EP0909955B1 - Détecteur angulaire inductif - Google Patents
Détecteur angulaire inductif Download PDFInfo
- Publication number
- EP0909955B1 EP0909955B1 EP98115961A EP98115961A EP0909955B1 EP 0909955 B1 EP0909955 B1 EP 0909955B1 EP 98115961 A EP98115961 A EP 98115961A EP 98115961 A EP98115961 A EP 98115961A EP 0909955 B1 EP0909955 B1 EP 0909955B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- angle sensor
- telecoils
- circuit
- stator
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
- G01D5/204—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
- G01D5/2086—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of two or more coils with respect to two or more other coils
- G01D5/2093—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of two or more coils with respect to two or more other coils using polyphase currents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
- G01D5/204—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
- G01D5/2073—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to two or more coils
Definitions
- the invention relates to an inductive angle sensor according to the preamble of claim 1.
- FIG. 3 From the European patent application 0 159 191 A2 is from the in FIG. 3 shown embodiment of a position sensor such an angle sensor known.
- the construction principle of this position or angle sensor is that angularly periodically offset from each other arranged series circuits are provided by secondary coils, each series circuit consists of one or more pairs of opposite-phase-connected coils. Due to the anti-phase connection, the output signal coupled from primary coils into a series circuit of secondary coils is (approximately) zero in each case.
- a movable element the position of which is to be determined relative to the coil arrangement, has a "flux coupler" which is made small in comparison with the extent of the measuring path and alters the coupling between the primary coil (s) and individual secondary coils.
- the series connection of secondary coils which contains such a influenced secondary coil, now generates a non-zero output signal.
- Each of the series circuits of secondary coils is connected to the part of a phase shifter network, so that at the output of this network there is a signal phase shifted with respect to the signal coupled into the primary coils, which depends on the position of the movable element.
- the evaluation of the time difference between the signal coupled into the primary coils and the output signal of the phase shifter network is used to determine the respective position of the movable element.
- a flux coupler is in the EP 0 159 191 A2 proposed a relatively small to the measuring path magnetic element or a conductive ring (page 4, paragraph 2) proposed, the latter being described as disadvantageous, since it causes only a weak output signal.
- a disadvantage of this angle sensor is the use of a phase shifter network, whose tolerances go into the achievable accuracy of the sensor substantially. Also, the expected from the series circuit of uninfluenced secondary coils zero signal is hardly, at least not without additional complex adjustment measures to achieve.
- angle sensors of the type mentioned above also have for each receiving coil outgoing and return lines to the loop-shaped interconnect structures.
- a large space requirement for each receiving coil on a circuit substrate for the receiving coil structures is necessary. Due to this high space requirement, the developer is in the Design of the layout of the circuit substrate for the conductor track structures limited.
- inductive angle sensor thus has the rotor element, which causes the coupling between the excitation coil and the receiving coil, even a special, periodic geometric structure, so that an angular change of the rotor element relative to the stator to a change in the coupling between the excitation coil and the reception coils and thus leads directly to an evaluable periodic signal.
- the invention has the object of providing an angle sensor of the aforementioned type, which has a stator with excitation coil and a plurality of receiving coils and a rotor element with at least one short-circuit line, so educate that it has a higher resolving power in more compact dimensions.
- connection point is electrically connected to a receiving coil with a common summation point.
- the connection of a receiving coil is then connected to the sum line - comparable to the star connection of a three-phase alternator with neutral point. Since the return lines of the individual receiving coils therefore do not have to be returned to the board, the number of receiving coils can thus be doubled with the same printed conductor density, whereby the resolving power of the angle sensor can be correspondingly increased.
- stator element comprises a multilayer printed circuit board on which the excitation coil, the receiver coils and an evaluation circuit are arranged, the receiver coils forming a periodically repeating loop structure in the circumferential direction by conductor tracks arranged on different circuit board levels. This leads to a further reduction of the size of the sensor.
- the rotor element forms a short-circuit line or has a short-circuit line which forms a periodic loop structure at least along partial regions of the rotor element in its circumferential direction.
- This periodic loop structure is described in e.g. formed substantially meandering and similar (or even resembles) so that the geometric structure of the receiving coil.
- the output voltages of a plurality of receiver coils can be used for position evaluation.
- a compensatory or, particularly advantageous, ratiometric evaluation of a plurality of coil voltages manufacturing tolerances of the inductive angle sensor or even errors due to misalignments of parts of the sensor arrangement relative to one another or even larger interferences can be well compensated.
- the support material of the rotor element but also made of plastic or a hybrid material, wherein the periodic loop structure can be realized by a metal coating or by a conductor paste.
- the receiving coils on the stator as well as the short-circuit line of the rotor element form a periodic loop structure.
- the contour of a conductor loop is given by the fact that it can be unambiguously described in a polar coordinate system and that the gradient of the curve described in the polar coordinate system df (r, ⁇ ) / d ⁇ is alternately positive and negative, with the part of the negative gradient curve being symmetrical is part of the curve with a positive gradient (eg triangular) and at the reversal points can also have a part with the gradient zero (eg formed as a meander, trapezoid).
- the output signals of individual coils are electrically inverted and also used for the evaluation, while results in an even number of receiving coils by inverting a coil output signal exactly the coil output signal of another receiving coil.
- the information content of the output signals is thus substantially increased with an odd number of receiving coils.
- the exciter coil can be designed to be particularly simple as a conductor track guided concentrically along the circumference of the stator element. However, to realize small sensor diameters, it can also be used "behind" the receiver coils, i. be arranged in a plane parallel to the receiving coil.
- the excitation circuit is, particularly advantageous, executable as an LC resonant circuit by utilizing the excitation coil as an inductance. Compared to a quartz oscillator so at least the cost of a quartz crystal can be saved.
- an LC resonant circuit - as a so-called "soft" resonant circuit - reacts more flexibly and insensitive to external electromagnetic interference.
- the evaluation circuit evaluates the conductor voltages of the receiver coils ratiometrically.
- the evaluation circuit for example, depending on the angular range, to select the receiver coil voltages to be evaluated, respectively, so as to achieve the highest possible accuracy.
- the excitation coil (2) consists of one or more conductor track turns on a printed circuit board, not shown. This conductor is electrically connected to a capacitor (C), so that together with the inductance of the conductor results in an LC resonant circuit (6).
- This LC resonant circuit (6) includes an active circuit, which controls the LC circuit such that in the excitation coil (2) results in a sinusoidal voltage and current waveform.
- the current flowing through the excitation coil (2) now generates an alternating magnetic field in the receiving coil (3), which is located within the area interspersed by the alternating magnetic field.
- magnetic induction arise at the terminals (S1, S2, S3) of the receiving coils (3) induced voltages that are supplied to an evaluation circuit, not shown here.
- the receiving coil system (3) of the angle sensor consists of three individual receiving coils (3 a, 3 b, 3 c), which are offset by a certain angle and preferably arranged on several levels of a multilayer printed circuit board. Since each receiving coil (3 a, 3 b, 3 c) in the circumferential direction of the stator (1) each 6 turns, formed by a meandering loop structure, one obtains a symmetrical coil arrangement, the turns of adjacent coils are offset by 20 ° from each other.
- the rotor element belonging to the angle sensor is located without contact at a small distance from the stator element (1) and is arranged rotatable relative to this with respect to a common axis of symmetry.
- the rotor forms at least one short-circuit line which, at least over partial regions, has a periodically repeating loop structure along the circumferential direction of the rotor element.
- the rotor element In the simplest case, the rotor element, not shown, consists of two or more conductive segments. In the alternating magnetic field of the excitation coil (2) caused by magnetic induction eddy currents in the rotor segments, which weaken the exciting field. Due to the geometric shape of the segments of the eddy current is forced to certain tracks, which cause the magnetic field in defined segments is changed over the circumference. This uneven field change means that the induced voltages in the receiver coils (3) are dependent on the relative angle of the rotor element to the receiver coils (3). The tapped at the receiving coil (3) induction voltages thus change with the relative position of the rotor element to the receiver coils (3). The voltage curve over the angle of rotation is approximately sinusoidal.
- the receiver coil (3) consists of a plurality of offset by a certain angle tracks (3 a, 3 b, 3 c), are available for the evaluation of several voltages whose signal amplitudes are phase-shifted by the angle to each other. To generate the angle information, these voltages are set in relation to one another in an evaluation circuit. Thereby The generated angular position is independent of the absolute induced voltages and thus independent of various manufacturing tolerances. Also coupled interference are largely suppressed by this ratio formation.
- the short-circuit line of the rotor element not shown, have the same loop structure or at least one loop structure with the same angular periodicity as one of the receiver coils (3). Further, suppose that at a given time, the loop structure of the rotor element would be exactly parallel to the loop structure of the receiver coil (3 a) drawn in thick outline and would be rotated further from this position by 60 °.
- the voltage profiles (U1, U2, U3) resulting here at the coil terminals (S1, S2, S3) are in the FIG. 4 shown.
- the loop of the rotor element In the initial position, the loop of the rotor element is parallel to the receiving coil (3 a). Since the loop represents a short-circuit line, the field is thus greatly weakened and in the receiving coil (3 a) induced voltage (U1) is minimal. Since the receiving coils (3 b, 3 c) are only partially covered here by the loop of the rotor element, a voltage (U 2, U 3) of medium magnitude arises in each case, the sign of which depends on the direction in which the part covered by the short-circuit line the Empfangsspulenwindung runs.
- the output signal of the receiving coil (3) about the rotation angle changes approximately sinusoidally, in accordance with the angular periodicity of the individual receiving coils (3). Larger angles than here, for example, 60 ° can be easily detected by counting the periodic repetitions of the output signals.
- FIG. 5 is under a) the structure of the three receiving coils (3 a, 3 b, 3 c) (from the FIG. 3 ) with their connections (S1, S2, S3) have been transferred to a linear route. It can be seen that the track density for the formation of the three receiving coils is quite high here.
- the same information content from the signals of the three receiving coils can also be used with a track arrangement according to the FIG. 5 b) be achieved.
- the conductor density is here only half as large as in the FIG. 5 a) , which is achieved in that at each receiving coil "the return line is saved" and in each case one terminal of each receiving coil is guided to a common summation point (7).
- This summation point (7) is comparable to the neutral point of an alternator.
- the potential of the summation point is zero in the ideal case and is therefore not supplied by the evaluation circuit or at best for the correction of disturbing influences.
- the "actual" receiver coils now result by selecting two of the "forward lines", that is, the receiver coil output signals now arise between the terminals S1 and S2 or S2 and S3 or S3 and S1, the course of these signals qualitatively the in the FIG. 4 represented corresponds.
- the particular advantage of this embodiment compared to that in the FIG. 5 a) is that with the same interconnect density a twice as high number of receiving coils can be applied to a circuit board, whereby the resolution of the inductive angle sensor according to the invention can be doubled accordingly.
- FIG. 1 shows the stator 1.
- the excitation coil (2) On a multi-layer printed circuit board (8), the excitation coil (2), the receiving coil (3) and an evaluation circuit (9) are arranged.
- the circuit of the evaluation circuit (9) further includes the oscillator for the excitation coil (2), designed as an LC resonant circuit (6), wherein the inductance is formed by the exciter coil (2).
- the evaluation circuit (9) has in addition to the terminals (10, 11) for connecting the excitation coil (2) and the receiving coil (3) nor voltage supply terminals (+ UB, ground) and a Meßsignalausgang (output), the z. B. are guided to a connector, not shown.
- the arrangement of the excitation coil (2) and the receiving coil (3) is approximately circular, wherein in the peripheral region of the arrangement, the exciter coil (2) is formed of a plurality of concentrically guided conductor turns.
- the receiving coils (3) will form a periodically repeating loop structure (eg triangular or meander-shaped) in the circumferential direction by conductor tracks arranged on different circuit board levels.
- the angular periodicity of each of these loop structures is 30 °.
- the evaluation circuit (9) rectifies the alternating voltages induced in the receiver coils (3), amplifies them and sets the output voltages of two receiver coils relative to one another for position evaluation (ratiometric evaluation).
- the apparently confusing arrangement of the receiver coils (3) results in the FIG. 1 only in that all arranged on different levels of the circuit board (8) receiving coils are projected into a common plane of the drawing.
- the dot-shaped printed conductor endings respectively indicate plated-through holes (12) between the individual levels of the printed circuit board (8).
- FIG. 2 In the FIG. 2 is a possible interconnect structure of an associated rotor element (4) shown. On a circular support (13), z. As a circuit board, a short-circuit line (5) in the form of a circumferentially of the carrier (13) is applied periodically repeating loop structure.
- the angular periodicity of this loop structure is 30 ° and is therefore the same as the angular periodicity of the individual receiving coil structures. This match is not mandatory, but expedient for the sake of the simplest possible to carry out signal evaluation.
- the entire short-circuit line (5) is formed here by a single conductor track, which is in addition to the characteristic meander shape also several times spirally interleaved.
- the beginning and end points of the short-circuit line (5) via two plated-through holes (12), z. B. on the back of the circuit board, electrically connected.
- an identically structured short-circuit line can be provided on the back of the track.
- FIG. 6 shows that in the FIG. 2 shown loop structure of the short-circuit line can be varied depending on the application.
- FIG. 6 illustrated embodiments (a - k) of the short-circuit line of the rotor element differ, inter alia, in diameter (a - f or g - k), which is particularly adapted to the size of the associated stator element.
- h has a much more complex structure, but also provides a correspondingly higher angular resolution.
- nested (a, b, g - k) and nested (c - f) conductor loops can be distinguished.
- Nested conductor loops can be realized by applying a conductive material to an insulating support, e.g. B. traces on PCB.
- an insulating support e.g. B. traces on PCB.
- the conductor loop itself form the rotor element, whereby the rotor element z. B. can be performed as a cost metallic stamped part.
- the more complex interleaved conductor loops (a - b, g - k) interact more strongly with the primary field, thus providing a more pronounced sensor output signal.
- Concentrically interleaved conductor loops are the embodiments (a, h - k), while the embodiments (b and g) show a spiral interleaving, as does the embodiment in FIG. 2 ,
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Claims (10)
- Capteur d'angle inductif
avec un élément stator (1) présentant une bobine excitatrice (2) alimentée en tension alternative périodique ainsi que plusieurs bobines réceptrices (3),
et un élément rotor (4) qui définit l'intensité du couplage inductif entre la bobine excitatrice (2) et les bobines réceptrices (3) en fonction de sa position angulaire relative par rapport à l'élément stator (1),
et un circuit d'évaluation (9) pour la détermination de la position angulaire relative de l'élément rotor (4) par rapport à l'élément stator (1) à partir des signaux de tension induits dans les bobines réceptrices (3),
l'élément rotor (4) formant au moins une conduite en court-circuit (5), laquelle forme, au moins dans des zones partielles, une structure de boucle se répétant périodiquement dans le sens circonférentiel de l'élément rotor (4),
caractérisé en ce
que l'élément rotor (4) est réalisé en tant qu'élément estampé se composant d'un matériau conducteur,
qu'un point de raccordement d'une bobine réceptrice (3a, 3b, 3c) est respectivement relié électriquement à un point cumulé (7) commun et
que l'élément stator comprend un carte de circuits imprimés multicouches sur laquelle se trouvent la bobine excitatrice (2), les bobines réceptrices (3) ainsi qu'un circuit d'évaluation (9), les bobines réceptrices (3) formant une structure de boucle se répétant périodiquement à travers différentes pistes conductives disposées sur différents niveaux de la carte de circuits imprimés respectivement dans un sens circonférentiel. - Capteur angulaire inductif selon la revendication 1, caractérisé en ce que les bobines réceptrices (3) forment une structure de boucle périodique le long, tout du moins de sections partielles, de la circonférence de l'élément stator (1).
- Capteur angulaire inductif selon la revendication 1, caractérisé en ce que la structure de boucle se compose de plusieurs spires concentriques ou emboîtées les unes dans les autres à la manière d'une spirale.
- Capteur angulaire inductif selon les revendications 1 et 2, caractérisé en ce que les structures de boucles des bobines réceptrices (3) et de la conduite en court-circuit (5) présentent la même périodicité dépendant de l'angle.
- Capteur angulaire inductif selon la revendication 1, caractérisé en ce que l'élément stator (1) présente un nombre impair de bobines réceptrices (3) s'élevant au moins à 3.
- Capteur angulaire inductif selon la revendication 1, caractérisé en ce que la bobine excitatrice (2) forme une piste conductive concentrique le long de la circonférence de l'élément stator (1).
- Capteur angulaire inductif selon la revendication 1, caractérisé en ce que le circuit excitateur est formé en tant que circuit oscillant LC (6).
- Capteur angulaire inductif selon la revendication 1, caractérisé en ce que le circuit d'évaluation (9) évalue de manière ratiométrique les tensions des conducteurs des bobines réceptrices (3).
- Capteur angulaire inductif selon la revendication 1, caractérisé en ce que les bobines réceptrices sont câblées avec les condensateurs pour former des circuits à résonance.
- Capteur angulaire inductif selon la revendication 1, caractérisé en ce que le circuit d'évaluation (9) est réalisé en tant que circuit intégré propre à une application.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19738836A DE19738836A1 (de) | 1997-09-05 | 1997-09-05 | Induktiver Winkelsensor |
DE19738836 | 1997-09-05 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0909955A2 EP0909955A2 (fr) | 1999-04-21 |
EP0909955A3 EP0909955A3 (fr) | 2002-07-24 |
EP0909955B1 true EP0909955B1 (fr) | 2009-09-23 |
Family
ID=7841295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98115961A Expired - Lifetime EP0909955B1 (fr) | 1997-09-05 | 1998-08-25 | Détecteur angulaire inductif |
Country Status (4)
Country | Link |
---|---|
US (1) | US6236199B1 (fr) |
EP (1) | EP0909955B1 (fr) |
CZ (1) | CZ296198B6 (fr) |
DE (2) | DE19738836A1 (fr) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015216009A1 (de) | 2015-08-21 | 2017-02-23 | Robert Bosch Gmbh | Messvorrichtung zur berührungslosen Ermittlung eines Drehwinkels |
DE102016202867B3 (de) * | 2016-02-24 | 2017-04-06 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102015220615A1 (de) | 2015-10-22 | 2017-04-27 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102015220617A1 (de) | 2015-10-22 | 2017-04-27 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102015220650A1 (de) | 2015-10-22 | 2017-04-27 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102015220621A1 (de) | 2015-10-22 | 2017-04-27 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102015220645A1 (de) | 2015-10-22 | 2017-04-27 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102015220624A1 (de) | 2015-10-22 | 2017-04-27 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102015220631A1 (de) | 2015-10-22 | 2017-04-27 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102016202871B3 (de) * | 2016-02-24 | 2017-06-29 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102016202877B3 (de) * | 2016-02-24 | 2017-06-29 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102016202859B3 (de) * | 2016-02-24 | 2017-06-29 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102016015720A1 (de) | 2016-02-24 | 2017-08-24 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102016203234A1 (de) | 2016-02-29 | 2017-08-31 | Robert Bosch Gmbh | Drehwinkelsensor |
WO2018002231A1 (fr) | 2016-06-30 | 2018-01-04 | Robert Bosch Gmbh | Capteur d'angle de rotation, élément stator et élément rotor pour ce dernier |
DE102016217255A1 (de) | 2016-09-09 | 2018-03-15 | Robert Bosch Gmbh | Drehwinkelsensor und Statorelement für diesen |
WO2018046258A1 (fr) | 2016-09-09 | 2018-03-15 | Robert Bosch Gmbh | Capteur de position angulaire, élément statorique et élément rotorique pour ce dernier |
DE102017200988A1 (de) | 2017-01-23 | 2018-07-26 | Robert Bosch Gmbh | Geberradanordnung und Verfahren zum Ermitteln einer Absolutwinkelposition und einer Drehrichtung |
DE102017210655A1 (de) | 2017-06-23 | 2018-12-27 | Robert Bosch Gmbh | Drehwinkelsensor |
WO2019120688A1 (fr) | 2017-12-18 | 2019-06-27 | Robert Bosch Gmbh | Dispositif de roue émettrice et procédé de détermination d'une position angulaire absolue et d'un sens de rotation |
DE102018211217A1 (de) | 2018-07-06 | 2020-01-09 | Robert Bosch Gmbh | Geberradanordnung und Verfahren zum Ermitteln einer Absolutwinkelposition und einer Drehrichtung |
DE102018211215A1 (de) | 2018-07-06 | 2020-01-09 | Robert Bosch Gmbh | Geberradanordnung und Verfahren zum Ermitteln einer Absolutwinkelposition und einer Drehrichtung |
DE102018211216A1 (de) | 2018-07-06 | 2020-01-09 | Robert Bosch Gmbh | Geberradanordnung und Verfahren zum Ermitteln einer Absolutwinkelposition und einer Drehrichtung |
DE102019218399A1 (de) * | 2019-11-27 | 2021-05-27 | Infineon Technologies Ag | Induktiver winkelsensor mit abstandswertermittlung |
DE102019220492A1 (de) * | 2019-12-20 | 2021-06-24 | Infineon Technologies Ag | Induktiver winkel- und/oder positionssensor |
DE102019220393A1 (de) * | 2019-12-20 | 2021-06-24 | Infineon Technologies Ag | Stator-package, rotor-package und induktiver winkelsensor |
US11467004B2 (en) | 2019-10-30 | 2022-10-11 | Aisin Corporation | Rotational angle sensor |
DE102021205081A1 (de) | 2021-05-19 | 2022-11-24 | Robert Bosch Gesellschaft mit beschränkter Haftung | Elektrische Maschine mit einem Rotor und einem Stator, aufweisend eine Vorrichtung zur induktiven Erfassung einer Rotorlage |
DE102021133594A1 (de) | 2021-12-17 | 2023-06-22 | HELLA GmbH & Co. KGaA | Kraftfahrzeugpedal mit einem Mittel zur Erkennung eines Pedalarmbruchs |
DE102022108718A1 (de) | 2022-04-11 | 2023-10-12 | HELLA GmbH & Co. KGaA | Verfahren zum Erkennen einer Rotorposition eines Rotorelementes, Computerprogrammprodukt sowie Sensorvorrichtung |
Families Citing this family (159)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19612830C1 (de) | 1996-03-30 | 1997-07-24 | Hella Kg Hueck & Co | Fahrpedalgeber |
DE19738834A1 (de) | 1997-09-05 | 1999-03-11 | Hella Kg Hueck & Co | Induktiver Winkelsensor für ein Kraftfahrzeug |
GB9721891D0 (en) * | 1997-10-15 | 1997-12-17 | Scient Generics Ltd | Symmetrically connected spiral transducer |
DE19920190A1 (de) | 1999-05-03 | 2000-11-09 | Hella Kg Hueck & Co | Induktiver Linearsensor und induktuver Winkelsensor |
ATE256857T1 (de) | 2000-02-01 | 2004-01-15 | Cherry Gmbh | Positionsgeber |
DE10026019B4 (de) | 2000-05-25 | 2015-03-05 | Hella Kgaa Hueck & Co. | Induktiver Positionssensor, insbesondere für ein Kraftfahrzeug |
RU2174089C1 (ru) * | 2000-10-13 | 2001-09-27 | Карклин Андрей Михайлович | Самолет с несущим фюзеляжем |
US6642711B2 (en) | 2001-01-24 | 2003-11-04 | Texas Instruments Incorporated | Digital inductive position sensor |
DE10121870B4 (de) * | 2001-05-05 | 2007-09-20 | Hella Kgaa Hueck & Co. | Induktiver planar aufgebauter Winkelsensor |
DE60227174D1 (de) * | 2001-05-21 | 2008-07-31 | Synaptics Uk Ltd | Positionssensor |
JP2002365006A (ja) * | 2001-05-24 | 2002-12-18 | Hella Kg Hueck & Co | 誘導ポジションセンサー |
DE10156238A1 (de) * | 2001-11-15 | 2003-06-05 | Hella Kg Hueck & Co Patente Ma | Induktiver Winkelsensor, insbesondere für ein Kraftfahrzeug |
US6646433B2 (en) * | 2002-02-26 | 2003-11-11 | Mitutoyo Corporation | Induced current position transducers using tape scales with apertures |
GB2403017A (en) * | 2002-03-05 | 2004-12-22 | Synaptics | Position sensor |
DE60309361T2 (de) * | 2002-03-06 | 2007-02-08 | Borgwarner Inc., Auburn Hills | Elektronische Drosselklappensteuerung mit berührlosem Positionsgeber |
US7191754B2 (en) * | 2002-03-06 | 2007-03-20 | Borgwarner Inc. | Position sensor apparatus and method |
DE10213674A1 (de) * | 2002-03-27 | 2003-10-09 | Hella Kg Hueck & Co | Rotorelement für einen induktiven Winkelsensor für ein Kraftfahrzeug |
US7907130B2 (en) * | 2002-06-05 | 2011-03-15 | Synaptics (Uk) Limited | Signal transfer method and apparatus |
DE10225011A1 (de) * | 2002-06-06 | 2003-12-18 | Hella Kg Hueck & Co | Gestanzter Rotor für Induktivsensoren |
DE10225019A1 (de) * | 2002-06-06 | 2003-12-18 | Hella Kg Hueck & Co | Läufer für Induktivsensor |
DE10231980A1 (de) * | 2002-07-15 | 2004-02-19 | Schubach, Rudolf, Dipl.-Ing. | Vorrichtung zum berührungslosen Messen einer linearen Verschiebung oder einer Drehlage |
DE10312813B4 (de) * | 2003-03-21 | 2009-08-27 | Ifm Electronic Gmbh | Induktiver Wegsensor |
GB0317370D0 (en) * | 2003-07-24 | 2003-08-27 | Synaptics Uk Ltd | Magnetic calibration array |
DE20313045U1 (de) | 2003-08-23 | 2003-10-23 | Hella KG Hueck & Co., 59557 Lippstadt | Rotor für Induktivsensoren und Induktivsensor |
GB0319945D0 (en) * | 2003-08-26 | 2003-09-24 | Synaptics Uk Ltd | Inductive sensing system |
ITBO20030530A1 (it) * | 2003-09-15 | 2005-03-16 | Magneti Marelli Powertrain Spa | Valvola a farfalla servoassistita provvista di una molla a flessione e di una molla a spirale per stabilire la posizione di limp-home |
ITBO20030532A1 (it) * | 2003-09-15 | 2005-03-16 | Magneti Marelli Powertrain Spa | Metodo per la realizzazione di una valvola a farfalla a |
US7538544B2 (en) * | 2004-04-09 | 2009-05-26 | Ksr Technologies Co. | Inductive position sensor |
US7276897B2 (en) * | 2004-04-09 | 2007-10-02 | Ksr International Co. | Inductive position sensor |
JP4476717B2 (ja) * | 2004-06-30 | 2010-06-09 | オークマ株式会社 | 電磁誘導型位置センサ |
GB0421383D0 (en) * | 2004-09-27 | 2004-10-27 | Melexis Nv | Monitoring device |
US7221154B2 (en) * | 2005-04-07 | 2007-05-22 | Ksr International Co. | Inductive position sensor with common mode corrective winding and simplified signal conditioning |
US7292026B2 (en) | 2005-04-08 | 2007-11-06 | Ksr International Co. | Signal conditioning system for inductive position sensor |
EP1715298B1 (fr) * | 2005-04-19 | 2017-07-19 | Mitutoyo Corporation | Encodeur rotatif absolu et micromètre |
US7449878B2 (en) * | 2005-06-27 | 2008-11-11 | Ksr Technologies Co. | Linear and rotational inductive position sensor |
PL1854978T3 (pl) * | 2006-05-11 | 2009-06-30 | Magneti Marelli Spa | Zawór dławiący silnika spalania wewnętrznego |
DE202006007778U1 (de) * | 2006-05-16 | 2007-09-20 | Hella Kgaa Hueck & Co. | Rotor für einen induktiven Winkelsensor |
US7714570B2 (en) | 2006-06-21 | 2010-05-11 | Allegro Microsystems, Inc. | Methods and apparatus for an analog rotational sensor having magnetic sensor elements |
JP5147213B2 (ja) * | 2006-10-11 | 2013-02-20 | 日立オートモティブシステムズ株式会社 | インダクタンス式回転角度検出装置及びそれを備えたモータ駆動式の絞り弁制御装置 |
GB2461448B (en) | 2007-05-10 | 2011-08-31 | Cambridge Integrated Circuits Ltd | Transducer |
EP2037101A1 (fr) | 2007-09-13 | 2009-03-18 | Magneti Marelli Powertrain S.p.A. | Papillon des gaz pour moteur à combustion interne |
EP2042708A1 (fr) | 2007-09-26 | 2009-04-01 | Magneti Marelli Powertrain S.p.A. | Vanne à papillon pour un moteur à combustion interne |
ATE454745T1 (de) * | 2007-11-28 | 2010-01-15 | Magneti Marelli Spa | Verfahren zur steuerung eines elektromotors mithilfe der pbm-technik |
EP2075441B1 (fr) * | 2007-11-28 | 2009-11-18 | Magneti Marelli S.p.A. | Procédé de fabrication et de contrôle de vanne papillon pour moteur à combustion interne |
US7911354B2 (en) * | 2007-12-12 | 2011-03-22 | Ksr Technologies Co. | Inductive position sensor |
CN101918796B (zh) * | 2008-01-04 | 2012-09-05 | 阿莱戈微系统公司 | 用于角度传感器的方法和装置 |
DE102008006865B4 (de) * | 2008-01-31 | 2024-02-29 | HELLA GmbH & Co. KGaA | Induktiver Drehmomentsensor |
DE102008012923A1 (de) * | 2008-03-06 | 2009-09-10 | Hella Kgaa Hueck & Co. | Induktiver Winkelsensor |
DE102008012922B4 (de) * | 2008-03-06 | 2019-05-29 | HELLA GmbH & Co. KGaA | Induktiver Winkelsensor |
DE202008018076U1 (de) | 2008-10-21 | 2011-08-23 | Hella Kgaa Hueck & Co. | Drehwinkelbestimmungsvorrichtung, insbesondere für die Lenkungswelle eines Kraftfahrzeuges |
EP2180296A1 (fr) | 2008-10-21 | 2010-04-28 | Hella KG Hueck & Co. | Dispositif de détermination d'un angle de rotation, notamment pour un arbre de direction d'un véhicule automobile |
US20100156397A1 (en) * | 2008-12-23 | 2010-06-24 | Hitoshi Yabusaki | Methods and apparatus for an angle sensor for a through shaft |
FR2947048B1 (fr) | 2009-06-23 | 2011-07-15 | Electricifil Automotive | Capteur de position angulaire. |
US8729887B2 (en) * | 2009-11-09 | 2014-05-20 | Aisan Kogyo Kabushiki Kaisha | Rotation angle sensor |
EP2420803A1 (fr) * | 2010-08-13 | 2012-02-22 | BALLUFF GmbH | Dispositif de saisie de l'angle de distorsion d'un arbre et/ou d'un couple situé sur l'arbre et procédé de fonctionnement du dispositif |
GB2488389C (en) | 2010-12-24 | 2018-08-22 | Cambridge Integrated Circuits Ltd | Position sensing transducer |
DE102011004348A1 (de) * | 2011-02-17 | 2012-08-23 | Beckhoff Automation Gmbh | Verfahren und Positionserfassungsvorrichtung zum Erfassen einer Position eines beweglichen Elements einer Antriebsvorrichtung |
US8786279B2 (en) | 2011-02-25 | 2014-07-22 | Allegro Microsystems, Llc | Circuit and method for processing signals generated by a plurality of sensors |
US9062990B2 (en) | 2011-02-25 | 2015-06-23 | Allegro Microsystems, Llc | Circular vertical hall magnetic field sensing element and method with a plurality of continuous output signals |
US8729890B2 (en) | 2011-04-12 | 2014-05-20 | Allegro Microsystems, Llc | Magnetic angle and rotation speed sensor with continuous and discontinuous modes of operation based on rotation speed of a target object |
US8860410B2 (en) | 2011-05-23 | 2014-10-14 | Allegro Microsystems, Llc | Circuits and methods for processing a signal generated by a plurality of measuring devices |
US8890518B2 (en) | 2011-06-08 | 2014-11-18 | Allegro Microsystems, Llc | Arrangements for self-testing a circular vertical hall (CVH) sensing element and/or for self-testing a magnetic field sensor that uses a circular vertical hall (CVH) sensing element |
US8793085B2 (en) | 2011-08-19 | 2014-07-29 | Allegro Microsystems, Llc | Circuits and methods for automatically adjusting a magnetic field sensor in accordance with a speed of rotation sensed by the magnetic field sensor |
US8922206B2 (en) | 2011-09-07 | 2014-12-30 | Allegro Microsystems, Llc | Magnetic field sensing element combining a circular vertical hall magnetic field sensing element with a planar hall element |
US9285438B2 (en) | 2011-09-28 | 2016-03-15 | Allegro Microsystems, Llc | Circuits and methods for processing signals generated by a plurality of magnetic field sensing elements |
CN103036386B (zh) * | 2011-10-06 | 2015-07-15 | 爱三工业株式会社 | 角度传感器 |
US9046383B2 (en) | 2012-01-09 | 2015-06-02 | Allegro Microsystems, Llc | Systems and methods that use magnetic field sensors to identify positions of a gear shift lever |
US9163926B2 (en) * | 2012-01-25 | 2015-10-20 | Mitutoyo Corporation | Inductive detection type rotary encoder |
US9182456B2 (en) | 2012-03-06 | 2015-11-10 | Allegro Microsystems, Llc | Magnetic field sensor for sensing rotation of an object |
DE102012008699B4 (de) | 2012-04-28 | 2014-04-03 | Wolfgang Kühnel | Verfahren zur Vergrößerung der Meßreichweite einer Vorrichtung zur berührungslosen Messung eines Abstands |
US10215550B2 (en) | 2012-05-01 | 2019-02-26 | Allegro Microsystems, Llc | Methods and apparatus for magnetic sensors having highly uniform magnetic fields |
GB2503006B (en) | 2012-06-13 | 2017-08-09 | Cambridge Integrated Circuits Ltd | Position sensing transducer |
US9528858B2 (en) | 2012-11-13 | 2016-12-27 | Semiconductor Components Industries, Llc | Inductive sensor |
US9606190B2 (en) | 2012-12-21 | 2017-03-28 | Allegro Microsystems, Llc | Magnetic field sensor arrangements and associated methods |
US8749005B1 (en) | 2012-12-21 | 2014-06-10 | Allegro Microsystems, Llc | Magnetic field sensor and method of fabricating a magnetic field sensor having a plurality of vertical hall elements arranged in at least a portion of a polygonal shape |
US9417295B2 (en) | 2012-12-21 | 2016-08-16 | Allegro Microsystems, Llc | Circuits and methods for processing signals generated by a circular vertical hall (CVH) sensing element in the presence of a multi-pole magnet |
FR3000198B1 (fr) * | 2012-12-21 | 2015-07-24 | Continental Automotive France | Capteur de position inductif |
JP6239824B2 (ja) * | 2013-01-18 | 2017-11-29 | 株式会社ミツトヨ | 誘導検出型ロータリエンコーダ |
US9548443B2 (en) | 2013-01-29 | 2017-01-17 | Allegro Microsystems, Llc | Vertical Hall Effect element with improved sensitivity |
FR3002034B1 (fr) * | 2013-02-12 | 2015-03-20 | Continental Automotive France | Capteur de position inductif |
US9377285B2 (en) | 2013-02-13 | 2016-06-28 | Allegro Microsystems, Llc | Magnetic field sensor and related techniques that provide varying current spinning phase sequences of a magnetic field sensing element |
US9389060B2 (en) | 2013-02-13 | 2016-07-12 | Allegro Microsystems, Llc | Magnetic field sensor and related techniques that provide an angle error correction module |
US9099638B2 (en) | 2013-03-15 | 2015-08-04 | Allegro Microsystems, Llc | Vertical hall effect element with structures to improve sensitivity |
US9400164B2 (en) | 2013-07-22 | 2016-07-26 | Allegro Microsystems, Llc | Magnetic field sensor and related techniques that provide an angle correction module |
US9312473B2 (en) | 2013-09-30 | 2016-04-12 | Allegro Microsystems, Llc | Vertical hall effect sensor |
US9574867B2 (en) | 2013-12-23 | 2017-02-21 | Allegro Microsystems, Llc | Magnetic field sensor and related techniques that inject an error correction signal into a signal channel to result in reduced error |
US10120042B2 (en) | 2013-12-23 | 2018-11-06 | Allegro Microsystems, Llc | Magnetic field sensor and related techniques that inject a synthesized error correction signal into a signal channel to result in reduced error |
US9547048B2 (en) | 2014-01-14 | 2017-01-17 | Allegro Micosystems, LLC | Circuit and method for reducing an offset component of a plurality of vertical hall elements arranged in a circle |
US9753097B2 (en) | 2014-05-05 | 2017-09-05 | Allegro Microsystems, Llc | Magnetic field sensors and associated methods with reduced offset and improved accuracy |
US9448288B2 (en) | 2014-05-20 | 2016-09-20 | Allegro Microsystems, Llc | Magnetic field sensor with improved accuracy resulting from a digital potentiometer |
DE102015011634B4 (de) | 2014-09-19 | 2023-01-12 | Elmos Semiconductor Se | Vorrichtung zum ISO26262 konformen Betrieb eines induktiven Drehwinkelsensors durch Erkennung asymmetrischer Fehlerzustände |
DE102014220458A1 (de) | 2014-10-09 | 2016-04-14 | Robert Bosch Gmbh | Sensoranordnung zur berührungslosen Erfassung von Drehwinkeln an einem rotierenden Bauteil |
DE102014220446A1 (de) | 2014-10-09 | 2016-04-14 | Robert Bosch Gmbh | Sensoranordnung zur berührungslosen Erfassung von Drehwinkeln an einem rotierenden Bauteil |
DE102014220454A1 (de) | 2014-10-09 | 2016-04-14 | Robert Bosch Gmbh | Sensoranordnung zur berührungslosen Erfassung von Drehwinkeln an einem rotierenden Bauteil |
US9823092B2 (en) | 2014-10-31 | 2017-11-21 | Allegro Microsystems, Llc | Magnetic field sensor providing a movement detector |
US9638766B2 (en) | 2014-11-24 | 2017-05-02 | Allegro Microsystems, Llc | Magnetic field sensor with improved accuracy resulting from a variable potentiometer and a gain circuit |
US9684042B2 (en) | 2015-02-27 | 2017-06-20 | Allegro Microsystems, Llc | Magnetic field sensor with improved accuracy and method of obtaining improved accuracy with a magnetic field sensor |
US11163022B2 (en) | 2015-06-12 | 2021-11-02 | Allegro Microsystems, Llc | Magnetic field sensor for angle detection with a phase-locked loop |
DE102015216479A1 (de) | 2015-08-28 | 2017-03-02 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Bestimmen einer Sensorspuleninduktivität |
DE102015119530A1 (de) * | 2015-11-12 | 2017-05-18 | Hella Kgaa Hueck & Co. | Vorrichtung zur Erfassung einer Drehbewegung |
US10571304B2 (en) * | 2015-11-25 | 2020-02-25 | Johnson Controls Technology Company | HVAC actuator with inductive position sensing |
US10481220B2 (en) | 2016-02-01 | 2019-11-19 | Allegro Microsystems, Llc | Circular vertical hall (CVH) sensing element with signal processing and arctangent function |
US9739848B1 (en) | 2016-02-01 | 2017-08-22 | Allegro Microsystems, Llc | Circular vertical hall (CVH) sensing element with sliding integration |
US9739847B1 (en) | 2016-02-01 | 2017-08-22 | Allegro Microsystems, Llc | Circular vertical hall (CVH) sensing element with signal processing |
DE102016202403A1 (de) * | 2016-02-17 | 2017-08-17 | Continental Teves Ag & Co. Ohg | Sensor |
DE102016202402A1 (de) | 2016-02-17 | 2017-08-17 | Continental Teves Ag & Co. Ohg | Sensor |
US10385964B2 (en) | 2016-06-08 | 2019-08-20 | Allegro Microsystems, Llc | Enhanced neutral gear sensor |
US10585147B2 (en) | 2016-06-14 | 2020-03-10 | Allegro Microsystems, Llc | Magnetic field sensor having error correction |
US10415952B2 (en) | 2016-10-28 | 2019-09-17 | Microsemi Corporation | Angular position sensor and associated method of use |
DE102016223901A1 (de) * | 2016-12-01 | 2018-06-07 | Robert Bosch Gmbh | Beförderungsvorrichtung mit einem Stator und einem Transportkörper zur kontrollierten Beförderung des Transportkörpers relativ zum Stator |
CN106793452B (zh) * | 2016-12-02 | 2024-01-26 | 安徽沃巴弗电子科技有限公司 | 一种抗干扰装置 |
US10739164B2 (en) | 2017-01-27 | 2020-08-11 | Allegro Microsystems, Llc | Circuit for detecting motion of an object |
DE102017103122A1 (de) | 2017-02-16 | 2018-08-16 | Abb Schweiz Ag | Verfahren zum Überprüfen der Plausibilität eines Resolver-Ausgangssignals |
US10495701B2 (en) | 2017-03-02 | 2019-12-03 | Allegro Microsystems, Llc | Circular vertical hall (CVH) sensing element with DC offset removal |
DE102017118457B4 (de) * | 2017-08-14 | 2021-06-10 | Danfoss Power Solutions Aps | Lenkhandradwinkelsensoranordnung einer hydraulischen Lenkanordnung |
DE112018004187T5 (de) * | 2017-08-15 | 2020-04-30 | Ksr Ip Holdings Llc | Systeme und Verfahren für ein Korrigieren von nicht-sinus-artigen Signalen, die von nicht-kreisförmigen Kopplern erzeugt werden |
KR20200035054A (ko) * | 2017-08-21 | 2020-04-01 | 케이에스알 아이피 홀딩스 엘엘씨. | 중심 신호 프로세서를 가지는 유도형 센서 모듈 조립체 |
US10444037B2 (en) | 2017-08-22 | 2019-10-15 | Semiconductor Components Industries, Llc | Inductive position sensor |
KR20200037329A (ko) * | 2017-08-29 | 2020-04-08 | 케이에스알 아이피 홀딩스 엘엘씨. | 고속 유도성 센서로부터 생성된 비-정현 신호를 정정하는 시스템 및 방법 |
DE102017221761A1 (de) | 2017-12-04 | 2019-06-06 | Robert Bosch Gmbh | Sensorsystem zur Bestimmung mindestens einer Rotationseigenschaft eines um mindestens eine Rotationsachse rotierenden Elements |
DE102017223087A1 (de) | 2017-12-18 | 2019-06-19 | Robert Bosch Gmbh | Geberradanordnung und Verfahren zum Ermitteln einer Absolutwinkelposition und einer Drehrichtung |
EP3514481B1 (fr) | 2018-01-22 | 2021-12-22 | Melexis Technologies SA | Ensemble avec cible à couplage de flux |
WO2019146637A1 (fr) | 2018-01-23 | 2019-08-01 | 株式会社アミテック | Dispositif de détection de rotation inductif |
DE102018102094A1 (de) * | 2018-01-31 | 2019-08-01 | Thyssenkrupp Ag | Induktiver Winkelsensor für eine Kraftfahrzeuglenkung |
US10921155B2 (en) | 2018-02-02 | 2021-02-16 | Microsemi Corporation | Multi cycle dual redundant angular position sensing mechanism and associated method of use for precise angular displacement measurement |
IT201800003347A1 (it) | 2018-03-07 | 2019-09-07 | Magneti Marelli Spa | Valvola a farfalla per un motore a combustione interna con la possibilita' di regolare la posizione di limp-home e relativo metodo di regolazione della posizione di limp-home |
FR3079298B1 (fr) * | 2018-03-23 | 2020-11-27 | Safran Landing Systems | Dispositif de mesure d'une position d'un corps mobile par rapport a un corps fixe |
DE102018213249A1 (de) | 2018-08-07 | 2020-02-13 | Robert Bosch Gmbh | Sensorsystem zur Bestimmung mindestens einer Rotationseigenschaft eines rotierenden Elements |
DE102018213402A1 (de) | 2018-08-09 | 2020-02-13 | Robert Bosch Gmbh | Induktiver Positionssensor, insbesondere zur Erfassung mindestens einer Rotationseigenschaft eines rotierenden Elements |
DE102018213414A1 (de) | 2018-08-09 | 2020-02-13 | Robert Bosch Gmbh | Sensorsystem zur Bestimmung mindestens einer Rotationseigenschaft eines rotierenden Elements |
US11112274B2 (en) | 2018-08-30 | 2021-09-07 | Integrated Device Technology, Inc. | Fully redundant position sensor |
US10837847B2 (en) | 2018-10-05 | 2020-11-17 | Microsemi Corporation | Angular rotation sensor |
US10823586B2 (en) | 2018-12-26 | 2020-11-03 | Allegro Microsystems, Llc | Magnetic field sensor having unequally spaced magnetic field sensing elements |
US11460326B2 (en) | 2019-08-19 | 2022-10-04 | KYOCERA AVX Components (Werne), GmbH | Inductive position sensing apparatus and method for the same |
EP3800716B1 (fr) | 2019-10-03 | 2022-05-04 | Marelli Europe S.p.A. | Papillon des gaz pour régler l'introduction d'un gaz dans une pile à combustible et véhicule à entraînement électrique comprenant le papillon des gaz |
US11280637B2 (en) | 2019-11-14 | 2022-03-22 | Allegro Microsystems, Llc | High performance magnetic angle sensor |
US11237020B2 (en) | 2019-11-14 | 2022-02-01 | Allegro Microsystems, Llc | Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet |
WO2021104642A1 (fr) * | 2019-11-29 | 2021-06-03 | HELLA GmbH & Co. KGaA | Capteur de mouvement linéaire |
US20230146396A1 (en) * | 2020-04-06 | 2023-05-11 | Shiro Shimahara | Resolver |
DE102020110666A1 (de) | 2020-04-20 | 2021-10-21 | Schaeffler Technologies AG & Co. KG | Sensoranordnung zur Erfassung eines Drehmoments und einer Winkelstellung |
DE102020204951B4 (de) | 2020-04-20 | 2022-05-25 | Infineon Technologies Ag | Vorrichtung mit einem chip-package und überschneidungslosem spulen-layout |
DE102020205202A1 (de) | 2020-04-23 | 2021-10-28 | Dr. Johannes Heidenhain Gesellschaft Mit Beschränkter Haftung | Induktive Winkelmesseinrichtung |
DE102020206396A1 (de) | 2020-05-20 | 2021-11-25 | Infineon Technologies Ag | Induktiver winkelsensor mit zwei zueinander versetzt angeordneten pickup-spulenanordnungen |
US11940342B2 (en) * | 2020-08-18 | 2024-03-26 | Infineon Technologies Ag | Inductive torque sensor for rotating shafts |
EP3865825B1 (fr) | 2020-09-07 | 2023-05-31 | Melexis Technologies SA | Agencement de capteur angulaire inductif, système et moteur |
DE102020212557A1 (de) | 2020-10-05 | 2022-04-07 | Thyssenkrupp Ag | Sensorvorrichtung zur Erfassung eines Drehwinkels |
US11656100B2 (en) | 2020-10-08 | 2023-05-23 | Pulse Innovation Labs, Inc. | Angular displacement sensor |
US11802922B2 (en) | 2021-01-13 | 2023-10-31 | Allegro Microsystems, Llc | Circuit for reducing an offset component of a plurality of vertical hall elements arranged in one or more circles |
DE112021007398T5 (de) | 2021-03-25 | 2024-01-04 | Microchip Technology Incorporated | Erfassungsspule zur induktiven Drehpositionsmessung und zugehörige Vorrichtungen, Systeme und Verfahren |
US11885649B2 (en) | 2021-04-09 | 2024-01-30 | Semiconductor Components Industries, Llc | Rotor for inductive slip, eccentricity, and tilt sensing |
US11473935B1 (en) | 2021-04-16 | 2022-10-18 | Allegro Microsystems, Llc | System and related techniques that provide an angle sensor for sensing an angle of rotation of a ferromagnetic screw |
US12111188B2 (en) | 2021-06-11 | 2024-10-08 | Microchip Technology Incorporated | Sense coil for inductive linear-position sensing, and related devices, systems, and methods |
US12031817B2 (en) | 2021-08-05 | 2024-07-09 | Microchip Technology Incorporated | Inductive angular-position sensors, and related devices, systems, and methods |
WO2023147851A1 (fr) | 2022-02-02 | 2023-08-10 | Schunk Sintermetalltechnik Gmbh | Élément émetteur pour système de capteur de position |
DE102022212914A1 (de) | 2022-11-30 | 2024-06-06 | Robert Bosch Gesellschaft mit beschränkter Haftung | Induktive Sensoranordnung |
DE102022131780A1 (de) | 2022-11-30 | 2024-06-06 | HELLA GmbH & Co. KGaA | Induktiver Drehwinkelsensor |
DE102022132058A1 (de) | 2022-12-02 | 2024-06-13 | HELLA GmbH & Co. KGaA | Linearer, induktiver Positions- und Bruchdetektionssensor |
DE102022132346A1 (de) | 2022-12-06 | 2024-06-06 | HELLA GmbH & Co. KGaA | Drehgeber |
DE202022002891U1 (de) | 2022-12-21 | 2023-12-23 | Swoboda Schorndorf KG | Geberrad für einen induktiven Drehwinkelsensor, induktiver Drehwinkelsensor mit einem solchen Geberrad sowie System mit einem induktiven Drehwinkelsensor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4737698A (en) * | 1984-10-19 | 1988-04-12 | Kollmorgan Technologies Corporation | Position and speed sensors |
US5406155A (en) * | 1992-06-03 | 1995-04-11 | Trw Inc. | Method and apparatus for sensing relative position between two relatively rotatable members |
US5625239A (en) * | 1992-06-03 | 1997-04-29 | Trw Inc. | Method and apparatus for sensing relative position between two relatively rotatable members using concentric rings |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2148703A1 (de) * | 1971-09-29 | 1973-04-05 | Dale Brocker | Drehzahlmesser fuer eine ultrazentrifuge oder dgl |
SE406642B (sv) * | 1977-02-16 | 1979-02-19 | Aga Ab | Elektromekanisk legesgivare |
JPS5927262A (ja) * | 1982-08-05 | 1984-02-13 | Nippon Soken Inc | 回転検出装置 |
US4697144A (en) | 1984-04-19 | 1987-09-29 | Verify Electronics Limited | Position sensing apparatus |
USRE32857E (en) * | 1984-08-21 | 1989-02-07 | Resolvex Corporation | Brushless tachometer/synchro |
DE3642607A1 (de) * | 1986-12-13 | 1988-06-23 | Bosch Gmbh Robert | Positionsmesswertgeber |
DE3642678A1 (de) * | 1986-12-13 | 1988-06-16 | Bosch Gmbh Robert | Messeinrichtung fuer drehwinkel und/oder drehgeschwindigkeit |
US4816759A (en) * | 1987-10-28 | 1989-03-28 | Kaman Corporation | Inductive sensor for detecting displacement of adjacent surfaces |
DE3919749A1 (de) * | 1989-06-16 | 1991-01-03 | Elektroteile Gmbh | Induktiver drehwinkelsensor |
US5239288A (en) * | 1990-03-09 | 1993-08-24 | Transicoil Inc. | Resolver having planar windings |
DE4016434A1 (de) * | 1990-05-22 | 1991-11-28 | Bosch Gmbh Robert | Kapazitiver stellungsgeber |
FR2680242B1 (fr) * | 1991-08-09 | 1993-10-01 | Gec Alsthom Sa | Capteur reluctant homopolaire. |
DE4335701C2 (de) * | 1993-10-20 | 1996-04-04 | Ifm Electronic Gmbh | Induktive Winkelmeßeinrichtung |
US5594434A (en) * | 1994-10-04 | 1997-01-14 | Rockwell International Corporation | Angular sensing system |
DE19504307A1 (de) * | 1995-02-09 | 1996-08-14 | Siemens Ag | Einrichtung zur Erfassung von Position und/oder Geschwindigkeit eines beweglichen Geräteteils |
EP0743508A2 (fr) * | 1995-05-16 | 1996-11-20 | Mitutoyo Corporation | Capteur de position employant un courant d'induction |
JP4002308B2 (ja) * | 1995-08-10 | 2007-10-31 | 株式会社アミテック | 誘導型回転位置検出装置 |
-
1997
- 1997-09-05 DE DE19738836A patent/DE19738836A1/de not_active Withdrawn
-
1998
- 1998-08-25 DE DE59814393T patent/DE59814393D1/de not_active Expired - Lifetime
- 1998-08-25 EP EP98115961A patent/EP0909955B1/fr not_active Expired - Lifetime
- 1998-09-04 US US09/148,705 patent/US6236199B1/en not_active Expired - Lifetime
- 1998-09-04 CZ CZ0284298A patent/CZ296198B6/cs not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4737698A (en) * | 1984-10-19 | 1988-04-12 | Kollmorgan Technologies Corporation | Position and speed sensors |
US5406155A (en) * | 1992-06-03 | 1995-04-11 | Trw Inc. | Method and apparatus for sensing relative position between two relatively rotatable members |
US5625239A (en) * | 1992-06-03 | 1997-04-29 | Trw Inc. | Method and apparatus for sensing relative position between two relatively rotatable members using concentric rings |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015216009B4 (de) | 2015-08-21 | 2023-03-16 | Robert Bosch Gmbh | Messvorrichtung zur berührungslosen Ermittlung eines Drehwinkels |
DE102015216009A1 (de) | 2015-08-21 | 2017-02-23 | Robert Bosch Gmbh | Messvorrichtung zur berührungslosen Ermittlung eines Drehwinkels |
DE102015220615A1 (de) | 2015-10-22 | 2017-04-27 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102015220617A1 (de) | 2015-10-22 | 2017-04-27 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102015220650A1 (de) | 2015-10-22 | 2017-04-27 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102015220621A1 (de) | 2015-10-22 | 2017-04-27 | Robert Bosch Gmbh | Drehwinkelsensor |
WO2017067840A1 (fr) | 2015-10-22 | 2017-04-27 | Robert Bosch Gmbh | Capteur d'angle de rotation |
DE102015220645A1 (de) | 2015-10-22 | 2017-04-27 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102015220624A1 (de) | 2015-10-22 | 2017-04-27 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102015220631A1 (de) | 2015-10-22 | 2017-04-27 | Robert Bosch Gmbh | Drehwinkelsensor |
CN108351224A (zh) * | 2015-10-22 | 2018-07-31 | 罗伯特·博世有限公司 | 旋转角度传感器 |
DE102016202871B3 (de) * | 2016-02-24 | 2017-06-29 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102016202859B3 (de) * | 2016-02-24 | 2017-06-29 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102016015720A1 (de) | 2016-02-24 | 2017-08-24 | Robert Bosch Gmbh | Drehwinkelsensor |
WO2017144638A1 (fr) | 2016-02-24 | 2017-08-31 | Robert Bosch Gmbh | Capteur d'angle de rotation |
WO2017144640A1 (fr) | 2016-02-24 | 2017-08-31 | Robert Bosch Gmbh | Capteur d'angle de rotation |
WO2017144641A1 (fr) | 2016-02-24 | 2017-08-31 | Robert Bosch Gmbh | Capteur d'angle de rotation |
DE102016202877B3 (de) * | 2016-02-24 | 2017-06-29 | Robert Bosch Gmbh | Drehwinkelsensor |
DE102016202867B3 (de) * | 2016-02-24 | 2017-04-06 | Robert Bosch Gmbh | Drehwinkelsensor |
US11137267B2 (en) | 2016-02-24 | 2021-10-05 | Robert Bosch Gmbh | Rotational angle sensor |
US10866121B2 (en) | 2016-02-24 | 2020-12-15 | Robert Bosch Gmbh | Rotational angle sensor |
US10845216B2 (en) | 2016-02-24 | 2020-11-24 | Robert Bosch Gmbh | Rotational angle sensor |
US11150111B2 (en) | 2016-02-29 | 2021-10-19 | Robert Bosch Gmbh | Rotational angle sensor |
DE102016203234A1 (de) | 2016-02-29 | 2017-08-31 | Robert Bosch Gmbh | Drehwinkelsensor |
WO2017148917A1 (fr) | 2016-02-29 | 2017-09-08 | Robert Bosch Gmbh | Capteur d'angle de rotation |
DE102016203234B4 (de) * | 2016-02-29 | 2021-02-11 | Robert Bosch Gmbh | Drehwinkelsensor |
WO2018002231A1 (fr) | 2016-06-30 | 2018-01-04 | Robert Bosch Gmbh | Capteur d'angle de rotation, élément stator et élément rotor pour ce dernier |
DE102016217255A1 (de) | 2016-09-09 | 2018-03-15 | Robert Bosch Gmbh | Drehwinkelsensor und Statorelement für diesen |
WO2018046256A1 (fr) | 2016-09-09 | 2018-03-15 | Robert Bosch Gmbh | Capteur de position angulaire et élément statorique pour celui-ci |
DE102016217254B4 (de) | 2016-09-09 | 2022-02-17 | Robert Bosch Gmbh | Drehwinkelsensor, Statorelement sowie Rotorelement für diesen |
DE102016217254A1 (de) | 2016-09-09 | 2018-03-15 | Robert Bosch Gmbh | Drehwinkelsensor, Statorelement sowie Rotorelement für diesen |
WO2018046258A1 (fr) | 2016-09-09 | 2018-03-15 | Robert Bosch Gmbh | Capteur de position angulaire, élément statorique et élément rotorique pour ce dernier |
DE102017200988A1 (de) | 2017-01-23 | 2018-07-26 | Robert Bosch Gmbh | Geberradanordnung und Verfahren zum Ermitteln einer Absolutwinkelposition und einer Drehrichtung |
WO2018133978A1 (fr) | 2017-01-23 | 2018-07-26 | Robert Bosch Gmbh | Dispositif de roue de détection et procédé de détermination d'une position angulaire absolue et d'un sens de rotation |
WO2018234108A1 (fr) | 2017-06-23 | 2018-12-27 | Robert Bosch Gmbh | Capteur d'angle de rotation |
DE102017210655B4 (de) | 2017-06-23 | 2023-12-21 | Robert Bosch Gmbh | Drehwinkelsensor |
US11193796B2 (en) | 2017-06-23 | 2021-12-07 | Robert Bosch Gmbh | Rotational angle sensor |
DE102017210655A1 (de) | 2017-06-23 | 2018-12-27 | Robert Bosch Gmbh | Drehwinkelsensor |
WO2019120688A1 (fr) | 2017-12-18 | 2019-06-27 | Robert Bosch Gmbh | Dispositif de roue émettrice et procédé de détermination d'une position angulaire absolue et d'un sens de rotation |
DE102018211216A1 (de) | 2018-07-06 | 2020-01-09 | Robert Bosch Gmbh | Geberradanordnung und Verfahren zum Ermitteln einer Absolutwinkelposition und einer Drehrichtung |
DE102018211215A1 (de) | 2018-07-06 | 2020-01-09 | Robert Bosch Gmbh | Geberradanordnung und Verfahren zum Ermitteln einer Absolutwinkelposition und einer Drehrichtung |
DE102018211217A1 (de) | 2018-07-06 | 2020-01-09 | Robert Bosch Gmbh | Geberradanordnung und Verfahren zum Ermitteln einer Absolutwinkelposition und einer Drehrichtung |
US11467004B2 (en) | 2019-10-30 | 2022-10-11 | Aisin Corporation | Rotational angle sensor |
DE102019218399A1 (de) * | 2019-11-27 | 2021-05-27 | Infineon Technologies Ag | Induktiver winkelsensor mit abstandswertermittlung |
US11543231B2 (en) | 2019-11-27 | 2023-01-03 | Infineon Technologies Ag | Inductive angle sensor with clearance value ascertainment |
DE102019220492A1 (de) * | 2019-12-20 | 2021-06-24 | Infineon Technologies Ag | Induktiver winkel- und/oder positionssensor |
DE102019220393A1 (de) * | 2019-12-20 | 2021-06-24 | Infineon Technologies Ag | Stator-package, rotor-package und induktiver winkelsensor |
DE102021205081A1 (de) | 2021-05-19 | 2022-11-24 | Robert Bosch Gesellschaft mit beschränkter Haftung | Elektrische Maschine mit einem Rotor und einem Stator, aufweisend eine Vorrichtung zur induktiven Erfassung einer Rotorlage |
DE102021133594A1 (de) | 2021-12-17 | 2023-06-22 | HELLA GmbH & Co. KGaA | Kraftfahrzeugpedal mit einem Mittel zur Erkennung eines Pedalarmbruchs |
WO2023110496A1 (fr) | 2021-12-17 | 2023-06-22 | HELLA GmbH & Co. KGaA | Pédale de véhicule automobile comprenant un moyen de détection d'une rupture du bras de pédale |
DE102021133594B4 (de) | 2021-12-17 | 2024-06-20 | HELLA GmbH & Co. KGaA | Kraftfahrzeugpedal mit einem Mittel zur Erkennung eines Pedalarmbruchs |
DE102022108718A1 (de) | 2022-04-11 | 2023-10-12 | HELLA GmbH & Co. KGaA | Verfahren zum Erkennen einer Rotorposition eines Rotorelementes, Computerprogrammprodukt sowie Sensorvorrichtung |
WO2023198477A1 (fr) | 2022-04-11 | 2023-10-19 | HELLA GmbH & Co. KGaA | Procédé de détection de la position d'un élément de rotor, produit programme d'ordinateur et dispositif de détection |
Also Published As
Publication number | Publication date |
---|---|
DE19738836A1 (de) | 1999-03-11 |
EP0909955A3 (fr) | 2002-07-24 |
DE59814393D1 (de) | 2009-11-05 |
CZ296198B6 (cs) | 2006-02-15 |
EP0909955A2 (fr) | 1999-04-21 |
US6236199B1 (en) | 2001-05-22 |
CZ284298A3 (cs) | 1999-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0909955B1 (fr) | Détecteur angulaire inductif | |
EP3642567B1 (fr) | Capteur d'angle de rotation | |
EP3420318B1 (fr) | Capteur d'angle de rotation | |
DE69810504T2 (de) | Positionsgeber | |
DE60038420T2 (de) | Drehwinkelsensor mit induktiver Kopplung | |
EP0900998B1 (fr) | Capteur inductif de position angulaire | |
DE102009061032A1 (de) | Magnetoelektronischer Winkelsensor, insbesondere Reluktanzresolver | |
EP1071928B1 (fr) | Ensemble antenne-transpondeur pour le transport d'energie et la mesure d'angles | |
WO2017144638A1 (fr) | Capteur d'angle de rotation | |
DE112008000208T5 (de) | Referenzsignal verwendender induktiver Positonssensor | |
EP3420317A1 (fr) | Capteur d'angle de rotation | |
DE19855685A1 (de) | Induktive Positionsmeßeinrichtung | |
DE10158223A1 (de) | Drehwinkel-Messgerät | |
DE60215414T2 (de) | Apparat zur Erfassung einer relativen Winkelpositionsänderung | |
EP2329225A2 (fr) | Capteur de position inductif, système de mesure équipé de ce capteur et procédé pour faire fonctionner un tel capteur de position | |
DE69925353T2 (de) | Induktiver Positionsgeber mit hoher Genauigkeit und reduziertem Offset | |
DE102016015720A1 (de) | Drehwinkelsensor | |
DE112020003606T5 (de) | Drehmelder | |
DE3642607A1 (de) | Positionsmesswertgeber | |
DE102015220645A1 (de) | Drehwinkelsensor | |
EP0512282B1 (fr) | Capteur d'angle pour déterminer sans contact la rotation d'un arbre | |
DE102004026311B4 (de) | Positionsgeber | |
EP4384777A1 (fr) | Ensemble bobine secondaire pour système codeur à induction, et système codeur à induction | |
DE19931809C2 (de) | Lenkwinkelsensor für ein Kraftfahrzeug | |
DE102023102164B4 (de) | Sekundärspulenanordnung für einen induktiven Encoder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
TPAD | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOS TIPA |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7G 01P 3/48 A, 7G 01B 7/30 B, 7G 01C 1/00 B, 7G 01D 5/20 B |
|
17P | Request for examination filed |
Effective date: 20021205 |
|
AKX | Designation fees paid |
Designated state(s): DE ES FR GB IT SE |
|
17Q | First examination report despatched |
Effective date: 20040816 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HELLA KGAA HUECK & CO. |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHMIDT, FRANZ-JOSEF Inventor name: KOST, NORBERT Inventor name: IRLE, HENNING |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59814393 Country of ref document: DE Date of ref document: 20091105 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100103 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20100624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090923 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170823 Year of fee payment: 20 Ref country code: DE Payment date: 20170822 Year of fee payment: 20 Ref country code: FR Payment date: 20170714 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 59814393 Country of ref document: DE Owner name: HELLA GMBH CO. KGAA, DE Free format text: FORMER OWNER: HELLA KGAA HUECK CO., 59557 LIPPSTADT, DE Ref country code: DE Ref legal event code: R081 Ref document number: 59814393 Country of ref document: DE Owner name: HELLA GMBH & CO. KGAA, DE Free format text: FORMER OWNER: HELLA KGAA HUECK & CO., 59557 LIPPSTADT, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59814393 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20180824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20180824 |