A1 (en) 2011-07-06 2013-01-10 Thyssenkrupp Electrical Steel Gmbh Method for producing a grain-oriented electrical steel flat product intended for electrotechnical applications
CN102294358B (en) * 2011-08-19 2012-12-05 江苏新中信电器设备有限公司 Pressure continuous-casting rolling process for sectional material of copper-clad aluminium bar
DE102011054004A1 (en) * 2011-09-28 2013-03-28 Thyssenkrupp Electrical Steel Gmbh Method for producing a grain-oriented electrical tape or sheet intended for electrical applications
KR101683693B1 (en) * 2013-02-27 2016-12-07 제이에프이 스틸 가부시키가이샤 Method for producing grain-oriented electrical steel sheet
EP2933350A1 (en) * 2014-04-14 2015-10-21 Mikhail Borisovich Tsyrlin Production method for high-permeability grain-oriented electrical steel
CZ305521B6 (en) * 2014-05-12 2015-11-11 Arcelormittal Ostrava A.S. Strip of oriented transformer steel and process for producing thereof
CN104294155B (en) * 2014-09-28 2016-05-11 东北大学 A kind of Ultra-low carbon orientation silicon steel and preparation method thereof
JP6354957B2 (en) * 2015-07-08 2018-07-11 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
CN106048411A (en) * 2016-06-27 2016-10-26 马鞍山钢铁股份有限公司 Cold-rolled oriented electrical steel for transformer and production method of cold-rolled oriented electrical steel
KR102405173B1 (en) * 2019-12-20 2022-06-02 주식회사 포스코 Grain oriented electrical steel sheet and method of manufacturing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT52811B (en) * 1911-03-18 1912-03-26 Franz Anderle Facility for multiplex telegraphy.
JPS59208020A (en) * 1983-05-12 1984-11-26 Nippon Steel Corp Manufacture of grain-oriented electrical steel sheet with small iron loss
JPS6475627A (en) * 1987-09-18 1989-03-22 Nippon Steel Corp Production of grain oriented electrical steel sheet having extremely high magnetic flux density
DE3882502T2 (en) * 1987-11-20 1993-11-11 Nippon Steel Corp Process for the production of grain-oriented electrical steel sheets with high flux density.
JPH0717961B2 (en) * 1988-04-25 1995-03-01 新日本製鐵株式会社 Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
JPH0717960B2 (en) * 1989-03-31 1995-03-01 新日本製鐵株式会社 Method for producing unidirectional electrical steel sheet with excellent magnetic properties
EP0391335B2 (en) * 1989-04-04 1999-07-28 Nippon Steel Corporation Process for production of grain oriented electrical steel sheet having superior magnetic properties
JPH0753886B2 (en) * 1989-05-13 1995-06-07 新日本製鐵株式会社 Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
DE4311151C1 (en) * 1993-04-05 1994-07-28 Thyssen Stahl Ag Grain-orientated electro-steel sheets with good properties
EP0709470B1 (en) * 1993-11-09 2001-10-04 Pohang Iron & Steel Co., Ltd. Production method of directional electromagnetic steel sheet of low temperature slab heating system
FR2731713B1 (en) * 1995-03-14 1997-04-11 Ugine Sa PROCESS FOR THE MANUFACTURE OF A SHEET OF ELECTRIC STEEL WITH ORIENTED GRAINS FOR THE PRODUCTION OF MAGNETIC TRANSFORMER CIRCUITS IN PARTICULAR
DE19628136C1 (en) * 1996-07-12 1997-04-24 Thyssen Stahl Ag Production of grain-orientated electrical sheets

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9802591A1 *

Also Published As

Publication number Publication date
SK283881B6 (en) 2004-04-06
SK1899A3 (en) 2000-02-14
AU3442897A (en) 1998-02-09
CZ6899A3 (en) 1999-10-13
DE19628136C1 (en) 1997-04-24
CN1078256C (en) 2002-01-23
US6153019A (en) 2000-11-28
PL331166A1 (en) 1999-06-21
RU2190025C2 (en) 2002-09-27
TW425429B (en) 2001-03-11
CZ288875B6 (en) 2001-09-12
WO1998002591A1 (en) 1998-01-22
CN1219977A (en) 1999-06-16
DE59702901D1 (en) 2001-02-15
ATE198629T1 (en) 2001-01-15
AU710053B2 (en) 1999-09-09
IN191758B (en) 2003-12-27
JP2000514506A (en) 2000-10-31
EP0910676B1 (en) 2001-01-10
JP4369536B2 (en) 2009-11-25
BR9710302A (en) 1999-08-17
ID17500A (en) 1998-01-08
PL183750B1 (en) 2002-07-31
ID19071A (en) 1998-06-11
ZA976001B (en) 1998-09-01
ES2154904T3 (en) 2001-04-16

Similar Documents

Publication Publication Date Title
EP0910676B1 (en) Process for producing a grain-orientated electrical steel sheet
EP0619376B1 (en) Method for manufacturing grain oriented electrical sheets with improved core loss
EP1025268B1 (en) Method for producing a magnetic grain oriented steel sheet with low level loss by magnetic reversal and high polarisation
DE2848867C2 (en) Application of a process for the production of non-oriented silicon steel sheets with particularly good electromagnetic properties
EP2729588B1 (en) Method for producing a grain-oriented electrical steel flat product intended for electrotechnical applications
DE2409895C3 (en) Process for the production of a silicon steel with a cube-edged structure and a permeability at H = 10 Oersted of more than 1820
DE3220255C2 (en) Process for the production of grain-oriented electrical steel sheet or strip
WO2012168253A1 (en) Method for producing a grain-oriented electrical steel sheet product intended for electrical engineering applications
DE3012188C2 (en)
DE2726045A1 (en) METHOD FOR PRODUCING SILICON STEEL WITH CUBE ON EDGE ORIENTATION
DE10221793C1 (en) Non-grain oriented electrical steel or sheet and process for its manufacture
DE1433707C3 (en) Process for the production of electrical steel sheets
DE2747660C2 (en) A method of manufacturing non-oriented silicon steel sheets with high magnetic induction and low core loss
DE3147584C2 (en) Process for the production of grain-oriented silicon steel in strip or sheet form
DE1583326A1 (en) Process for the production of a silicon iron with cube-edge orientation
EP2942417B1 (en) Method for producing high permeability grain-oriented electrical strip
DE1458974B2 (en) USE OF AN INORGANIC MIXTURE AS A FLOATING COVER ON STEEL SHEETS
DE4116240C2 (en)
DE19628137C1 (en) Grain-oriented electrical steel sheet prodn.
DE2841961C2 (en)
DE10311215B4 (en) Method for producing grain-oriented, cold-rolled electrical sheet or strip
DE1508363C3 (en) Process for the production of electrical steel sheets with a Goss texture from silicon steel
DE2508877C3 (en) Process for the production of grain-oriented electrical steel sheets or strips
DE1408980B2 (en) Process for the production of bi-oriented silicon steel sheets
DD140568A6 (en) METHOD FOR PRODUCING SILICLE-SIZED STEEL STRIP

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20000630

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSEN KRUPP STAHL AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010110

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010110

REF Corresponds to:

Ref document number: 198629

Country of ref document: AT

Date of ref document: 20010115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010118

REF Corresponds to:

Ref document number: 59702901

Country of ref document: DE

Date of ref document: 20010215

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010410

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010413

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2154904

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

26N No opposition filed
BERE Be: lapsed

Owner name: THYSSEN KRUPP STAHL A.G.

Effective date: 20010731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080730

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080729

Year of fee payment: 12

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100723

Year of fee payment: 14

Ref country code: FR

Payment date: 20100806

Year of fee payment: 14

Ref country code: DE

Payment date: 20100723

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100723

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090703

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110703

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59702901

Country of ref document: DE

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140710

Year of fee payment: 18

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 198629

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150703