DE102017210655A1 - Drehwinkelsensor - Google Patents

Drehwinkelsensor Download PDF

Info

Publication number
DE102017210655A1
DE102017210655A1 DE102017210655.7A DE102017210655A DE102017210655A1 DE 102017210655 A1 DE102017210655 A1 DE 102017210655A1 DE 102017210655 A DE102017210655 A DE 102017210655A DE 102017210655 A1 DE102017210655 A1 DE 102017210655A1
Authority
DE
Germany
Prior art keywords
curved
rotation
circle
radius
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102017210655.7A
Other languages
English (en)
Other versions
DE102017210655B4 (de
Inventor
Fabian Utermoehlen
Andreas Merz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102017210655.7A priority Critical patent/DE102017210655B4/de
Priority to KR1020197037731A priority patent/KR20200018472A/ko
Priority to PCT/EP2018/065569 priority patent/WO2018234108A1/de
Priority to US16/619,710 priority patent/US11193796B2/en
Priority to EP18731417.4A priority patent/EP3642567B1/de
Priority to CN201880041999.0A priority patent/CN110785632B/zh
Publication of DE102017210655A1 publication Critical patent/DE102017210655A1/de
Application granted granted Critical
Publication of DE102017210655B4 publication Critical patent/DE102017210655B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2073Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to two or more coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2053Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable non-ferromagnetic conductive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Ein Drehwinkelsensor (10) umfasst ein Statorelement (12) mit einer Sendespule (20) und wenigstens einer Empfangsspule (22), wobei die Sendespule (20) und die wenigstens eine Empfangsspule (22) auf einer Leiterplatte (18) angeordnet sind. Der Drehwinkelsensor (10) umfasst ein um eine Drehachse (A) drehbar gelagertes Rotorelement (14). Der Drehwinkelsensor (10) weist einen Messbereich (β) auf. Dabei ist vorgesehen, dass die wenigstens eine Empfangsspule (22) die Drehachse (A) in einer Umfangsrichtung (U) im Wesentlichen vollständig umläuft, wobei die wenigstens eine Empfangsspule (22) durch eine Mehrzahl benachbarter Teilwindungen (50a-f) gebildet ist, wobei jede Teilwindung (50a-f) gebildet ist aus Abschnitten von zwei nach links und zwei nach rechts gekrümmten kreisbogenförmigen Leiterbahn (40, 42), die jeweils denselben Krümmungsradius aufweisen, wobei eine erste rechtsgekrümmte Leiterbahn (40) durch drei Punkte verläuft,
-- durch einen ersten Punkt (P1), der auf einem ersten Kreis (91) liegt;
-- durch einen zweiten Punkt (P2), der auf einem dritten Kreis (93) liegt und in Umfangsrichtung um ein Viertel des Messbereichs (β) gegenüber dem ersten Punkt (P1) verdreht ist,
-- durch einen dritten Punkt (P3), der auf einem zweiten Kreis (92) liegt und in Umfangsrichtung um die Hälfte des Messbereichs (β) gegenüber dem ersten Punkt (P1) verdreht ist, wobei sich die linksgekrümmten Leiterbahnen (42) ergeben durch Spiegelungen der rechtsgekrümmten Leiterbahnen (40).

Description

  • Gebiet der Erfindung
  • Die Erfindung betrifft einen Drehwinkelsensor, mit dem beispielsweise ein Drehwinkel zwischen einer Welle und einem weiteren Bauteil bestimmt werden kann. Außerdem betrifft die Erfindung ein Statorelement für einen derartigen Drehwinkelsensor. Der Ausdruck umfassen wird im Rahmen dieser Anmeldung synonym zum Ausdruck aufweisen verwendet.
  • Stand der Technik
  • Um Drehwinkel zu messen, sind beispielsweise Drehwinkelsensoren bekannt, bei denen ein Magnet über einen entsprechenden Magnetfeldsensor gedreht wird. Die Messung des Magnetfeldvektors erlaubt dann einen Rückschluss auf den Drehwinkel. Derartige Sensoren reagieren auch auf externe Magnetfelder, die beispielsweise durch einen Stromfluss von benachbart angeordneten Stromkabeln verursacht werden und können sehr störempfindlich sein.
  • Ein weiterer Typ Drehwinkelsensor nutzt einen Wirbelstromeffekt aus. Dabei wird beispielsweise ein metallisches Target über Sensorspulen bewegt, die mit einer Wechselspannung versorgt werden und in dem Target einen Wirbelstrom induzieren. Dies führt zur Reduzierung der Induktivitäten der Sensorspulen und erlaubt, über eine Frequenzänderung auf den Drehwinkel zu schließen. Beispielsweise sind die Spulen Bestandteil eines Schwingkreises, dessen Resonanzfrequenz sich bei einer Veränderung der Induktivität verschiebt. Dieser Typ von Drehwinkelsensor kann jedoch eine hohe Querempfindlichkeit gegenüber Einbautoleranzen (vor allem ein Verkippen des Targets) sowie weiteren Einflüssen wie Temperatur aufweisen. Auch kann die erzeugte Frequenz durch externe elektromagnetische Felder gestört werden (Injection Locking), da üblicherweise mit Frequenzen im Bereich von einigen zehn MHz gearbeitet wird.
  • Die EP 0 909 955 B1 zeigt einen Drehwinkelsensor mit auf einem Target kurzgeschlossene planare Leiterschleifen, die mit dem elektromagnetischen Wechselfeld einer Erregerspule wechselwirken.
  • Dabei wird ein Signal generiert, welches z.B. einem Rechtecksignal in Abhängigkeit vom Drehwinkel ähnelt und von einer Auswerteeinheit aufwändig in den Drehwinkel umgerechnet werden muss. Durch die steilen Flanken derartiger Signale kann die Winkelauflösung eingeschränkt sein.
  • Offenbarung der Erfindung
  • Vorteile der Erfindung
  • Ausführungsformen der vorliegenden Erfindung können in vorteilhafter Weise ermöglichen, einen robusten, kostengünstigen und wenig Bauraum beanspruchenden Drehwinkelsensor bereitzustellen, bei dem die erzeugten Sensorsignale leicht ausgewertet werden können.
  • Ideen zu Ausführungsformen der vorliegenden Erfindung können unter anderem als auf den nachfolgend beschriebenen Gedanken und Erkenntnissen beruhend angesehen werden.
  • Die Erfindung betrifft einen Drehwinkelsensor, der insbesondere in einer Umgebung mit hohen elektromagnetischen Störfeldern eingesetzt werden kann. Beispielsweise kann der Drehwinkelsensor im Motorraum oder in der Nähe des Motorraums eines Fahrzeugs verwendet werden, beispielsweise zur Bestimmung einer Position einer Drosselklappe, einer Rotorposition eines BLDC-Motors, einer Position eines Fahrpedals oder einer Position einer Nockenwelle. Der im Folgenden beschriebene Drehwinkelsensor ist kostengünstig, benötigt einen geringen Bauraum und basiert auf einem einfachen Messprinzip.
  • Gemäß einem ersten Aspekt der Erfindung wird ein Drehwinkelsensor zur Erfassung eines Drehwinkels vorgeschlagen. Der Drehwinkelsensor umfasst ein Statorelement mit einer Sendespule und wenigstens zwei Empfangsspulen, wobei die Sendespule und die Empfangsspulen auf einer Leiterplatte angeordnet sind. Der Drehwinkelsensor umfasst bzw. weist weiterhin ein bezüglich des Statorelements um eine Drehachse drehbar gelagertes Rotorelement auf, über das die Sendespule mit den Empfangsspulen induktiv gekoppelt ist, so dass die induktive Kopplung von einem Drehwinkel zwischen dem Statorelement und dem Rotorelement abhängig ist und die Sendespule in den Empfangsspulen wenigstens zwei winkelabhängige Wechselspannungen induziert. Dabei weist der Drehwinkelsensor einen Messbereich auf, der sich durch den Quotienten von 360° und einer ganzzahligen natürlichen Zahl ergibt. Besonders vorteilhaft weist der Drehwinkelsensor einen Messbereich <360° auf.
  • Dabei ist vorgesehen, dass die Empfangsspulen die Drehachse in einer Umfangsrichtung im Wesentlichen vollständig umlaufen, wobei jede Empfangsspule durch eine Mehrzahl benachbarter Teilwindungen gebildet ist, wobei benachbarte Teilwindungen bezüglich der Stromlaufrichtung gegensätzlich orientiert sind. Dabei ist jede Teilwindung bezüglich einer radialen Richtung, die sich von der Drehachse nach außen erstreckt, gebildet aus Abschnitten von wenigstens zwei nach links gekrümmten kreisbogenförmigen Leiterbahnen und aus Abschnitten von wenigstens zwei nach rechts gekrümmten kreisbogenförmigen Leiterbahnen. Alle linksgekrümmten und alle rechtsgekrümmten Leiterbahnen weisen denselben Krümmungsradius auf. Alle linksgekrümmten Leiterbahnen und alle rechtsgekrümmten Leiterbahnen erstrecken sich zwischen zwei konzentrischen Kreisen um die Drehachse, einem ersten Kreis mit einem ersten Radius und einem zweiten Kreis mit einem zweiten Radius, wobei ein dritter Kreis gegeben ist, der konzentrisch zum ersten Kreis gelegen ist und einen dritten Radius aufweist, der sich aus dem Mittelwert des ersten Radius und des zweiten Radius ergibt, wobei eine erste rechtsgekrümmte Leiterbahn durch drei Punkte verläuft: durch einen ersten Punkt, der auf dem ersten Kreis liegt; durch einen zweiten Punkt, der auf dem dritten Kreis liegt und in Umfangsrichtung um ein Viertel des Messbereichs gegenüber dem ersten Punkt verdreht ist; und durch einen dritten Punkt, der auf dem zweiten Kreis liegt und in Umfangsrichtung um die Hälfte des Messbereichs gegenüber dem ersten Punkt verdreht ist. Die weiteren rechtsgekrümmten Leiterbahnen ergeben sich aus der vorfolgenden rechtsgekrümmten Leiterbahn durch eine Drehung um die Drehachse um die Hälfte des Messbereichs in Umfangsrichtung. Die linksgekrümmten Leiterbahnen ergeben sich durch Spiegelungen der rechtsgekrümmten Leiterbahnen jeweils an einer Radiallinie, die sich von der Drehachse durch den Schnittpunkt der jeweiligen rechtsgekrümmten Leiterbahn mit dem dritten Kreis erstreckt.
  • Eine Teilwindung einer Empfangsspule kann dabei als ein Teil der Empfangsspule definiert sein, der von Leiterbahnen der Empfangsspule umgeben ist, die sich nicht gegenseitig schneiden. Die Orientierung einer Teilwindung bestimmt sich über einen Stromfluss durch die Empfangsspule. Gegenläufig orientierte Teilwindungen weisen bei einem Stromfluss durch die Empfangsspule jeweils gegenläufig Stromflüsse auf, d.h. bei einer Teilwindung mit einer ersten Orientierung läuft der Strom im Uhrzeigersinn bzw. nach rechts durch die Teilwindung, bei einer Teilwindung mit einer zweiten, gegenläufigen Orientierung läuft der Strom gegen den Uhrzeigersinn bzw. nach links durch die Teilwindung.
  • Eine Teilwindung kann lediglich beispielhaft wie eine Raute mit gekrümmten Seitenflächen aufgebaut sein. Die vier Seitenflächen einer solchen Raute können z.B. durch je zwei Teilstücke zweier linksgekrümmten Leiterbahnen und zweier rechtsgekrümmter Leiterbahnen ausgebildet sein.
  • Beispielsweise kann dabei die Stromlaufrichtung in wenigstens zwei Abschnitten der linksgekrümmten Leiterbahnen, die eine Teilwindung bilden, einander entgegengesetzt sein. Ebenso kann die Stromlaufrichtung in wenigstens zwei Abschnitten der rechtsgekrümmten Leiterbahnen, die eine Teilwindung bilden, einander entgegengesetzt sein.
  • Der Aufbau der Teilwindungen ist dabei so zu verstehen, dass eine gedachte gerade Linie, die von der Drehachse ausgeht und in radialer Richtung verläuft, eine nach links und eine nach rechts gekrümmte kreisbogenförmige Leiterbahn der Empfangsspule schneidet, wenn die gerade Linie durch das Innere der Empfangsspule verläuft. Auf diese Weise kann z.B. auch erreicht werden, dass die Amplitude der in der Empfangsspule induzierten Wechselspannung bzw. das Messsignal im Wesentlichen als Sinusfunktion von dem Drehwinkel abhängt.
  • Durch die vorgeschlagene Ausgestaltung des Drehwinkelsensors lassen sich die durch die Sendespulen induzierten Teilspannungen in Summe kompensieren (so lange kein Target- bzw. Rotorelement vorhanden ist) und es wird als Ausgangssignal 0 Volt an der Empfangsspule ausgegeben. Mithilfe dieser Tatsache kann beispielsweise vorteilhaft eine Eigendiagnosefunktion realisiert werden, da der Sensor erkennen kann, dass ein Target bzw. das Rotorelement entweder fehlt oder zumindest eine elektrische Unterbrechung aufweist. Dies ist besonders unter dem Stichwort „Automotive Safety Integrity Level“ (ASIL) und damit verbundenen Diagnosefunktionen besonders vorteilhaft. Weiterhin werden EMV-Störeinflüsse oder externe Magnetfelder, die grundsätzlich als homogenes Feld angenommen werden können, wirkungsvoll unterdrückt. Die Ausbildung des Statorelements mit Teilwindungen, welche die Drehachse im Wesentlichen vollständig umrunden, bewirkt gegenüber einem Statorelement mit lediglich segmentartigem Aufbau ein erhöhtes Signal-Rauschverhältnis, eine geringere Toleranzempfindlichkeit und damit eine höhere Präzision.
  • Das Statorelement, das auch eine Auswerteeinheit tragen kann, kann beispielsweise gegenüber dem Ende einer Welle angeordnet sein, auf der das Rotorelement befestigt ist. Es kann jedoch auch um die Welle herum angeordnet sein, so dass die Welle das Statorelement durchstößt. Das Rotorelement kann eines oder mehrere Induktionssegmente tragen, die mit der Welle mitbewegt werden, die Empfangsspulen überdecken und dadurch die Induktivität der Empfangsspulen bzw. die jeweilige induktive Kopplung zwischen der Sendespule und den Empfangsspulen verändert. Wird die Sendespule mit einer Wechselspannung bestromt, werden in den Empfangsspulen Wechselspannungen induziert, deren Amplitude von der jeweiligen induktiven Kopplung abhängt. Aus diesen Wechselspannungen bzw. deren Amplituden, die der Sensor als Messsignale abgibt, kann beispielsweise die Auswerteeinheit dann ein Drehwinkelsignal berechnen. Der Drehwinkelsensor kann auf diese Weise kostengünstig realisiert werden, da kein teurer Magnet benötigt wird.
  • Unter dem Begriff, dass die Empfangsspulen die Drehachse in einer Umfangsrichtung im Wesentlichen vollständig umlaufen ist dabei zu verstehen, dass die Empfangsspulen die Drehachse in Umfangsrichtung zumindest zu 90 %, vorteilhaft zumindest zu 95 % und ganz besonders vorteilhaft zu zumindest 99 % vollständig umlaufen, d.h. zumindest annähernd einen 360° Winkelbereich abdecken. Kleinere Abweichungen von einem vollständigen 360°-Umlauf können sich beispielsweise durch Anschlussleitungen ergeben.
  • Gemäß einer Ausführungsform ist vorgesehen, dass jede Teilwindung aus Abschnitten von genau zwei nach links gekrümmten kreisbogenförmigen Leiterbahnen und aus Abschnitten von genau zwei nach rechts gekrümmten kreisbogenförmigen Leiterbahnen. Dadurch wird vorteilhaft eine besonders platzsparende Herstellung der Teilwindungen und damit der Empfangsspule ermöglicht, insbesondere auf nur zwei Seiten der Leiterplatte. Weiterhin kann auf diese Weise vorteilhaft ein sinusförmiges Messsignal erzeugt werden, welches sich besonders einfach auswerten lässt.
  • Alternativ oder zusätzlich kann vorgesehen sein, dass die Abschnitte der nach links gekrümmten kreisbogenförmigen Leiterbahnen und der nach rechts gekrümmten kreisbogenförmigen Leiterbahnen sich in Umfangsrichtung betrachtet im Wesentlichen über einen Winkelbereich von wenigstens 20% des Messbereichs, bevorzugt über wenigstens 23% des Messbereichs, z.B. über 25% des Messbereichs. Dadurch wird vorteilhaft bewirkt, dass die Teilwindungen eine besonders große Fläche überdecken. Weiterhin wird dadurch vorteilhaft bewirkt, dass idealerweise nahezu kein Abschnitt auf der Leiterplatte in Umlaufrichtung betrachtet ohne Teilwindungsüberdeckung ausgestaltet ist. Infolgedessen kann vorteilhaft die die Messgenauigkeit verbessert werden.
  • Gemäß einer Ausführungsform ist vorgesehen, dass sich die Leiterplatte erstreckt zwischen einem inneren Kreis mit einem inneren Radius und einem zum inneren Kreis konzentrischen äußeren Kreis mit einem äußeren Radius. Der innere Kreis liegt konzentrisch zur Drehachse, wobei der erste Radius des ersten Kreises um wenigstens 1 mm und höchstens 5 mm größer ist als der innere Radius.
  • Alternativ oder zusätzlich ist vorgesehen, dass der zweite Radius des zweiten Kreises um wenigstens 1 mm und höchstens 5 mm kleiner ist als der äußere Radius.
  • Der innere Radius kann beispielsweise bestimmt sein durch einen Durchbruch in der Leiterplatte, durch welchen z.B. die Welle gesteckt sein kann. Der äußere Radius kann beispielsweise eine Außenkontur der Leiterplatte darstellen, die z.B. kreisförmig oder kreisringförmig ausgebildet sein kann.
  • Dadurch, dass der erste Radius um wenigstens 1 mm und höchstens 5 mm größer ist als der innere Radius wird einerseits ausreichend Abstand zu einem Durchbruch durch die Leiterplatte gewahrt, um eine Beschädigung der Empfangsspulen bei Toleranzen in der Fertigung vermeiden. Gleichzeitig ist der erste Radius des ersten Kreises klein genug, um eine möglichst große Abdeckung des Messfeldes durch die Empfangsspulen zu ermöglichen.
  • Es kann dabei auch vorgesehen sein, die Sendespule zumindest teilweise auf der Leiterplatte zwischen dem ersten Kreis und dem inneren Kreis anzuordnen. Auf diese Weise lässt sich ein besonders kompaktes und kleinbauendes Statorelement aufbauen.
  • Dadurch, dass der zweite Radius des zweiten Kreis um wenigstens 1 mm und höchstens 5 mm kleiner ist als der äußere Radius kann vorteilhaft bewirkt werden, dass eine besonders große Fläche für die Empfangsspulen zu Verfügung steht. Dadurch lässt sich das Signal-Rausch-Verhältnis besonders vorteilhaft verbessern. Durch den Mindestabstand von 1 mm zum äußeren Radius des äußeren Kreises wird vorteilhaft eine Beschädigung der Empfangsspule in Folge von Toleranzen bei der Fertigung oder beim Handling bzw. Zusammenbau des Sensors vermieden, da ausreichend Platz ist, um die Leiterplatte an ihren äußeren Rändern anzufassen.
  • Weiterhin vorteilhaft kann die Sendespule zumindest teilweise in einem Bereich zwischen dem äußeren Kreis und dem zweiten Kreis angeordnet werden. Auf diese Weise lässt sich eine besonders große Sendespule mit einem großen Radius realisieren.
  • Gemäß einer Ausführungsform ist vorgesehen, dass das Rotorelement und die Empfangsspulen derart ausgebildet sind, dass in den Empfangsspulen eine Wechselspannung induziert wird, deren Amplitude sinusförmig von dem Drehwinkel abhängig ist.
  • Mit anderen Worten ist das von einer Empfangsspule bereitgestellte Messsignal, das heißt die Amplitude der in der Empfangsspule induzierten Wechselspannung, aufgrund der Geometrie der Empfangsspulen und des Rotorelements sinusförmig bzw. eine Sinusfunktion die vom Drehwinkel abhängt.
  • Es ist zu verstehen, dass ein sinusförmiges Messsignal ein Signal sein kann, dass weniger als 5 % bzw. weniger als 1 % von einer reinen Sinusfunktion abweicht.
  • Durch die sinusförmige Amplitude ist eine besonders einfache Auswertung z.B. ohne aufwändige Elektronik oder Software möglich, die eine hohe Robustheit aufweist. Darüber hinaus sind durch Anwendung trigonometrischer Gesetze Signalplausibilisierungen möglich sobald mindestens zwei Empfangsspulen vorliegen.
  • Gemäß einer Ausführungsform der Erfindung sind die wenigstens zwei Empfangsspulen in (lediglich) zwei Ebenen der Leiterplatte gebildet, d.h. insbesondere auf den Außenflächen.
  • Dabei kann z.B. vorgesehen sein, dass alle rechtsgekrümmten Leiterbahnen auf einer ersten Seite der Leiterplatte angeordnet sind und alle linksgekrümmten Leiterbahnen auf einer von der ersten Seite abgewandten zweiten Seite der Leiterbahn angeordnet sind.
  • Auf diese Weise kann die Leiterplatte kostengünstig hergestellt werden. Es ist keine mehrlagige Leiterplatte notwendig, insbesondere keine Leiterplatte mit mehr als zwei Lagen. Dadurch kann die Herstellung wesentlich vereinfacht und kostengünstiger ausgeführt werden.
  • Dies kann dadurch bewerkstelligt werden, dass an Enden der kreisbogenförmigen Leiterbahnen Durchkontaktierungen vorgesehen sind, bei denen kreisbogenförmige Leiterbahnen in unterschiedlichen Ebenen verbunden werden. Insbesondere können die kreisbogenförmigen Leiterbahnen einer Empfangsspule abwechselnd in gegenüberliegenden Ebenen der Leiterplatte angeordnet sein.
  • Somit wird vorteilhaft bewirkt, dass das Statorelement mit einer lediglich 2-lagigen Leiterplatte, beispielsweise aus einem FR4-Material oder besser, aufgebaut sein kann.
  • Gemäß einer Ausführungsform ist vorgesehen, dass an Enden der kreisbogenförmigen Leiterbahnen Durchkontaktierungen vorgesehen sind, bei denen kreisbogenförmige Leiterbahnen in unterschiedlichen Ebenen verbunden sind. Dadurch wird vorteilhaft bewirkt, dass die Teilwindungen der Empfangsspulen sich nicht auf derselben Seite der Leiterplatte schneiden und somit Kurzschlüsse verursachen würden. Durch diese Gestaltung kann die Empfangsspule mit einer hohen Dichte von Teilwindungen ausgestattet werden, wodurch sich das Messsignal verbessert.
  • Gemäß einer Ausführungsform ist vorgesehen, dass die Leiterplatte eine erste Verbindungs-Durchkontaktierung und eine zweite Verbindungs-Durchkontaktierung aufweist, wobei die beiden Verbindungs-Durchkontaktierungen auf dem dritten Kreis unmittelbar benachbart zu einem virtuellen Schnittpunkt einer rechtsgekrümmten Leiterbahn und einer linksgekrümmten Leiterbahn angeordnet sind. Die rechtsgekrümmte Leiterbahn und die linksgekrümmte Leiterbahn sind im Bereich der zwei Verbindungs-Durchkontaktierungen unterbrochen. An jeder der Verbindungs-Durchkontaktierungen sind jeweils ein von radial außen und ein von radial innen aufeinander zulaufendes Teilstück der rechtsgekrümmten Leiterbahn und ein Teilstück der linksgekrümmten Leiterbahn elektrisch leitend miteinander verbunden.
  • Dadurch wird vorteilhaft bewirkt, dass benachbarte Teilwindungen der Empfangsspule besonders einfach und platzsparend mit bezüglich der Stromlaufrichtung gegensätzlicher Orientierung ausgebildet werden können. Mit dieser Ausgestaltung ist eine Umpolung der Stromlaufrichtung an einer radial außerhalb des zweiten Kreises bzw. an einer radial zwischen Drehachse und erstem Kreis gelegenen Stelle verzichtbar, wodurch vermieden werden kann, dass zusätzliche Leiterbahnabschnitte entstehen, welche zusätzliche Signalbeiträge generieren könnten.
  • Gemäß einer Ausführungsform ist vorgesehen, dass die Empfangsspulen in Umfangsrichtung um einen Winkel zueinander versetzt sind, der durch den Messbereich geteilt durch eine Anzahl der Empfangsspulen bestimmt ist.
  • Unter der Anzahl der Empfangsspulen ist dabei die Gesamtanzahl der Empfangsspulen eines Messsystems zu verstehen. Werden beispielsweise zwei redundante Messsysteme auf derselben Leiterplatte untergebracht, wobei jedes Messsystem drei Empfangsspulen aufweist, so entspricht die Anzahl der Empfangsspulen m=3.
  • Durch den vorgeschlagenen Winkelversatz wird ein besonders gut auswertbares Signal bereitgestellt, wodurch sich die Präzision der Drehwinkel Erfassung erhöht.
  • Denn auf diese Weise ergeben sich je Empfangsspule maximal unterschiedliche Messsignale. Dadurch wird vorteilhaft die Genauigkeit der Winkelbestimmung verbessert.
  • Beispielsweise können auf dem Statorelement zwei oder drei, z.B. in Umfangsrichtung gegeneinander um einen bestimmten Winkel versetzte, Empfangsspulen angeordnet sein, die winkelversetzte Messsignale liefern. Bei zwei oder drei Empfangsspulen können Sinussignale als Messsignale besonders einfach ausgewertet werden, da eine Rücktransformation möglich ist. Dies kann eine Arcus-Tangens-Transformation bei zwei Empfangsspulen (d.h. einem Zweiphasensystem) oder eine Clarke-Transformation bei drei Empfangsspulen (d.h. einem Dreiphasensystem) sein. Mit diesen Rücktransformationen können auch auf einfache Art und Weise Offsets aus den Messsignalen herausgerechnet werden, die beispielsweise durch mechanische Toleranzen entstehen.
  • Es ist auch möglich, dass sich auf dem Statorelement zwei redundante Empfangsspulensysteme bzw. Messsysteme (beispielsweise aus jeweils zwei oder drei Empfangsspulen) befinden. In diesem Falle können die Messsignale des jeweiligen Empfangsspulensystems bzw. Messsystems auf oben genannte Art und Weise ausgewertet werden. Dadurch ist bei einem Ausfall eines Systems weiterhin die Bestimmung des Drehwinkels möglich, was die Sicherheit bei kritischen Systemen erhöhen kann.
  • Gemäß einer Ausführungsform der Erfindung weist das Rotorelement wenigstens ein Induktionssegment mit einer anderen Leitfähigkeit als in Umfangsrichtung um die Drehachse daneben liegende Bereiche des Rotorelements auf. Das Induktionssegment kann beispielsweise ein metallisches Segment sein (mit einer hohen Leitfähigkeit), das auf einem nichtmetallischen Teil des Rotorelements befestigt ist, es kann eine metallische Erhebung auf dem Rotorelement sein, kann aber auch eine Aussparung (mit niedriger Leitfähigkeit) in einem metallischen Rotorelement sein.
  • Beispielsweise kann das wenigstens eine Induktionssegment ringsektorförmig sein. Es ist möglich, dass das Rotorelement mehrere gleichartig geformte Induktionssegmente aufweist. Dadurch wird eine besonders einfache und kostengünstige Gestaltung des Rotorelements, das auch als Target bezeichnet werden kann, möglich. Weiterhin entsteht dadurch keine Unwucht bei hohen Drehzahlen des Targets.
  • Gemäß einer Ausführungsform der Erfindung weist das wenigstens eine Induktionssegment in Umfangsrichtung einen Öffnungswinkel (d.h. einen Maximalwinkel, der von dem Induktionssegment aufgespannt wird) auf, der halb so groß ist wie der Messbereich des Drehwinkelsensors. Auch Teilwindungen der Empfangsspulen können einen derartigen Öffnungswinkel aufweisen. Auf diese Weise kann eine maximale Änderung der Messsignale über den Messbereich erreicht werden. Dadurch kann vorteilhaft eine verbesserte Genauigkeit erzielt werden und ein robusteres Signal bereitgestellt werden.
  • Gemäß einer Ausführungsform der Erfindung weist das wenigstens eine Induktionssegment mehrere radiale Aussparungen mit anderer Leitfähigkeit als das Induktionssegment auf. Die Aussparungen können an einem Rand in Umfangsrichtung des Induktionssegments angeordnet sein, wobei das Induktionssegment einen größeren Öffnungswinkel aufweisen kann als der halbe Messbereich. Die Aussparungen können in Umfangsrichtung mit einem Winkel beabstandet sein, der halb so groß ist wie der Messbereich des Drehwinkelsensors. Das Induktionssegment kann in ein großes Teilsegment und in Umfangsrichtung davon beabstandete kleinere Teilsegmente aufgeteilt sein.
  • Mit diesen Aussparungen kann das Messsignal geformt werden, da die kleinen Teilsegmente die induktive Kopplung von Teilwindungen beeinflussen können, die benachbart zu einer Teilwindung angeordnet sind, die gerade von dem großen Teilsegment bedeckt ist. Insbesondere kann ein Messsignal, das noch aufgrund der Empfangsspulen kleinere Abweichungen von einer Sinusfunktion aufweist, mit dem Induktionssegment so beeinflusst werden, dass die Abweichungen geringer werden.
  • Gemäß einem zweiten Aspekt der Erfindung wird ein Statorelement für einen Drehwinkelsensor, so wie es oben stehend und unten stehend beschrieben ist, vorgeschlagen. Das Statorelement für einen Drehwinkelsensor mit einem Messbereich, der sich durch den Quotienten von 360° und einer ganzzahlig natürlichen Zahl ergibt, umfasst ein Statorelement mit einer Sendespule und wenigstens zwei Empfangsspulen. Die Sendespule und die Empfangsspulen sind auf einer Leiterplatte angeordnet. Die Empfangsspulen umlaufen die Drehachse in einer Umfangsrichtung im Wesentlichen vollständig. Dabei ist jede Empfangsspule durch eine Mehrzahl benachbarter Teilwindungen gebildet. Benachbarte Teilwindungen sind bezüglich der Stromlaufrichtung gegensätzlich orientiert, wobei jede Teilwindung bezüglich einer radialen Richtung, die sich von der Drehachse nach außen erstreckt, gebildet ist aus Abschnitten von wenigstens zwei nach linksgekrümmten kreisbogenförmigen Leiterbahnen und aus Abschnitten von wenigstens zwei nach rechtsgekrümmten kreisbogenförmigen Leiterbahnen. Alle linksgekrümmten Leiterbahnen und alle rechtsgekrümmten Leiterbahnen weisen denselben Krümmungsradius auf. Alle linksgekrümmten und alle rechtsgekrümmten Leiterbahnen erstrecken sich zwischen zwei konzentrischen Kreisen um die Drehachse, einem ersten Kreis mit einem ersten Radius und einem zweiten Kreis mit einem zweiten Radius. Es ist ein dritter Kreis gegeben, der konzentrisch zum ersten Kreis gelegen ist und einen dritten Radius aufweist, der sich aus dem Mittelwert des ersten Radius und des zweiten Radius ergibt. Eine erste rechtsgekrümmte Leiterbahn verläuft durch drei Punkte: Durch einen ersten Punkt, der auf dem ersten Kreis liegt, durch einen zweiten Punkt der auf dem dritten Kreis liegt und in Umfangsrichtung um ein Viertel des Messbereichs gegenüber dem ersten Punkt verdreht ist und durch einen dritten Punkt, der auf dem zweiten Kreis liegt und in Umfangsrichtung um die Hälfte des Messbereichs gegenüber dem ersten Punkt verdreht ist. Die weiteren rechtsgekrümmten Leiterbahnen ergeben sich aus der vorfolgenden rechtsgekrümmten Leiterbahn durch eine Drehung um die Drehachse um die Hälfte des Messbereichs in Umfangsrichtung. Die linksgekrümmten Leiterbahnen ergeben sich durch Spiegelungen der rechtsgekrümmten Leiterbahnen jeweils an einer Radiallinie, die sich von der Drehachse durch den Schnittpunkt der jeweiligen rechtsgekrümmten Leiterbahn mit dem dritten Kreis erstreckt.
  • Mit dem derart gestalteten Statorelement lässt sich vorteilhaft ein besonders kostengünstiger, hoch präziser und einfach zu bauender Drehwinkelsensor herstellen.
  • Es versteht sich, dass sowohl die rechtsgekrümmten als auch die linksgekrümmten Leiterbahnen aus mehreren Teilleiterbahnen bestehen können, die unmittelbar aneinander angrenzen. Beispielsweise können die Teilwindungen aus insgesamt vier Teilstücken aufgebaut sein, von denen je zwei zu zwei linksgekrümmten Leiterbahnen und je zwei zu zwei rechtsgekrümmten Leiterbahnen gehören.
  • Die Anzahl der Teilwindungen kann dem Doppelten der ganzzahligen natürlichen Zahl entsprechen, durch die der Messbereich definiert ist.
  • Es kann vorgesehen sein, dass die Sendespule konzentrisch zur Drehachse angeordnet ist.
  • Kurze Beschreibung der Zeichnungen
  • Nachfolgend werden Ausführungsformen der Erfindung unter Bezugnahme auf die beigefügten Zeichnungen beschrieben, wobei weder die Zeichnungen noch die Beschreibung als die Erfindung einschränkend auszulegen sind.
    • 1 zeigt schematisch einen Längsschnitt durch einen Drehwinkelsensor gemäß einer Ausführungsform der Erfindung.
    • 2 zeigt eine schematische Draufsicht auf ein Statorelement für den Drehwinkelsensor aus der 1, bei dem lediglich eine erste Empfangsspule dargestellt ist.
    • 3 zeigt einen vergrößerten Ausschnitt aus 2.
    • 4 zeigt eine schematische Draufsicht auf das Statorelement aus der 2, bei dem drei Empfangsspulen eines Messsystems dargestellt sind.
    • 5 zeigt eine schematische Draufsicht auf ein Rotorelement für den Drehwinkelsensor aus der 1.
    • 6 zeigt eine schematische Draufsicht auf ein alternatives Induktionssegment für das Rotorelement aus der 5.
    • 7 zeigt ein Diagramm mit Messsignalen, die von einem Drehwinkelsensor gemäß einer Ausführungsform der Erfindung erzeugt werden.
  • Die Figuren sind lediglich schematisch und nicht maßstabsgetreu. Gleiche Bezugszeichen bezeichnen in den Figuren gleiche oder gleichwirkende Merkmale.
  • Ausführungsformen der Erfindung
  • 1 zeigt einen Drehwinkelsensor 10 aus einem Statorelement 12 und einem Rotorelement 14. Das Rotorelement 14 kann auf einer Welle 16 eines Bauteils, wie etwa einer Drosselklappe, einem Motor, einer Nockenwelle, eines Fahrpedals usw., befestigt sein oder von dieser Welle 16 bereitgestellt werden. Die Welle 16 ist um die Drehachse A drehbar, die eine axiale Richtung definiert. Das Statorelement 12 liegt dem Rotorelement 14 in der entsprechenden axialen Richtung gegenüber. Beispielsweise kann das Statorelement 12 um die Welle 16 herum angeordnet sein. Es kann jedoch (hier nicht dargestellt) stirnseitig zur Welle, dem Rotorelement 14 gegenüberlegend, angeordnet sein.
  • Das Statorelement 12 umfasst eine Leiterplatte 18, auf der eine Sendespule 20 und mehrere Empfangsspulen 22 mit Leiterbahnen auf der Leiterplatte 18 ausgeführt sind. Die Leiterbahnen der Spulen 20, 22 können sich auf den beiden Seiten, einer ersten Seite 19a und einer zweiten Seite 19b, der Leiterplatte 18 befinden. Die Leiterbahnen können mittels Vias (Durchkontaktierungen) durch die Leiterplatte 18 hindurch elektrisch miteinander verbunden sein. Auf der Leiterplatte 18 können sich weitere Bauelemente für eine Auswerteeinheit 24 befinden. Die Auswerteeinheit 24 kann die Sendespulen 20 mit einer Wechselspannung versorgen und induzierte Wechselspannungen in den Empfangsspulen 22 ermitteln. Basierend auf dieser Messung kann die Auswerteeinheit 24 einen relativen Drehwinkel zwischen dem Statorelement 12 und dem Rotorelement 14 bestimmen.
  • Das Rotorelement 14 umfasst ein oder mehrere Induktionssegmente 26, die in axialer Richtung der Sendespulen 20 und den Empfangsspulen 22 gegenüberliegen. Die Induktionssegmente 26 können, wie in der 1 gezeigt, auf einer weiteren Leiterplatte angeordnet sein, die an der Welle 16 befestigt ist. Es ist auch möglich, dass das oder die Induktionssegmente 26 durch Bearbeiten eines Endes der Welle 16 erzeugt werden oder aus einem gestanzten oder gefrästen Vollmetall bestehen, welches z.B. auf die Welle gepresst wird.
  • 2 zeigt ein Statorelement 12 eines Drehwinkelsensors 10. Im vorliegenden Beispiel ist aus Gründen der Übersichtlichkeit nur eine einzige Empfangsspule 22 eingezeichnet, um das Prinzip der Konstruktion der Empfangsspulen 22 darzustellen. Der Messbereich des vorliegenden Statorelements beträgt 120°, d.h. die ganzzahligen natürlichen Zahl n ergibt sich hier zu n= 3.
  • Das Statorelement 12 umfasst hier eine Sendespule 20 und wenigstens zwei Empfangsspulen 22, von denen jedoch nur eine einzige dargestellt ist. Sendespule 20 und Empfangsspule 22 sind auf einer Leiterplatte 18 mit einer ersten Seite 19a, die dem Betrachter zugewandt ist und einer davon abgewandten zweiten Seite 19b, die vom Betrachter weg zeigt angeordnet. Sowohl die Sendespule 20 als auch die Empfangsspule 22 sind als Planarspulen ausgeführt. Die Sendespule 20 kann eine Mehrzahl von Leiterschleifen aufweisen, die auch in mehreren Ebenen einer mehrlagigen Leiterplatte 18 realisiert sein können, um ein ausreichend großes Feld erzeugen zu können.
  • Die Leiterplatte 18 ist im vorliegenden Beispiel kreisförmig ausgebildet. Die Umfangsrichtung ist mit einem Pfeil mit dem Bezugszeichen U dargestellt, die radiale Richtung durch einen Pfeil, der sich von einer Drehachse A radial nach außen erstreckt und das Bezugszeichen R trägt. Die dargestellte Empfangsspule 22 umläuft die Drehachse A in der Umfangsrichtung U vollständig. Die Empfangsspule 22 ist durch eine Mehrzahl benachbarter Teilwindungen 50a, 50b, 50c, 50d, 50e, 50f gebildet, wobei benachbarte Teilwindungen 50a bis 50f bezüglich der Stromlaufrichtung gegensätzlich orientiert sind. Sie weisen hier die Form einer Raute mit gekrümmten Kanten auf (siehe die schraffierte Teilwindung 50a).
  • Die Stromlaufrichtung jeder Teilwindung ist durch die ringförmigen Pfeile dargestellt. Jede Teilwindung ist bezüglich einer radialen Richtung R, die sich von der Drehachse A nach außen erstreckt, im dargestellten Ausführungsbeispiel gebildet aus zwei Teilstücken von zwei nach links gekrümmten kreisbogenförmigen Leiterbahnen 42 und aus zwei Teilstücken von zwei nach rechts gekrümmten kreisbogenförmigen Leiterbahnen 40. An einigen dieser Leiterbahnen sind Pfeile angedeutet, die die Stromlaufrichtung verdeutlichen sollen.
  • Benachbarte Teilwindungen weisen paarweise dieselbe Fläche auf: so sind im dargestellten Beispiel die Flächen der Teilwindungen 50a, 50b sowie der Teilwindungen 50c, 50d und der Teilwindungen 50e, 50f paarweise jeweils gleich groß, so dass (insofern keine zusätzliche Kopplung mit Rotorelement 14 erfolgt) ein homogenes Magnetfeld durch die Empfangsspule 22a aufgehoben wird. Denn in den Teilspulen 50a, 50b werden betragsmäßig gleiche, jedoch gegenpolige Spannungen induziert. Im dargestellten Ausführungsbeispiel weisen alle Teilwindungen 50a-50f im Wesentlichen dieselbe Fläche auf.
  • Basierend darauf können der Drehwinkelsensor 10 bzw. die Auswerteeinheit 24 eine Eigendiagnosefunktion betreiben, mit der erkannt werden kann, ob das Rotorelement 14 fehlt und/oder ob eine der Empfangsspulen eine elektrische Unterbrechung aufweist. Außerdem können EMV-Störeinflüsse, die in der Regel als homogenes Feld vorliegen, unterdrückt werden.
  • Alle linksgekrümmten Leiterbahnen 42 und alle rechtsgekrümmten Leiterbahnen 40 erweisen denselben Krümmungsradius auf, wobei sich alle linksgekrümmten Leiterbahnen 42 und alle rechtsgekrümmten Leiterbahnen 40 zwischen zwei konzentrischen Kreisen um die Drehachse A erstrecken, einem ersten Kreis 91 mit einem ersten Radius r1 und einem zweiten Kreis 92 mit einem zweiten Radius r2. Dabei ist ein dritter Kreis 93 gegeben, der sich konzentrisch zum ersten Kreis 91 erstreckt und einen dritten Radius r3 aufweist. Der dritte Radius r3 ergibt sich aus dem Mittelwert des ersten Radius r1 und des zweiten Radius r2 zu r3 = (r1 + r2)/2. eine erste rechtsgekrümmte Leiterbahn 40 verläuft durch drei Punkte: Durch einen ersten Punkt P1, der auf dem ersten Kreis 91 liegt; durch einen zweiten Punkt P2, der auf dem dritten Kreis 93 liegt und in Umfangsrichtung U um ein Viertel des Messbereichs β gegenüber dem ersten Punkt P1 verdreht ist; durch einen dritten Punkt P3, der auf dem zweiten Kreis 92 liegt und in Umfangsrichtung U um die Hälfte des Messbereichs β gegenüber dem ersten Punkt P1 verdreht ist.
  • Beispielhaft ist in der 1 eine radiale Richtung R eingezeichnet. Diese radiale Richtung R schneidet eine kreisbogenförmige Leiterbahn 40, die nach rechts gekrümmt ist, und eine kreisbogenförmige Leiterbahn 42, die nach links gekrümmt ist. Dasselbe gilt für alle radialen Richtungen R innerhalb des Messbereichs β mit Ausnahme der Winkel, wo die kreisförmigen Leiterbahnen 40, 42 miteinander verbunden sind.
  • Die weiteren rechtsgekrümmten Leiterbahnen 40 ergeben sich aus der vorfolgenden rechtsgekrümmten Leiterbahn 40 durch eine Drehung um die Drehachse A um die Hälfte des Messbereichs β in Umfangsrichtung U. Die linksgekrümmten Leiterbahnen 42 ergeben sich durch Spiegelungen der rechtsgekrümmten Leiterbahnen 40 jeweils an einer Radiallinie, die sich von der Drehachse A durch den Schnittpunkt S der jeweiligen rechtsgekrümmten Leiterbahnen 40 mit dem dritten Kreis 93 erstreckt. In der dargestellten Figur ist aus Gründen der Übersichtlichkeit nur eine der Radiallinien L und nur ein Schnittpunkt S mit dem jeweiligen Bezugszeichen versehen.
  • An den Enden der kreisbogenförmigen Leiterbahnen 40, 42 sind Durchkontaktierungen 84 vorgesehen, an denen bzw. bei denen die kreisbogenförmigen Leiterbahnen 40, 42 in unterschiedlichen Ebenen der Leiterplatte 18 verbunden sind. So sind beispielsweise die rechtsgekrümmten Leiterbahnen 40 auf der ersten Seite 19a der Leiterplatte 18 angeordnet und die linksgekrümmten Leiterbahnen 42 auf der von der ersten Seite 19a abgewandten zweiten Seite 19b der Leiterplatte 18. Auf diese Weise wird ein elektrischer Kurzschluss zwischen den sich überlappenden Teilwindungen 50a-50f vermieden. Die Empfangsspule 22 ist im vorliegenden Beispiel von einer Sendespule 20 umgeben, die sich zwischen dem ersten r1 und dem äußeren Radius ra erstreckt.
  • Im vorliegenden Fall beträgt der Messbereich β=120°. Daher sind sechs Teilwindungen 50a-50f ausgebildet.
  • Um die gegenläufige Orientierung benachbarter Teilwindungen 50a-50f bezüglich der Stromlaufrichtung zu erreichen, ohne dass eine Umkehr der Stromflussrichtung in einem Bereich außerhalb des zweiten Kreises 92 erfolgen muss, ist auf der Leiterplatte 18 eine erste Verbindungs-Durchkontaktierung 86 und eine zweite Verbindungs-Durchkontaktierung 87 vorgesehen. Die beiden Verbindungs-Durchkontaktierungen 86, 87 sind auf dem dritten Kreis 93 unmittelbar benachbart zu einem virtuellen Schnittpunkt Px einer rechtsgekrümmten Leiterbahn 40 und einer linksgekrümmten Leiterbahn 42 angeordnet. Dabei sind die rechtsgekrümmte Leiterbahn 40 und die linksgekrümmte Leiterbahn 42 im Bereich der zwei Verbindungs-Durchkontaktierungen 86, 87 unterbrochen. An jeder der Verbindungs-Durchkontaktierungen 86, 87 sind jeweils ein von radial außen und ein von radial innen aufeinander zulaufendes Teilstück 41 der rechtsgekrümmten Leiterbahn 40 und ein Teilstück 43 der linksgekrümmten Leiterbahn 42 elektrisch leitend miteinander verbunden.
  • Der virtuelle Schnittpunkt Px ist kein echter Schnittpunkt der Leiterbahnen 40, 42, da diese in unterschiedlichen Ebenen der Leiterplatte 18 verlaufen. Der virtuelle Schnittpunkt Px kann mit dem Schnittpunkt S der rechtsgekrümmten Leiterbahn 40 mit dem dritten Kreis 93 zusammenfallen. Aus Gründen der Übersichtlichkeit ist in 2 der Schnittpunkt S, der mit dem virtuellen Schnittpunkt Px zusammenfällt nicht mit dem Bezugszeichen S gekennzeichnet.
  • 3 zeigt einen vergrößerten Ausschnitt aus 2 im Bereich der beiden Verbindungs-Durchkontaktierungen 86, 87. In der Figur ist gut zu erkennen, dass die beiden Verbindungs-Durchkontaktierungen 86, 87 unmittelbar benachbart zueinander im Bereich des virtuellen Schnittpunkts Px der dargestellten rechtsgekrümmten Leiterbahn 40 und der linksgekrümmten Leiterbahn 42 angeordnet sind.
  • 4 zeigt ein Statorelement 12, welches drei Empfangsspulen 22a, 22b, 22c aufweist - analog zu 2, in der aus Übersichtlichkeitsgründen nur eine der drei Empfangsspulen 22 dargestellt war. Die erste, zweite und dritte Empfangsspule 22a, 22b, 22c sind innerhalb der Sendespule 20 angeordnet. Sie umlaufen im Wesentlichen vollständig in Umfangrichtung die Drehachse A. Der Messbereich β beträgt wieder β = 120°. Grundsätzlich ist es auch möglich, die Sendespule 20 auf der Leiterplatte 18 im Bereich zwischen der Drehachse A und dem ersten Kreis 91 anzuordnen. In diesem Fall wären die Empfangsspulen 22a, 22b, 22c außerhalb der Sendespule 20 angeordnet. Grundsätzlich ist es auch möglich, die Sendespule 20 teilweise radial innerhalb des ersten Kreises 91 und teilweise radial außerhalb des zweiten Kreises 92 anzuordnen.
  • Die Empfangsspulen 22a, 22b, 22c sind analog zur Empfangsspule 22 aus 2 aus kreisbogenförmigen Leiterbahnen 40, 42 ausgeführt, die alle den gleichen Krümmungsradius aufweisen. Durch die spezielle Form der Empfangsspulen 22a, 22b, 22c ist es möglich, dass in den Empfangsspulen 22a, 22b, 22c Wechselspannungen induziert werden, deren Amplituden (als Messsignale) mit einer Sinusfunktion vom Drehwinkel des Rotorelements 14 abhängen. Dies ermöglicht eine besonders leichte Auswertung der Messsignale, um den Drehwinkel zu bestimmen.
  • Beispielsweise kann die Sendespule 20 von der Auswerteeinheit 24 mit einer Wechselspannung beaufschlagt werden, die eine Frequenz im Bereich einiger MHz (bevorzugt 5 MHz) aufweist und/oder die Amplituden im Bereich 0.5 V bis 10 V (bevorzugt 1.5 V) aufweist. Dadurch entsteht ein elektromagnetisches Wechselfeld, welches in die Empfangsspulen 22a, 22b, 22b koppelt und dort entsprechende Wechselspannungen induziert. Durch entsprechende Formung der Induktionssegmente 26 wird die Kopplung zwischen der Sendespule 20 und den Empfangsspulen 22a, 22b, 22c drehwinkelabhängig beeinflusst. Der typische Wertebereich des Kopplungsfaktors, d.h. das Amplitudenverhältnis zwischen Empfangsspule und Sendespule, der Sendespule 20 mit den Empfangsspulen 22a, 22b, 22b kann zwischen -0.3 und +0.3 liegen. Durch Demodulation des in den Empfangsspulen 22a, 22b, 22c induzierten Messsignals mit dem Trägersignal (Signal der Sendespule) kann auf Amplitude und Phase der Kopplung geschlossen werden. Die Amplitude variiert kontinuierlich mit dem Drehwinkel. Die Phase beträgt idealerweise 0° oder 180°.
  • Der Messbereich β des Drehwinkelsensors 10 beträgt wie oben dargestellt beispielhaft 120°. Er kann prinzipiell beliebige Werte kleiner 360° einnehmen.
  • Die hier beispielhaft kreisförmig bzw. kreisringförmig ausgebildete Leiterplatte 18 wird nach innen durch einen inneren Radius ri und nach außen durch einen äußeren Radius ra begrenzt. Der äußere Radius ra wird nach oben durch den verfügbaren Bauraum begrenzt und kann zwischen 10 und 50 mm, in etwa 25 mm, betragen. Der innere Radius ri kann so dimensioniert sein, dass bei der Drehachse A eine Wellendurchführung im Statorelement 12 ermöglicht wird, kann allerdings beispielsweise auch nahezu 0 mm oder 0mm betragen, falls diese nicht benötigt wird.
  • Die Empfangsspulen 22a, 22b, 22c sind aus nach links gekrümmten kreisbogenförmigen Leiterbahnen 42 und aus nach rechts gekrümmten kreisbogenförmigen Leiterbahnen 40 aufgebaut. Die jeweilige Krümmungsrichtung ist dabei aus einer Blickrichtung von der Drehachse A nach radial außen hin zu verstehen.
  • Die zweite Empfangsspule 22b und die dritte Empfangsspule 22c sind im Wesentlichen identisch zur ersten Empfangsspule 22a ausgebildet, jedoch gegenüber dieser entlang der Umfangrichtung U verdreht auf der Leiterplatte 18 angeordnet.
  • Die Kreuzungspunkte der kreisbogenförmigen Leiterbahnen 40, 42 der ersten, zweiten und dritten Empfangsspule 22a, 22b, 22c befinden sich auf dem ersten Kreis 91 (mit dem ersten Radius r1), dem zweiten Kreis 92 (mit dem zweiten Radius r2) und dem dritten Kreis 93 (mit dem dritten Radius r3). Der dritte Radius r3 ergibt sich dabei als Mittelwert aus dem ersten Radius r1 und dem zweiten Radius r2 sein: r3=(r1+r2)/2.
  • Die Kreuzungspunkte der kreisbogenförmigen Leiterbahnen 40, 42 sind in Umfangsrichtung mit dem gleichen Winkel beabstandet. Der Winkel zwischen den Kreuzungspunkten beträgt β/4 (hier 30°). Die Kreuzungspunkte der kreisbogenförmigen Leiterbahnen 40, 42 der Empfangsspule 22a befinden sich damit z.B. bei 0°, β/4, β/2, 3β/4 und β. Die Kreuzungspunkte der kreisbogenförmigen Leiterbahnen 40a, 40b der Empfangsspulen 22b und 22c sind gegenüber denen der Empfangsspule 22a jeweils um 2/3 * ((3/4) = β/6, d.h. 20° nach links und rechts versetzt.
  • Im Allgemeinen ergibt sich die benötigte geometrische Verdrehung ξ der Empfangsspulen 22 aus dem Messbereich β und der Anzahl der Empfangsspulen m gemäß ξ= β /m für m≥3 bzw. ξ= β /(2m) für m=2.
  • Im dargestellten Ausführungsbeispiel ergibt sich für ein Dreiphasensystem (m=3) eine geometrische Verdrehung ξ der drei Empfangsspulen 22a, 22b, 22c um 40° (ξ=120° / (3) = 40°).
  • Es ist möglich, die drei Empfangsspulen 22a, 22b, 22c in lediglich zwei Ebenen der Leiterplatte 18 auszuführen. Beispielsweise können die kreisbogenförmigen Leiterbahnen 40, 42 auf den beiden Seiten der Leiterplatte 18 angeordnet sein. Eine Ausführung in lediglich zwei Ebenen hat den Vorteil einer kostengünstigen Leiterplatte 18. Außerdem ist der mittlere Abstand aller Empfangsspulen 22a, 22b, 22c zum Rotorelement 14 nahezu identisch, so dass annährend gleiche Signalpegel für die Messsignale erreicht werden und die Rückrechnung einfach und robust durchzuführen ist.
  • Dies kann folgendermaßen erreicht werden: Alle rechtsgekrümmten kreisbogenförmige Leiterbahnen 40 der drei Empfangsspulen 22a, 22b, 22c werden auf der ersten Ebene 19a der Leiterplatte angeordnet, alle linksgekrümmten Leiterbahnen 42 werden dagegen auf der zweiten Ebene 19b der Leiterplatte 18 angeordnet An ihren Enden werden die Leiterbahnen 40, 42 mittels Durchkontaktierungen 84 verbunden, von denen aus Gründen der Übersichtlichkeit nicht alle mit Bezugszeichen markiert sind.
  • Um die gegenläufige Stromflussrichtung benachbarter Teilwindungen zu erzielen sind analog zu den 2 und 3 in dem dargestellten Ausführungsbeispiel für jede der drei Empfangsspulen 22a, 22b, 22c zwei Verbindungs-Durchkontaktierungen 86, 87 vorgesehen: für die erste Empfangsspule 22a die zwei Verbindungs-Durchkontaktierungen 86a, 87a, für die zweite Empfangsspule 22b die zwei Verbindungs-Durchkontaktierungen 86b, 87b, und für die dritte Empfangsspule 22c die zwei Verbindungs-Durchkontaktierungen 86c, 87c,
  • Die 5 zeigt eine schematische Draufsicht auf ein Rotorelement 14, das als Vollkreis ausgeführt ist. Es ist auch möglich, dass lediglich ein Winkelbereich des in der 5 gezeigten Rotorelements 14, der eines oder mehrere der Induktionssegmente 26 umfasst, verwendet wird.
  • Das Rotorelement 14 kann als Leiterplatte mit Induktionssegmenten 26 als Metallisierung der Leiterplatte oder als metallisches Stanzteil ausgeführt sein, bei dem die Induktionssegmente 26 Erhebungen oder Vertiefungen in dem Stanzteil darstellen.
  • Die Induktionssegmente 26 sind kreisbogenförmig, wobei sie sich jeweils über eine Hälfte des Messbereichs β erstrecken, d.h. wie hier dargestellt über 60°.
  • Bevorzugt werden gerade bzw. lineare radiale Begrenzungslinien verwendet, wodurch eine besonders einfache und fertigungssichere Herstellung gewährleitet ist.
  • Der Innenradius rit und der Außenradius rat der Induktionssegmente 26 können abhängig von dem inneren Radius ri des inneren Kreises 32 und/oder dem äußeren Radius ra des äußeren Kreises 34 der Sendespule 20 gewählt werden. Beispielsweise kann rit=ri sowie rat=ra gelten.
  • Die 6 zeigt eine alternative Ausführungsform eines Induktionssegments 26', das aus mehreren Teilsegmenten 56a, 56b aufgebaut ist. Jedes der Induktionssegmente 26' aus der 6 kann wie das Induktionssegment aus der 5 aufgebaut sein. Bevorzugt werden gerade bzw. lineare radiale Kanten verwendet.
  • Die Teilsegmente 56a, 56b sind voneinander durch Aussparungen 58 (beispielsweise Fräsungen) getrennt, die eine andere Leitfähigkeit als die Teilsegmente 56a, 56b aufweisen. Auf diese Weise kann eine Sinusförmigkeit der Messsignale verbessert werden.
  • Jede der Aussparungen 58 kann beispielsweise einen Winkel von in Umfangsrichtung U breit sein. Dabei kann das mittlere Teilsegment einen Winkel von β/2- aufweisen und die äußeren Teilsegmente einen Winkel von γ aufweisen.
  • 7 zeigt ein Diagramm mit drei sinusförmigen Messsignalen 60, die von den Empfangsspulen 22a, 22b, 22c aus einem Statorelement 12 gemäß 4 abgegeben werden können und die durch ein Rotorelement 14 mit einem oder mehreren Induktionssegmenten 26' gemäß 6 noch weiter einer Sinusfunktion angenähert werden können. Die Messsignale stellen die Amplitude einer in einer Empfangsspule induzierten Wechselspannung dar, der vom Winkel des Rotorelements 14 gegenüber dem Statorelement 12 abhängig ist.
  • Aufgrund unterschiedlich langer Zuleitungen, einer Positionierung von Leiterbahnen in unterschiedlichen Ebenen der Leiterplatte 18 und mechanischer Toleranzen können die Messsignale 60 beispielsweise offsetbehaftet (d.h. die drei Messsignale 60 verlaufen in einem solchen Fall nicht symmetrisch bezüglich der x-Achse).
  • Dieser Offset kann aus möglichst sinusförmigen Messsignalen 60 besonders leicht herausgerechnet werden, beispielsweise über eine Clarke-Transformation. Möglichst sinusförmige Messsignale können auch deshalb vorteilhaft sein, weil trigonometrische Gesetze wie z.B. sin2+cos2=1 Anwendung finden können und zumindest für eine Plausibilisierung der Signale oder aber für eine Korrektur verwendet werden können.
  • Beispielsweise entstehen in den drei Empfangsspulen 22a, 22b, 22c drei sinusförmige Messsignale 60 mit typischerweise 120° elektrischem Phasenversatz, die durch Anwendung einer Clarke-Transformation in ein Sinus/Cosinus-System überführt werden können. Mit Hilfe der Arcus-Tangens-Funktion kann dann daraus auf den Drehwinkel geschlossen werden.
  • Es ist auch möglich, dass der Drehwinkelsensor 10 lediglich zwei Empfangsspulen 22 mit 90° elektrischem Phasenversatz umfasst (wobei sich der mechanische und der elektrische Phasenversatz unterscheiden kann). In diesem Fall entsteht durch Multiplikation der Amplitude der beiden Messsignale 60 mit dem Cosinus der Phase ein (idealerweise) offsetfreies Sinus/Cosinus-System. Mit Hilfe der Arcus-Tangens-Funktion kann daraus auf den Drehwinkel des Rotorelements 14 geschlossen werden.
  • Im Allgemeinen werden zur Rückrechnung der Messsignale 60 über die Arcus-Tangens-Funktion mindestens zwei Empfangsspulen 22a, 22b benötigt.
  • Aus Redundanzgründen kann der Drehwinkelsensor 10 auch mit mehr als zwei Empfangsspulen 22 ausgestattet sein, z.B. mit vier oder sechs Empfangsspulen 22, die beispielsweise alle in zwei Ebenen der Leiterplatte 18 realisiert werden können. Jeweils drei der sechs Empfangsspulen 22 können dann als redundantes Dreiphasensystem verwendet werden. Da die Empfangsspulen 22 dann alle im Mittel gleich weit vom Rotorelement 14 entfernt sind (im Vergleich zu einer Realisierung in sechs oder mehr Ebenen), ist der Offset der Messsignale 60 in etwa identisch und die Pegel vergleichbar hoch. Dies erleichtert die Auswertung erheblich.
  • Abschließend ist darauf hinzuweisen, dass Begriffe wie „aufweisend“, „umfassend“ etc. keine anderen Elemente oder Schritte ausschließen und Begriffe wie „eine“ oder „ein“ keine Vielzahl ausschließen. Bezugszeichen in den Ansprüchen sind nicht als Einschränkung anzusehen.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • EP 0909955 B1 [0004]

Claims (12)

  1. Drehwinkelsensor (10) zur Erfassung eines Drehwinkels, umfassend: ein Statorelement (12) mit einer Sendespule (20) und wenigstens zwei Empfangsspulen (22, 22a, 22b, 22c), wobei die Sendespule (20) und die Empfangsspulen (22, 22a, 22b, 22c) auf einer Leiterplatte (18) angeordnet sind; ein bezüglich des Statorelements (12) um eine Drehachse (A) drehbar gelagertes Rotorelement (14), über das die Sendespule (20) mit den Empfangsspulen (22, 22a, 22b, 22c) induktiv gekoppelt ist, so dass die induktive Kopplung von einem Drehwinkel zwischen dem Statorelement (12) und dem Rotorelement (14) abhängig ist und die Sendespule (20) in den Empfangsspulen (22, 22a, 22b, 22c) wenigstens zwei winkelabhängige Wechselspannungen induziert; wobei der Drehwinkelsensor (10) einen Messbereich (β) aufweist, der sich durch den Quotienten von 360° und einer ganzzahligen natürlichen Zahl (n) ergibt, dadurch gekennzeichnet, dass die Empfangsspulen (22, 22a, 22b, 22c) die Drehachse (A) in einer Umfangsrichtung (U) im Wesentlichen vollständig umlaufen, wobei jede Empfangsspule (22, 22a, 22b, 22c) durch eine Mehrzahl benachbarter Teilwindungen (50a, 50b, 50c, 50d, 50e, 50f) gebildet ist, wobei benachbarte Teilwindungen (50a, 50b, 50c, 50d, 50e, 50f) bezüglich der Stromlaufrichtung gegensätzlich orientiert sind, wobei jede Teilwindung (50a, 50b, 50c, 50d, 50e, 50f) bezüglich einer radialen Richtung (R), die sich von der Drehachse (A) nach außen erstreckt, gebildet ist aus Abschnitten von wenigstens zwei nach links gekrümmten kreisbogenförmigen Leiterbahnen (42) und Abschnitten von wenigstens zwei nach rechts gekrümmten kreisbogenförmigen Leiterbahnen (40), wobei alle linksgekrümmten Leiterbahnen (42) und alle rechtsgekrümmten Leiterbahnen (40) denselben Krümmungsradius aufweisen, wobei sich alle linksgekrümmten Leiterbahnen (42) und alle rechtsgekrümmten Leiterbahnen (40) zwischen zwei konzentrischen Kreisen um die Drehachse erstrecken, einem ersten Kreis (91) mit einem ersten Radius (rl) und einem zweiten Kreis (92) mit einem zweiten Radius (r2), wobei ein dritter Kreis (93) gegeben ist, der konzentrisch zum ersten Kreis (91) gelegen ist und einen dritten Radius (r3) aufweist, der sich aus dem Mittelwert des ersten Radius (rl) und des zweiten Radius (r2) ergibt, wobei eine erste rechtsgekrümmte Leiterbahn (40) durch drei Punkte verläuft, -- durch einen ersten Punkt (P1), der auf dem ersten Kreis (91) liegt; -- durch einen zweiten Punkt (P2), der auf dem dritten Kreis (93) liegt und in Umfangsrichtung um ein Viertel des Messbereichs (β) gegenüber dem ersten Punkt (P1) verdreht ist, -- durch einen dritten Punkt (P3), der auf dem zweiten Kreis (92) liegt und in Umfangsrichtung um die Hälfte des Messbereichs (β) gegenüber dem ersten Punkt (P1) verdreht ist, wobei die weiteren rechtsgekrümmten Leiterbahnen (40) sich aus der vorfolgenden rechtsgekrümmten Leiterbahn (40) durch eine Drehung um die Drehachse (A) um die Hälfte des Messbereichs (β) in Umfangsrichtung ergeben, wobei sich die linksgekrümmten Leiterbahnen (42) ergeben durch Spiegelungen der rechtsgekrümmten Leiterbahnen (40) jeweils an einer Radiallinie (L), die sich von der Drehachse (A) durch den Schnittpunkt (S) der jeweiligen rechtsgekrümmten Leiterbahn (40) mit dem dritten Kreis (93) erstreckt.
  2. Drehwinkelsensor nach Anspruch 1, wobei jede Teilwindung (50a, 50b, 50c, 50d, 50e, 50f) aus Abschnitten von genau zwei nach links gekrümmten kreisbogenförmigen Leiterbahnen (42) und Abschnitten von genau zwei nach rechts gekrümmten kreisbogenförmigen Leiterbahnen (40) gebildet ist und/oder wobei die Abschnitte der nach links gekrümmten kreisbogenförmigen Leiterbahnen (42) und der nach rechts gekrümmten kreisbogenförmigen Leiterbahnen (40) sich in Umfangsrichtung u betrachtet im Wesentlichen über einen Winkelbereich von wenigstens 20% des Messbereichs (β) erstrecken.
  3. Drehwinkelsensor nach Anspruch 1 oder 2, wobei sich die Leiterplatte (18) erstreckt zwischen einem inneren Kreis (32) mit einem inneren Radius (ri) und einem zum inneren Kreis (32) konzentrischen äußeren Kreis (34) mit einem äußeren Radius (ra), wobei der innere Kreis (32) konzentrisch zur Drehachse (A) liegt, wobei der erste Radius (rl) um wenigstens 1mm und höchstens 5mm größer ist als der innere Radius (ri), und/oder wobei der zweite Radius (r2) um wenigstens 1mm und höchstens 5mm kleiner ist als der äußere Radius (ra).
  4. Drehwinkelsensor nach einem der vorhergehenden Ansprüche, wobei das Rotorelement (14) und die Empfangsspulen (22, 22a, 22b, 22c) derart ausgebildet sind, dass in den Empfangsspulen (22, 22a, 22b, 22c) eine Wechselspannung induziert wird, deren Amplitude sinusförmig von dem Drehwinkel abhängig ist.
  5. Drehwinkelsensor nach einem der vorhergehenden Ansprüche, wobei alle rechtsgekrümmten Leiterbahnen (40) auf einer ersten Seite (19a) der Leiterplatte (18) angeordnet sind und alle linksgekrümmten Leiterbahnen (42) auf einer von der ersten Seite (19a) abgewandten zweiten Seite (19b) der Leiterplatte (18) angeordnet sind.
  6. Drehwinkelsensor (10) nach einem der vorhergehenden Ansprüche, wobei an Enden der kreisbogenförmigen Leiterbahnen (40a, 40b) Durchkontaktierungen (84) vorgesehen sind, bei denen kreisbogenförmige Leiterbahnen (40, 42) in unterschiedlichen Ebenen verbunden sind.
  7. Drehwinkelsensor (10) nach einem der vorhergehenden Ansprüche, wobei die Leiterplatte (18) eine erste Verbindungs-Durchkontaktierung (86) und eine zweite Verbindungs-Durchkontaktierung (87) aufweist, wobei die beiden Verbindungs-Durchkontaktierungen (86, 87) auf dem dritten Kreis (93) unmittelbar benachbart zu einem virtuellen Schnittpunkt (Px) einer rechtsgekrümmten Leiterbahn (40) und einer linksgekrümmten Leiterbahn (42) angeordnet sind, wobei die rechtsgekrümmte Leiterbahn (40) und die linksgekrümmte Leiterbahn (42) im Bereich der zwei Verbindungs-Durchkontaktierungen (86, 87) unterbrochen sind, wobei an jeder der Verbindungs-Durchkontaktierungen (86, 87) jeweils ein von radial außen und ein von radial innen aufeinander zulaufendes Teilstück (41) der rechtsgekrümmten Leiterbahn (40) und ein Teilstück (43) der linksgekrümmten Leiterbahn (42) elektrisch leitend miteinander verbunden sind.
  8. Drehwinkelsensor (10) nach einem der vorhergehenden Ansprüche, wobei die Empfangsspulen (22, 22a, 22b, 22c) in Umfangsrichtung (U) um einen Winkel zueinander versetzt sind, der durch den Messbereich (β) geteilt durch eine Anzahl (m) der Empfangsspulen (22, 22a, 22b, 22c) bestimmt ist.
  9. Drehwinkelsensor (10) nach einem der vorhergehenden Ansprüche, wobei das Rotorelement (14) wenigstens ein Induktionssegment (26) mit einer anderen Leitfähigkeit als in Umfangsrichtung (U) um die Drehachse (A) daneben liegende Bereiche des Rotorelements (14) aufweist; und/oder wobei das wenigstens eine Induktionssegment (26) ringsektorförmig ist.
  10. Drehwinkelsensor (10) nach Anspruch 9, wobei das wenigstens eine Induktionssegment (26) in Umfangsrichtung einen Öffnungswinkel aufweist, der halb so groß ist wie der Messbereich (β) des Drehwinkelsensors (10).
  11. Drehwinkelsensor (10) nach Anspruch 9, wobei das wenigstens eine Induktionssegment (26') mehrere radiale Aussparungen (58) mit einer anderen Leitfähigkeit als das Induktionssegment (26') aufweist; und/oder wobei die Aussparungen (58) an einem Rand in Umfangsrichtung des Induktionssegments (26') angeordnet sind; und/oder wobei die Aussparungen (58) in Umfangsrichtung mit einem Winkel beabstandet sind, der halb so groß ist wie der Messbereich (β) des Drehwinkelsensors (10).
  12. Statorelement (12) für einen Drehwinkelsensor (10) mit einem Messbereich (β), der sich durch den Quotienten von 360° und einer ganzzahligen natürlichen Zahl (n) ergibt, das Statorelement (12) umfassend: ein Statorelement (12) mit einer Sendespule (20) und wenigstens zwei Empfangsspulen (22, 22a, 22b, 22c), wobei die Sendespule (20) und die Empfangsspulen (22, 22a, 22b, 22c) auf einer Leiterplatte (18) angeordnet sind; dadurch gekennzeichnet, dass die Empfangsspulen (22, 22a, 22b, 22c) die Drehachse (A) in einer Umfangsrichtung (U) im Wesentlichen vollständig umlaufen, wobei jede Empfangsspule (22, 22a, 22b, 22c) durch eine Mehrzahl benachbarter Teilwindungen (50a, 50b, 50c, 50d, 50e, 50f) gebildet ist, wobei benachbarte Teilwindungen (50a, 50b, 50c, 50d, 50e, 50f) bezüglich der Stromlaufrichtung gegensätzlich orientiert sind, wobei jede Teilwindung (50a, 50b, 50c, 50d, 50e, 50f) bezüglich einer radialen Richtung (R), die sich von der Drehachse (A) nach außen erstreckt, gebildet ist aus Abschnitten von wenigstens zwei nach links gekrümmten kreisbogenförmigen Leiterbahnen (42) und Abschnitten von wenigstens zwei nach rechts gekrümmten kreisbogenförmigen Leiterbahnen (40), wobei alle linksgekrümmten Leiterbahnen (42) und alle rechtsgekrümmten Leiterbahnen (40) denselben Krümmungsradius aufweisen, wobei sich alle linksgekrümmten Leiterbahnen (42) und alle rechtsgekrümmten Leiterbahnen (40) zwischen zwei konzentrischen Kreisen um die Drehachse erstrecken, einem ersten Kreis (91) mit einem ersten Radius (rl) und einem zweiten Kreis (92) mit einem zweiten Radius (r2), wobei ein dritter Kreis (93) gegeben ist, der konzentrisch zum ersten Kreis (91) gelegen ist und einen dritten Radius (r3) aufweist, der sich aus dem Mittelwert des ersten Radius (rl) und des zweiten Radius (r2) ergibt, wobei eine erste rechtsgekrümmte Leiterbahn (40) durch drei Punkte verläuft, -- durch einen ersten Punkt (P1), der auf dem ersten Kreis (91) liegt; -- durch einen zweiten Punkt (P2), der auf dem dritten Kreis (93) liegt und in Umfangsrichtung um ein Viertel des Messbereichs (β) gegenüber dem ersten Punkt (P1) verdreht ist, -- durch einen dritten Punkt (P3), der auf dem zweiten Kreis (92) liegt und in Umfangsrichtung um die Hälfte des Messbereichs (β) gegenüber dem ersten Punkt (P1) verdreht ist, wobei die weiteren rechtsgekrümmten Leiterbahnen (40) sich aus der vorfolgenden rechtsgekrümmten Leiterbahn (40) durch eine Drehung um die Drehachse (A) um die Hälfte des Messbereichs (β) in Umfangsrichtung ergeben, wobei sich die linksgekrümmten Leiterbahnen (42) ergeben durch Spiegelungen der rechtsgekrümmten Leiterbahnen (40) jeweils an einer Radiallinie (L), die sich von der Drehachse (A) durch den Schnittpunkt (S) der jeweiligen rechtsgekrümmten Leiterbahn (40) mit dem dritten Kreis (93) erstreckt.
DE102017210655.7A 2017-06-23 2017-06-23 Drehwinkelsensor Active DE102017210655B4 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102017210655.7A DE102017210655B4 (de) 2017-06-23 2017-06-23 Drehwinkelsensor
KR1020197037731A KR20200018472A (ko) 2017-06-23 2018-06-13 회전각 센서
PCT/EP2018/065569 WO2018234108A1 (de) 2017-06-23 2018-06-13 Drehwinkelsensor
US16/619,710 US11193796B2 (en) 2017-06-23 2018-06-13 Rotational angle sensor
EP18731417.4A EP3642567B1 (de) 2017-06-23 2018-06-13 Drehwinkelsensor
CN201880041999.0A CN110785632B (zh) 2017-06-23 2018-06-13 旋转角度传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017210655.7A DE102017210655B4 (de) 2017-06-23 2017-06-23 Drehwinkelsensor

Publications (2)

Publication Number Publication Date
DE102017210655A1 true DE102017210655A1 (de) 2018-12-27
DE102017210655B4 DE102017210655B4 (de) 2023-12-21

Family

ID=62620866

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017210655.7A Active DE102017210655B4 (de) 2017-06-23 2017-06-23 Drehwinkelsensor

Country Status (6)

Country Link
US (1) US11193796B2 (de)
EP (1) EP3642567B1 (de)
KR (1) KR20200018472A (de)
CN (1) CN110785632B (de)
DE (1) DE102017210655B4 (de)
WO (1) WO2018234108A1 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020030334A1 (de) 2018-08-09 2020-02-13 Robert Bosch Gmbh Induktiver positionssensor, insbesondere zur erfassung mindestens einer rotationseigenschaft eines rotierenden elements
WO2020030336A1 (de) 2018-08-09 2020-02-13 Robert Bosch Gmbh Induktiver positionssensor, insbesondere zur erfassung mindestens einer rotationseigenschaft eines rotierenden elements
WO2020030325A1 (de) 2018-08-09 2020-02-13 Robert Bosch Gmbh Sensorsystem zur bestimmung einer temperatur und mindestens einer rotationseigenschaft eines um mindestens eine rotationsachse rotierenden elements
WO2020030337A1 (de) 2018-08-09 2020-02-13 Robert Bosch Gmbh Sensorsystem zur bestimmung mindestens einer rotationseigenschaft eines rotierenden elements
WO2020030335A1 (de) 2018-08-09 2020-02-13 Robert Bosch Gmbh Sensorsystem zur bestimmung einer temperatur und mindestens einer rotationseigenschaft eines um mindestens eine rotationsachse rotierenden elements
WO2021043355A1 (de) * 2019-09-03 2021-03-11 Schaeffler Technologies AG & Co. KG Rotorelement einer rotorlagesensorvorrichtung, rotorlagesensorvorrichtung und elektrische rotationsmaschine
DE102020102577A1 (de) * 2019-12-12 2021-06-17 HELLA GmbH & Co. KGaA Positionssensor zur induktiven Erfassung einer Position
WO2021163128A1 (en) * 2020-02-14 2021-08-19 Cts Corporation Vehicle pedal including redundant dual output inductive position sensor with reduced coupling coil circuits
CN113446929A (zh) * 2020-03-25 2021-09-28 迈来芯电子科技有限公司 感应位置传感器
DE102020205027A1 (de) 2020-04-21 2021-10-21 Robert Bosch Gesellschaft mit beschränkter Haftung Steuergerät zum Ansteuern einer elektrischen Maschine, Sensoranordnung zur Bestimmung einer Rotorposition einer elektrischen Maschine
DE102020213593A1 (de) 2020-10-29 2022-05-05 Robert Bosch Gesellschaft mit beschränkter Haftung Sensorsystem zur Bestimmung einer Temperatur und mindestens einer Rotationseigenschaft eines um mindestens eine Rotationsachse rotierenden Elements
EP4047323A1 (de) * 2021-02-17 2022-08-24 Melexis Technologies SA Verfahren und system für induktiven winkelsensor
DE102021213476A1 (de) 2021-11-30 2023-06-01 Robert Bosch Gesellschaft mit beschränkter Haftung Sensorsystem zur Bestimmung mindestens einer Rotationseigenschaft eines um mindestens eine Rotationsachse rotierenden Elements
WO2024083430A1 (de) 2022-10-19 2024-04-25 Robert Bosch Gmbh Sensorsystem zur bestimmung mindestens einer rotationseigenschaft eines um mindestens eine rotationsachse rotierenden elements

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110994911A (zh) * 2019-11-27 2020-04-10 赛卓电子科技(上海)有限公司 带有位置编码器的外转子直驱电机
US11221236B1 (en) * 2020-07-13 2022-01-11 Microchip Technology Inc. Angular position sensor and associated method of use
CN116635696A (zh) * 2020-12-14 2023-08-22 微芯片技术股份有限公司 高分辨率角感应传感器及相关联的使用方法
CN112504114B (zh) * 2021-02-03 2021-04-27 成都宏明电子股份有限公司 具有旋转角度限位功能的微型双余度角位移传感器
DE112021007398T5 (de) 2021-03-25 2024-01-04 Microchip Technology Incorporated Erfassungsspule zur induktiven Drehpositionsmessung und zugehörige Vorrichtungen, Systeme und Verfahren
DE102021121052A1 (de) * 2021-08-12 2023-02-16 Josef Siraky Sekundärspulenanordnung für ein induktives Encodersystem sowie induktives Encodersystem
WO2023056175A1 (en) * 2021-09-28 2023-04-06 Microchip Technology Incorporated Angular-position sensor
US11740069B2 (en) * 2021-12-29 2023-08-29 Sensata Technologies, Inc. Inductive sensor with split lobe target
US20240027233A1 (en) * 2022-07-21 2024-01-25 Sensata Technologies, Inc. Inductive position sensor
US20240068843A1 (en) * 2022-08-26 2024-02-29 Semiconductor Components Industries, Llc Inductive angular position sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69715848T2 (de) * 1996-06-28 2003-05-22 Synaptics Uk Ltd Gerät und verfahren zur verarbeitung von signalen eines positionsgebers
DE69912273T2 (de) * 1998-05-22 2004-08-12 Synaptics (Uk) Ltd., Harston Stellungsgeber
EP0909955B1 (de) 1997-09-05 2009-09-23 Hella KGaA Hueck & Co. Induktiver Winkelsensor
DE102016202877B3 (de) * 2016-02-24 2017-06-29 Robert Bosch Gmbh Drehwinkelsensor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004027954B4 (de) * 2004-06-08 2018-06-14 HELLA GmbH & Co. KGaA Induktiver Winkelmesser, insbesondere für die Messung von Torsionswinkeln
JP5569109B2 (ja) * 2009-04-22 2014-08-13 株式会社デンソー 車両用交流発電機
JP5948620B2 (ja) * 2011-09-16 2016-07-06 株式会社ミツトヨ 誘導検出型ロータリエンコーダ
CN103036386B (zh) * 2011-10-06 2015-07-15 爱三工业株式会社 角度传感器
DE102013224098A1 (de) * 2013-11-26 2015-05-28 Robert Bosch Gmbh Sensoranordnung zur Erfassung von Drehwinkeln an einem rotierenden Bauteil in einem Fahrzeug
DE102015220624A1 (de) * 2015-10-22 2017-04-27 Robert Bosch Gmbh Drehwinkelsensor
DE102015220615A1 (de) * 2015-10-22 2017-04-27 Robert Bosch Gmbh Drehwinkelsensor
DE102016218530A1 (de) * 2016-09-27 2018-03-29 Te Connectivity Germany Gmbh Weggeber zum berührungslosen Messen einer relativen Position, Herstellungsverfahren für eine Magnetfeldsensoranordnung und Magnetfeldsensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69715848T2 (de) * 1996-06-28 2003-05-22 Synaptics Uk Ltd Gerät und verfahren zur verarbeitung von signalen eines positionsgebers
EP0909955B1 (de) 1997-09-05 2009-09-23 Hella KGaA Hueck & Co. Induktiver Winkelsensor
DE69912273T2 (de) * 1998-05-22 2004-08-12 Synaptics (Uk) Ltd., Harston Stellungsgeber
DE102016202877B3 (de) * 2016-02-24 2017-06-29 Robert Bosch Gmbh Drehwinkelsensor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020030336A1 (de) 2018-08-09 2020-02-13 Robert Bosch Gmbh Induktiver positionssensor, insbesondere zur erfassung mindestens einer rotationseigenschaft eines rotierenden elements
WO2020030325A1 (de) 2018-08-09 2020-02-13 Robert Bosch Gmbh Sensorsystem zur bestimmung einer temperatur und mindestens einer rotationseigenschaft eines um mindestens eine rotationsachse rotierenden elements
WO2020030337A1 (de) 2018-08-09 2020-02-13 Robert Bosch Gmbh Sensorsystem zur bestimmung mindestens einer rotationseigenschaft eines rotierenden elements
WO2020030335A1 (de) 2018-08-09 2020-02-13 Robert Bosch Gmbh Sensorsystem zur bestimmung einer temperatur und mindestens einer rotationseigenschaft eines um mindestens eine rotationsachse rotierenden elements
WO2020030334A1 (de) 2018-08-09 2020-02-13 Robert Bosch Gmbh Induktiver positionssensor, insbesondere zur erfassung mindestens einer rotationseigenschaft eines rotierenden elements
WO2021043355A1 (de) * 2019-09-03 2021-03-11 Schaeffler Technologies AG & Co. KG Rotorelement einer rotorlagesensorvorrichtung, rotorlagesensorvorrichtung und elektrische rotationsmaschine
DE102020102577A1 (de) * 2019-12-12 2021-06-17 HELLA GmbH & Co. KGaA Positionssensor zur induktiven Erfassung einer Position
US11614765B2 (en) 2020-02-14 2023-03-28 Cts Corporation Vehicle pedal including redundant dual output inductive position sensor with reduced coupling coil circuits
WO2021163128A1 (en) * 2020-02-14 2021-08-19 Cts Corporation Vehicle pedal including redundant dual output inductive position sensor with reduced coupling coil circuits
CN113446929A (zh) * 2020-03-25 2021-09-28 迈来芯电子科技有限公司 感应位置传感器
CN113446929B (zh) * 2020-03-25 2023-05-09 迈来芯电子科技有限公司 感应位置传感器
WO2021213744A1 (de) 2020-04-21 2021-10-28 Robert Bosch Gmbh Steuergerät zum ansteuern einer elektrischen maschine, sensoranordnung zur bestimmung einer rotorposition einer elektrischen maschine
DE102020205027A1 (de) 2020-04-21 2021-10-21 Robert Bosch Gesellschaft mit beschränkter Haftung Steuergerät zum Ansteuern einer elektrischen Maschine, Sensoranordnung zur Bestimmung einer Rotorposition einer elektrischen Maschine
DE102020213593A1 (de) 2020-10-29 2022-05-05 Robert Bosch Gesellschaft mit beschränkter Haftung Sensorsystem zur Bestimmung einer Temperatur und mindestens einer Rotationseigenschaft eines um mindestens eine Rotationsachse rotierenden Elements
EP4047323A1 (de) * 2021-02-17 2022-08-24 Melexis Technologies SA Verfahren und system für induktiven winkelsensor
US11525716B2 (en) 2021-02-17 2022-12-13 Melexis Technologies Sa Inductive angular sensor method and system
DE102021213476A1 (de) 2021-11-30 2023-06-01 Robert Bosch Gesellschaft mit beschränkter Haftung Sensorsystem zur Bestimmung mindestens einer Rotationseigenschaft eines um mindestens eine Rotationsachse rotierenden Elements
WO2024083430A1 (de) 2022-10-19 2024-04-25 Robert Bosch Gmbh Sensorsystem zur bestimmung mindestens einer rotationseigenschaft eines um mindestens eine rotationsachse rotierenden elements
DE102022211049A1 (de) 2022-10-19 2024-04-25 Robert Bosch Gesellschaft mit beschränkter Haftung Sensorsystem zur Bestimmung mindestens einer Rotationseigenschaft eines um mindestens eine Rotationsachse rotierenden Elements

Also Published As

Publication number Publication date
CN110785632B (zh) 2022-02-18
US11193796B2 (en) 2021-12-07
US20200200569A1 (en) 2020-06-25
KR20200018472A (ko) 2020-02-19
EP3642567A1 (de) 2020-04-29
CN110785632A (zh) 2020-02-11
EP3642567B1 (de) 2022-01-19
DE102017210655B4 (de) 2023-12-21
WO2018234108A1 (de) 2018-12-27

Similar Documents

Publication Publication Date Title
EP3642567B1 (de) Drehwinkelsensor
DE102016202877B3 (de) Drehwinkelsensor
EP3420318B1 (de) Drehwinkelsensor
EP3420317B1 (de) Drehwinkelsensor
DE102016202867B3 (de) Drehwinkelsensor
EP3645977B1 (de) Sensorsystem zur bestimmung mindestens einer rotationseigenschaft eines rotierenden elements
EP2265902B1 (de) Induktiver drehwinkelsensor und verfahren zum betrieb eines induktiven drehwinkelsensors
EP3555571B1 (de) Sensorsystem zur bestimmung mindestens einer rotationseigenschaft eines um mindestens eine rotationsachse rotierenden elements
EP3423792B1 (de) Drehwinkelsensor
DE2305384C2 (de) Anordnung zur Bestimmung der Windelstellung und Drehzahl
DE102015220615A1 (de) Drehwinkelsensor
DE102016015720A1 (de) Drehwinkelsensor
DE102015220617A1 (de) Drehwinkelsensor
WO2020030322A1 (de) Sensorsystem zur bestimmung mindestens einer rotationseigenschaft eines rotierenden elements
DE102018211216A1 (de) Geberradanordnung und Verfahren zum Ermitteln einer Absolutwinkelposition und einer Drehrichtung
EP3833936B1 (de) Sensorsystem zur bestimmung mindestens einer rotationseigenschaft eines rotierenden elements
DE102016224854A1 (de) Sensorsystem zur Bestimmung mindestens einer Rotationseigenschaft eines um mindestens eine Rotationsachse rotierenden Elements
DE102018213414A1 (de) Sensorsystem zur Bestimmung mindestens einer Rotationseigenschaft eines rotierenden Elements
WO2020030319A1 (de) Sensorsystem zur bestimmung mindestens einer rotationseigenschaft eines rotierenden elements
DE102020214492A1 (de) Sensorsystem zur Bestimmung mindestens einer Rotationseigenschaft eines rotierenden Elements
DE102017223091A1 (de) Geberradanordnung und Verfahren zum Ermitteln einer Absolutwinkelposition und einer Drehrichtung
DE102018211215A1 (de) Geberradanordnung und Verfahren zum Ermitteln einer Absolutwinkelposition und einer Drehrichtung

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division