EP0908617B1 - Fuel injection apparatus - Google Patents

Fuel injection apparatus Download PDF

Info

Publication number
EP0908617B1
EP0908617B1 EP98111577A EP98111577A EP0908617B1 EP 0908617 B1 EP0908617 B1 EP 0908617B1 EP 98111577 A EP98111577 A EP 98111577A EP 98111577 A EP98111577 A EP 98111577A EP 0908617 B1 EP0908617 B1 EP 0908617B1
Authority
EP
European Patent Office
Prior art keywords
valve
fuel injection
closing body
pusher
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98111577A
Other languages
German (de)
French (fr)
Other versions
EP0908617A1 (en
Inventor
Rudolf Heinz
Roger Potschin
Klaus-Peter Schmoll
Friedrich Boecking
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0908617A1 publication Critical patent/EP0908617A1/en
Application granted granted Critical
Publication of EP0908617B1 publication Critical patent/EP0908617B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0045Three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators

Definitions

  • the invention is based on a fuel injection device according to the preamble of claim 1.
  • a 3-way valve is used, by means of which the control chamber is connected either only to the high-pressure fuel source or only with a fuel return tank.
  • the actuation of the valve member of this 3-way valve is carried out by means of an electromagnet.
  • the injection valve member is brought into fully open or fully closed position.
  • the 3-way valve is designed so that the valve member in a respective closed position should be completely free of forces resulting from pressures.
  • the annular surfaces and the circular surfaces are kept the same size.
  • the fuel injection device according to the invention with the features of claim 1 has the opposite the advantage that the valve member in the respective end position of its closing body on one of the valve seats from the high pressure of Krafstoffhochdruckario loaded ring or circular surfaces of different sizes, such that the closing body is held by resulting from the pressure load of these surfaces forces in a stable end position at its respective valve seat.
  • resulting from the difference of the surfaces differential surface is so dimensioned that the resulting forces in the respective end position of the closing body are not greater than about 40% of the forces applied by the actuator.
  • the second annular surface is smaller than the first annular surface and the first circular area smaller than the second circular area.
  • FIG. 1 shows a fuel injection valve of the fuel injection device in section and Figure 2 shows the fuel injection valve controlling valve member of the 3-way valve.
  • the invention relates to a fuel injection device having a high-pressure fuel pump not shown in the figure, which receives fuel from a fuel tank possibly with the interposition of a prefeed pump and via a pressure line, brought to high pressure, a high-pressure fuel storage 8 supplies. These parts should be referred to as a high-pressure fuel source.
  • the high-pressure fuel accumulator 8 supplies via fuel lines 15 each a fuel injection valve 14 with brought to least fuel injection pressure Fuel.
  • These fuel injection valves are electrically controlled by a control unit, not shown, so that, according to operating parameters of the internal combustion engine, the opening of the fuel injection valves 14 are determined with fuel injection start and fuel injection duration.
  • the fuel injection valve 14 has a housing 19 in which a needle-like injection valve member 21 is guided in a longitudinal bore 20. At its one end, this injection valve member is provided with a conical sealing surface 23 which cooperates with the valve housing in the combustion chamber of the engine 24 with a valve seat, from which discharge from injection openings 25, the interior of the fuel injection valve, here the injection valve member 21 surrounding, filled with pressurized fuel fuel annulus 27, connects to the combustion chamber of the associated internal combustion engine so as to perform an injection when the injection valve member has lifted from its valve seat.
  • the annular space 27 is connected to a pressure chamber 29, which is in constant communication with a pressure line 30 which is connected to the fuel line 15 of the respective fuel injection valve.
  • the fuel pressure supplied to the high-pressure fuel accumulator 8 also acts in the pressure chamber 29 and there on a pressure shoulder 31 of the Krafstoffeinspritzventilglieds 21, via the known manner, the fuel injection valve member can be lifted from its valve seat under suitable conditions. At the other end of the fuel injection valve member, this is guided in a cylinder bore 33 and closes there with its end face 34 a control chamber 36 a. The closed position of the fuel injection valve member is thereby by the pressure in the control chamber 36 and also by a compression spring 12 which extends between a spring plate 10 of the fuel injection valve member and the housing 19 is supported, controlled.
  • the opening or closing movement of the fuel injection valve member is triggered by means of the pressure in the control chamber 36.
  • the control chamber 36 is connected via a channel 37 with a designed as a 3-way valve valve 40. This is shown in detail in Figure 3 in the details. From the control chamber here opens the channel 37 in a valve chamber 41, in which a closing body 42 of the valve member 43 of the valve 40 is adjustably arranged.
  • the valve member 43 has a fixedly connected to the closing body 42 plunger 45.
  • a first sealing surface 46 is disposed at its one end face and a second sealing surface 47 at its other end face.
  • the second end face is in this case in a connecting part 48 to the plunger 45, which has a smaller diameter than the rest, guided in a guide bore 50 plunger 45.
  • an annular space 51 is formed, into which an inflow channel 53 opens.
  • the annular space 51 forms a flow channel between the inlet channel 53 and the valve chamber 41.
  • the guide bore 50 has a reduced diameter portion 52, on which at the mouth of this part of the guide bore 50 in the valve chamber 41, a valve seat 54 is formed which acts as a second valve seat with the second sealing surface 47 together.
  • a first valve seat 55 is formed at the opposite end of the valve chamber 41, with which the first sealing surface 46 cooperates. From the valve seat 55, an outflow channel 57 leads from the valve chamber 41. This is also shown in the figure 1 and leads back to the fuel tank 6 or to a different design relief space. In the spillway is a Throttle 58 is provided, which determines the outflow cross-section at the first valve seat 55 lifted valve body.
  • the inflow channel 53 which can also be seen in FIG. 1, is connected to the fuel line 15 and can thus supply fuel from the high-pressure fuel accumulator via the valve chamber 41 to the control chamber 36 when the valve member 43 is lifted from the second valve seat 54.
  • the first and the second sealing surface 46 and 47 and the first 55 and the second valve seat 54 are tapered in the present case with a cone tip angle, which is smaller at the first valve seat 55 than the corresponding cone tip angle of the first sealing surface 46 and a cone tip angle of the second contact seat 54 is greater than the apex angle of the second sealing surface 47.
  • This results in the support of the second sealing surface 47 on the second valve seat 54 is a contact line, which is determined by the inner diameter of the second valve seat 54 and vice versa when resting the first sealing surface 46 the first valve seat 55 a contact line, which is determined by the outer periphery of the first sealing surface 46.
  • a not further shown drive 59 which as a piezoelectric arrangement, eg as sogn. Piezo stack or designed as a magnetostrictive element.
  • These drives have the advantage that they perform analogous to the voltage application travel paths and indeed with high actuation force, although the absolutely producible way is relatively small, so that large travel ranges and large piezo element packages must be used.
  • the further advantage of such drives is that they act very quickly, so that fast switching operations are feasible, which are particularly in injection technology of great advantage.
  • the resulting from the pressurization of the high-pressure fuel source 8 forth forces are important. This applies in particular to the respective closed positions of the closing body 42. If the closing body 42 is in contact with the second valve seat 54 with its second sealing surface 47, an annular area RF1 remaining between the diameter of the ram 45 and the connecting part 48 is at high pressure from the high-pressure fuel source 8 applied. On the opposite side of this surface, an annular surface RF2 is formed between the connecting part 48 and resting on the second sealing surface 47 edge of the second valve seat 54. This annular surface RF2 is smaller than the annular surface RF1, so that in the closing direction of the valve body 42 to the side his drive 59 out of the area difference resulting forces outweigh.
  • a maximum of a second circular area KF2 can be effective, which is determined from the contact of the first sealing surface 46 on the first valve seat 55.
  • the first sealing surface 46 rests with its outer periphery on the first valve seat 55 and is again pressure-relieved to the side of the discharge channel 57.
  • the first circular area KF1 is smaller than the second circular area KF2, so that the difference of these surfaces results in a differential area, which is loaded by the high fuel pressure of the high-pressure fuel accumulator 8 and generates a force which in turn acts in the closing direction of the closing body 42 to the first valve seat 55.
  • These forces acting in the closing direction are dimensioned so that they can be overcome by the drive 59 of the closing body 42.
  • the respective forces in the stable end positions of the closing body are so great that they amount to about 40% of the actuation forces applied by the drive.
  • This is an economical operation of the three-way valve is possible with a required effort for the actuator and a corresponding energy demand. Moreover, in this way a drive may be required only for adjusting the closing body.
  • the closing body in its respective end positions is held stable in the closed position. This eliminates any power supply to the actuator 59 over the duration of the shut-off. This is a significant advantage for safe and cost-saving operation of the valve.

Description

Stand der TechnikState of the art

Die Erfindung geht von einer Kraftstoffeinspritzeinrichtung nach der Gattung des Patentanspruchs 1 aus. Bei einer solchen, durch die WO 95/25888 A bekannten Kraftstoffeinspritzeinrichtung wird ein 3-Wegeventil verwendet, mit dessen Hilfe der Steuerraum entweder nur mit der Kraftstoffhochdruckquelle oder nur mit einem Kraftstoffrücklaufbehälter verbunden ist. Die Betätigung des Ventilgliedes dieses 3-Wegeventils erfolgt mit Hilfe eines Elektromagneten. Mit dieser bekannten Ausgestaltung wird entsprechend der Ansteuerung des 3-Wegeventils entweder das Einspritzventilglied in völlig geöffnete oder in völlig geschlossene Stellung gebracht. Das 3-Wegeventil ist dabei so ausgestaltet, daß das ventilglied in einer jeweiligen Schließstellung vollkommen von aus Drücken resultierenden Kräften frei sein soll. Dazu sind die Ringflächen und die Kreisflächen jeweils gleich groß gehalten.The invention is based on a fuel injection device according to the preamble of claim 1. In such, by the WO 95/25888 A known fuel injector, a 3-way valve is used, by means of which the control chamber is connected either only to the high-pressure fuel source or only with a fuel return tank. The actuation of the valve member of this 3-way valve is carried out by means of an electromagnet. With this known embodiment, according to the control of the 3-way valve, either the injection valve member is brought into fully open or fully closed position. The 3-way valve is designed so that the valve member in a respective closed position should be completely free of forces resulting from pressures. For this purpose, the annular surfaces and the circular surfaces are kept the same size.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Kraftstoffeinspritzeinrichtung mit den Merkmalen des Patentanspruchs 1 hat dem gegenüber den Vorteil, daß das Ventilglied in der jeweiligen Endstellung seines Schließkörpers an einem der Ventilsitze vom Hochdruck der Krafstoffhochdruckquelle belastete Ring- bzw. Kreis-Flächen unterschiedlicher Größe aufweist, derart, daß der Schließköper durch aus der Druckbelastung dieser Flächen resultierenden Kräften in einer stabilen Endlage an seinem jeweiligen Ventilsitz gehalten wird.The fuel injection device according to the invention with the features of claim 1 has the opposite the advantage that the valve member in the respective end position of its closing body on one of the valve seats from the high pressure of Krafstoffhochdruckquelle loaded ring or circular surfaces of different sizes, such that the closing body is held by resulting from the pressure load of these surfaces forces in a stable end position at its respective valve seat.

In vorteilhafter weise ist dabei gemäß Anspruch 2 die sich aus der Differenz der Flächen ergebende Differenzfläche so bemessen, daß die resultierenden Kräfte in der jeweiligen Endstellung des Schließkörpers nicht größer als etwa 40% der vom Stellantrieb aufbringbaren Kräfte sind. In weiterhin vorteilhafter Ausgestaltung nach Anspruch 3 ist die zweite Ringfläche kleiner als die erste Ringfläche und die erste Kreisfläche kleiner als die zweite Kreisfläche.Advantageously, according to claim 2, resulting from the difference of the surfaces differential surface is so dimensioned that the resulting forces in the respective end position of the closing body are not greater than about 40% of the forces applied by the actuator. In a further advantageous embodiment according to claim 3, the second annular surface is smaller than the first annular surface and the first circular area smaller than the second circular area.

Zeichnungdrawing

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein Kraftstoffeinspritzventil der Kraftstoffeinspritzeinrichtung im Schnitt und Figur 2 das das Kraftstoffeinspritzventil steuernde Ventilglied des 3-Wegeventils.An embodiment of the invention is illustrated in the drawing and will be explained in more detail in the following description. 1 shows a fuel injection valve of the fuel injection device in section and Figure 2 shows the fuel injection valve controlling valve member of the 3-way valve.

Beschreibungdescription

Die Erfindung betrifft eine Kraftstoffeinspritzeinrichtung, die eine in der Figur nicht weiter gezeigte Kraftstoffhochdruckpumpe aufweist, welche aus einem Kraftstoffvorratsbehälter ggf. unter Zwischenschaltung einer Vorförderpumpe Kraftstoff erhält und über eine Druckleitung, auf hohen Druck gebracht, einem Kraftstoffhochdruckspeicher 8 zuführt. Diese Teile sind als Kraftstoffhochdruckquelle zu bezeichnen. Der Kraftstoffhochdruckspeicher 8 versorgt über Kraftstoffleitungen 15 jeweils ein Kraftstoffeinspritzventil 14 mit auf wenigsten Kraftstoffeinspritzdruck gebrachtem Kraftstoff. Diese Kraftstoffeinspritzventile werden von einem nicht dargestelltem Steuergerät elektrisch gesteuert so daß, entsprechend Betriebsparametern der Brennkraftmaschine die Öffnung der Kraftstoffeinspritzventile 14 mit Kraftstoffeinspritzbeginn und Kraftstoffeinspritzdauer bestimmt werden.The invention relates to a fuel injection device having a high-pressure fuel pump not shown in the figure, which receives fuel from a fuel tank possibly with the interposition of a prefeed pump and via a pressure line, brought to high pressure, a high-pressure fuel storage 8 supplies. These parts should be referred to as a high-pressure fuel source. The high-pressure fuel accumulator 8 supplies via fuel lines 15 each a fuel injection valve 14 with brought to least fuel injection pressure Fuel. These fuel injection valves are electrically controlled by a control unit, not shown, so that, according to operating parameters of the internal combustion engine, the opening of the fuel injection valves 14 are determined with fuel injection start and fuel injection duration.

Das Kraftstoffeinspritzventil 14 weist ein Gehäuse 19 auf, in dem in einer Längsbohrung 20 ein nadelartiges Einspritzventilglied 21 geführt ist. An seinem einen Ende ist dieses Einspritzventilglied mit einer kegelförmigen Dichtfläche 23 versehen, die an der in den Brennraum der Brennkraftmaschine ragenden Spitze 24 des Ventilgehäuses mit einem Ventilsitz zusammen wirkt, von dem aus Einspritzöffnungen 25 abführen, die das Innere des Kraftstoffeinspritzventils, hier den das Einspritzventilglied 21 umgebenden, mit unter Einspritzdruck stehenden Kraftstoff gefüllten Ringraum 27, mit dem Brennraum der zugehörigen Brennkraftmaschine verbindet, um so eine Einspritzung zu vollziehen, wenn das Einspritzventilglied von seinem Ventilsitz abgehoben hat. Der Ringraum 27 ist mit einem Druckraum 29 verbunden, der in ständiger Verbindung mit einer Druckleitung 30 steht, die mit der Kraftstoffleitung 15 des jeweiligen Kraftstoffeinspritzventils verbunden ist. Der dem Kraftstoffhochdruckspeicher 8 zugeführte Kraftstoffdruck wirkt auch in dem Druckraum 29 und dort auf eine Druckschulter 31 des Krafstoffeinspritzventilglieds 21, über die in bekannter Weise das Kraftstoffeinspritzventilglied bei geeigneten Bedingungen von seinem Ventilsitz abgehoben werden kann. Am anderen Ende des Kraftstoffeinspritzventilglieds ist diese in einer Zylinderbohrung 33 geführt und schließt dort mit seiner Stirnseite 34 einen Steuerraum 36 ein. Die Schließstellung des Kraftstoffeinspritzventilgliedes wird dabei durch den Druck im Steuerraum 36 und auch durch eine Druckfeder 12, die sich zwischen einem Federteller 10 des Kraftstoffeinspritzventilgliedes und dem Gehäuse 19 abstützt, gesteuert. Während die in Schließrichtung wirkende Druckfeder 12 in ihrer Charakteristik unveränderlich ist, wird mit Hilfe des Druckes im Steuerraum 36 die Öffnungs- bzw. Schließbewegung des Kraftstoffeinspritzventilglieds ausgelöst. Dazu ist der Steuerraum 36 über einen Kanal 37 mit einem als 3-Wegeventil ausgebildeten Ventil 40 verbunden. Dieses ist in Figur 3 in den Details näher dargestellt. Vom Steuerraum her mündet hier der Kanal 37 in einen Ventilraum 41 ein, in dem ein Schließkörper 42 des Ventilglieds 43 des Ventils 40 verstellbar angeordnet ist. Dazu hat das Ventilglied 43 einen mit dem Schließkörper 42 fest verbundenen Stößel 45. Am Schließkörper ist eine erste Dichtfläche 46 an seiner einen Stirnseite und eine zweite Dichtfläche 47 an seiner anderen Stirnseite angeordnet. Die zweite Stirnfläche geht dabei in ein Verbindungsteil 48 zum Stößel 45 über, der einen kleineren Durchmesser hat als der übrige, in einer Führungsbohrung 50 geführte Stößel 45. Zwischen Führungsbohrung und dem Verbindungsteil 48 des Stößels 45 wird ein Ringraum 51 gebildet, in den ein Zuflußkanal 53 mündet. Der Ringraum 51 bildet einen Durchflußkanal zwischen Zuflußkanal 53 und dem Ventilraum 41. Zur Seite des Ventilraumes 41 hat die Führungsbohrung 50 einen im Durchmesser reduzierten Teil 52, an dem an der Mündung dieses Teils der Führungsbohrung 50 in den Ventilraum 41 ein Ventilsitz 54 ausgebildet ist, der als zweiter Ventilsitz mit der zweiten Dichtfläche 47 zusammen wirkt. Koaxial zu diesem und koaxial zu dem Ventilglied 43 bzw. dem Schließkörper 42 ist am gegenüberliegenden Ende des Ventilraums 41 ein erster Ventilsitz 55 ausgebildet, mit dem die erste Dichtfläche 46 zusammen wirkt. Vom Ventilsitz 55 aus führt ein Abflußkanal 57 vom Ventilraum 41 ab. Dieser ist in der Figur 1 ebenfalls dargestellt und führt zu dem Kraftstoffvorratsbehälter 6 zurück oder zu einem anders gestalteten Entlastungsraum. In dem Abflußkanal ist eine Drossel 58 vorgesehen, die den Abflußquerschnitt bei vom ersten ventilsitz 55 abgehobenen Ventilkörper bestimmt. Der Zuflußkanal 53, der ebenfalls in Figur 1 erkennbar ist, ist mit der Kraftstoffleitung 15 verbunden und kann somit Kraftstoff aus dem Kraftstoffhochdruckspeicher über den Ventilraum 41 bei vom zweiten Ventilsitz 54 abgehobenen Ventilglied 43 dem Steuerraum 36 zuführen.The fuel injection valve 14 has a housing 19 in which a needle-like injection valve member 21 is guided in a longitudinal bore 20. At its one end, this injection valve member is provided with a conical sealing surface 23 which cooperates with the valve housing in the combustion chamber of the engine 24 with a valve seat, from which discharge from injection openings 25, the interior of the fuel injection valve, here the injection valve member 21 surrounding, filled with pressurized fuel fuel annulus 27, connects to the combustion chamber of the associated internal combustion engine so as to perform an injection when the injection valve member has lifted from its valve seat. The annular space 27 is connected to a pressure chamber 29, which is in constant communication with a pressure line 30 which is connected to the fuel line 15 of the respective fuel injection valve. The fuel pressure supplied to the high-pressure fuel accumulator 8 also acts in the pressure chamber 29 and there on a pressure shoulder 31 of the Krafstoffeinspritzventilglieds 21, via the known manner, the fuel injection valve member can be lifted from its valve seat under suitable conditions. At the other end of the fuel injection valve member, this is guided in a cylinder bore 33 and closes there with its end face 34 a control chamber 36 a. The closed position of the fuel injection valve member is thereby by the pressure in the control chamber 36 and also by a compression spring 12 which extends between a spring plate 10 of the fuel injection valve member and the housing 19 is supported, controlled. While the force acting in the closing direction compression spring 12 is immutable in its characteristics, the opening or closing movement of the fuel injection valve member is triggered by means of the pressure in the control chamber 36. For this purpose, the control chamber 36 is connected via a channel 37 with a designed as a 3-way valve valve 40. This is shown in detail in Figure 3 in the details. From the control chamber here opens the channel 37 in a valve chamber 41, in which a closing body 42 of the valve member 43 of the valve 40 is adjustably arranged. For this purpose, the valve member 43 has a fixedly connected to the closing body 42 plunger 45. On the closing body, a first sealing surface 46 is disposed at its one end face and a second sealing surface 47 at its other end face. The second end face is in this case in a connecting part 48 to the plunger 45, which has a smaller diameter than the rest, guided in a guide bore 50 plunger 45. Between the guide bore and the connecting part 48 of the plunger 45, an annular space 51 is formed, into which an inflow channel 53 opens. The annular space 51 forms a flow channel between the inlet channel 53 and the valve chamber 41. To the side of the valve chamber 41, the guide bore 50 has a reduced diameter portion 52, on which at the mouth of this part of the guide bore 50 in the valve chamber 41, a valve seat 54 is formed which acts as a second valve seat with the second sealing surface 47 together. Coaxial with this and coaxial with the valve member 43 and the closing body 42, a first valve seat 55 is formed at the opposite end of the valve chamber 41, with which the first sealing surface 46 cooperates. From the valve seat 55, an outflow channel 57 leads from the valve chamber 41. This is also shown in the figure 1 and leads back to the fuel tank 6 or to a different design relief space. In the spillway is a Throttle 58 is provided, which determines the outflow cross-section at the first valve seat 55 lifted valve body. The inflow channel 53, which can also be seen in FIG. 1, is connected to the fuel line 15 and can thus supply fuel from the high-pressure fuel accumulator via the valve chamber 41 to the control chamber 36 when the valve member 43 is lifted from the second valve seat 54.

Die erste und die zweite Dichtfläche 46 bzw. 47 sowie der erste 55 und der zweite Ventilsitz 54 sind im vorliegenden Falle kegelförmig ausgebildet mit einem Kegelspitzenwinkel, der beim ersten Ventilsitz 55 kleiner ist als der entsprechende Kegelspitzenwinkel der ersten Dichtfläche 46 und mit einem Kegelspitzenwinkel der beim zweiten Ventilsitz 54 größer ist als der Kegelspitzenwinkel der zweiten Dichtfläche 47. Damit ergeben sich bei der Auflage der zweiten Dichtfläche 47 auf dem zweiten Ventilsitz 54 eine Berührungslinie, die durch den Innendurchmesser des zweiten Ventilsitzes 54 bestimmt ist und umgekehrt bei Auflage der ersten Dichtfläche 46 auf dem ersten Ventilsitz 55 eine Berührungslinie, die durch den Außenumfang der ersten Dichtfläche 46 bestimmt ist. Die Betätigung des Ventilglieds 43 erfolgt über den Stößel 45 von einem nicht weiter dargestelltem Antrieb 59, der als Piezoanordnung, z.B. als sogn. Piezostack oder als magnetostriktives Element ausgeführt ist. Diese Antriebe haben den Vorteil, daß sie analog zur Spannungsbeaufschlagung Stellwege durchführen und zwar mit hoher Betätigungskraft, wenn auch der absolut erzeugbare Weg relativ klein ist, so daß bei großen Stellwegen auch große Piezoelementpackungen verwendet werden müssen. Der weitere Vorteil solcher Antriebe besteht darin, daß sie sehr schnell wirken, so daß schnelle Schaltvorgänge durchführbar sind, die insbesondere bei der Einspritztechnik von hohem Vorteil sind.The first and the second sealing surface 46 and 47 and the first 55 and the second valve seat 54 are tapered in the present case with a cone tip angle, which is smaller at the first valve seat 55 than the corresponding cone tip angle of the first sealing surface 46 and a cone tip angle of the second contact seat 54 is greater than the apex angle of the second sealing surface 47. This results in the support of the second sealing surface 47 on the second valve seat 54 is a contact line, which is determined by the inner diameter of the second valve seat 54 and vice versa when resting the first sealing surface 46 the first valve seat 55 a contact line, which is determined by the outer periphery of the first sealing surface 46. The actuation of the valve member 43 via the plunger 45 by a not further shown drive 59, which as a piezoelectric arrangement, eg as sogn. Piezo stack or designed as a magnetostrictive element. These drives have the advantage that they perform analogous to the voltage application travel paths and indeed with high actuation force, although the absolutely producible way is relatively small, so that large travel ranges and large piezo element packages must be used. The further advantage of such drives is that they act very quickly, so that fast switching operations are feasible, which are particularly in injection technology of great advantage.

Für die Betätigung des Schließkörpers 42 sind die auf ihn aus der Druckbeaufschlagung von der Kraftstoffhochdruckquelle 8 her resultierenden Kräfte von Bedeutung. Dies gilt insbesondere bei den jeweiligen Schließstellungen des Schließkörpers 42. Befindet sich der Schließkörper 42 mit seiner zweiten Dichtfläche 47 in Anlage am zweiten Ventilsitz 54, so ist eine zwischen dem Durchmesser des Stössels 45 und des Verbindungsteils 48 verbleibende Ringfläche RF1 vom hohen Druck der Kraftstoffhochdruckquelle 8 beaufschlagt. An der dieser Fläche gegenüberliegenden Seite wird eine Ringfläche RF2 gebildet zwischen dem Verbindungsteil 48 und der auf der zweiten Dichtfläche 47 aufliegenden Kante des zweiten Ventilsitzes 54. Diese Ringfläche RF2 ist kleiner als die Ringfläche RF1, so daß die in Schließrichtung auf den Ventilkörper 42 zur Seite seines Antriebs 59 hin aus der Flächendifferenz resultierenden Kräfte überwiegen. Diese Kräfte halten den Schließkörper 42 in einer stabilen Endlage am zweiten Ventilsitz 54. Die Kräfte sind dabei so bemessen, daß der Antrieb 59 den Schließkörper 42 zum Öffnen wieder von diesem zweiten Ventilsitz 54 abheben kann. Kommt der Schließkörper in seiner anderen Stellung zur Anlage an dem ersten Ventilsitz 55, so ergeben sich wiederum stabile Verhältnisse. Dabei ist davon auszugehen, daß auf den Schließkörper 42 in Öffnungsrichtung maximal eine erste Kreisfläche KF1 wirken kann, die aus dem Durchmesser der Führungsbohrung 50 resultiert. Diese Kreisfläche ist auf der dem ventilraum 41 abgewandten Seite des Stössels 45 druckentlastet.For the operation of the closing body 42, the resulting from the pressurization of the high-pressure fuel source 8 forth forces are important. This applies in particular to the respective closed positions of the closing body 42. If the closing body 42 is in contact with the second valve seat 54 with its second sealing surface 47, an annular area RF1 remaining between the diameter of the ram 45 and the connecting part 48 is at high pressure from the high-pressure fuel source 8 applied. On the opposite side of this surface, an annular surface RF2 is formed between the connecting part 48 and resting on the second sealing surface 47 edge of the second valve seat 54. This annular surface RF2 is smaller than the annular surface RF1, so that in the closing direction of the valve body 42 to the side his drive 59 out of the area difference resulting forces outweigh. These forces hold the closing body 42 in a stable end position on the second valve seat 54. The forces are dimensioned such that the drive 59 can lift the closing body 42 to open again from this second valve seat 54. If the closing body comes into abutment against the first valve seat 55 in its other position, then again stable conditions result. It can be assumed that a maximum of a first circular area KF1, which results from the diameter of the guide bore 50, can act on the closing body 42 in the opening direction. This circular surface is relieved of pressure on the side of the plunger 45 facing away from the valve chamber 41.

Auf der anderen Seite kann maximal eine zweite Kreisfläche KF2 wirksam sein, die aus der Anlage der ersten Dichtfläche 46 am ersten Ventilsitz 55 bestimmt ist. Wie oben dargestellt, liegt die erste Dichtfläche 46 mit ihrem Außenumfang am ersten Ventilsitz 55 an und ist zur Seite des Abflußkanals 57 wiederum druckentlastet. Die erste Kreisfläche KF1 ist dabei kleiner als die zweite Kreisfläche KF2, so daß sich aus der Differenz dieser Flächen eine Differenzfläche ergibt, die vom hohen Kraftstoffdruck des Kraftstoffhochdruckspeichers 8 belastet ist und eine Kraft erzeugt, die wiederum in Schließrichtung des Schließkörpers 42 zum ersten Ventilsitz 55 hin wirkt. Auch diese in Schließrichtung wirkenden Kräfte sind so bemessen, daß sie vom Antrieb 59 des Schließkörpers 42 überwunden werden können. Die jeweiligen Kräfte in den stabilen Endlagen des Schließkörpers sind so groß, daß sie etwa 40 % der vom Antrieb aufbringbaren Stellkräfte betragen. Damit ist bei einem erforderlichen Aufwand für den Stellantrieb und einem entsprechenden Energiebedarf eine wirtschaftliche Betriebsweise des Drei-Wege-Ventils möglich. Im übrigen kann auf diese Weise ein Antrieb jeweils nur zur Verstellung des Schließkörpers erforderlich sein. Der Schließkörper in seinen jeweiligen Endlagen wird stabil in Schließstellung gehalten. Damit entfällt über die Dauer des Geschlossenseines jegliche Energiezufuhr zum Stellantrieb 59. Dies ist für einen sicheren und kostensparenden Betrieb des Ventils von wesentlichem Vorteil.On the other hand, a maximum of a second circular area KF2 can be effective, which is determined from the contact of the first sealing surface 46 on the first valve seat 55. As shown above, the first sealing surface 46 rests with its outer periphery on the first valve seat 55 and is again pressure-relieved to the side of the discharge channel 57. The first circular area KF1 is smaller than the second circular area KF2, so that the difference of these surfaces results in a differential area, which is loaded by the high fuel pressure of the high-pressure fuel accumulator 8 and generates a force which in turn acts in the closing direction of the closing body 42 to the first valve seat 55. These forces acting in the closing direction are dimensioned so that they can be overcome by the drive 59 of the closing body 42. The respective forces in the stable end positions of the closing body are so great that they amount to about 40% of the actuation forces applied by the drive. This is an economical operation of the three-way valve is possible with a required effort for the actuator and a corresponding energy demand. Moreover, in this way a drive may be required only for adjusting the closing body. The closing body in its respective end positions is held stable in the closed position. This eliminates any power supply to the actuator 59 over the duration of the shut-off. This is a significant advantage for safe and cost-saving operation of the valve.

Claims (5)

  1. Fuel injection device for internal combustion engines having a fuel high pressure source (8) to which a fuel injection valve (14) is connected, said fuel injection valve having an injection valve member (21) for controlling an injection opening (25) and a control space (36) which is delimited by a moveable wall (34) connected at least indirectly to the fuel injection valve member (21), and having an inlet duct (53) by means of which a high pressure source (8), preferably the fuel high pressure source (8), can be connected to the control space (36), and having an outlet duct (57) by means of which the control space (36) can be connected to a relief space (6), said connections to and from control space (36) being controllable by means of a valve (40) which has a valve member (43) with a closing body (42) provided with two cone-shaped sealing surfaces (46, 47) and displaceable within a valve space (41), said closing body being arranged coaxially to two valve seats (54, 55) and, depending on position, coming into sealing contact, by way of its first or second sealing surface (46, 47), with the corresponding first or second valve seat (54, 55), and the valve space (41) being connected at all times to the control space (36) by means of a duct (37), and having a pusher (45) which is moved by an electrical actuating drive (59) and connected to the closing body (42) and by means of which the closing body (42) is moved between the valve seats (54, 55) and which is guided in a guide bore (50) that is coaxial therewith and adjoins one of the valve seats (54), a part (48) of the pusher (45) adjacent to the closing body (42) being reduced in diameter and a throughflow duct (51) having an annular cross-section being formed between said reduced-diameter part (48) of the pusher (45) and the wall of the guide bore (50) ending at one of the valve seats (54), into which throughflow duct the inlet duct (53) opens, and the outlet duct (57) coaxially discharges adjacent to the other valve seat (55), a first annular area (RF1), effective in the axial direction of the pusher (45), being formed between a part of the pusher (45), which part points to the side of the valve space (41), and the reduced-diameter part (48) of the pusher (45), and a second annular area (RF 2), effective in the axial direction, being formed between the reduced-diameter part (48) of the pusher (45) and the first sealing edge, defined by placing the first sealing surface (47) on the first valve seat (54), and in that, furthermore, the diameter of the guide bore (50) has a first circular area (KF 1) and the circumference of a second sealing edge, formed by placing the second sealing surface (46) on the second valve seat (55), defines a second circular area (KF2), characterized in that the forces on the valve member (43) resulting from the pressure load of the circular areas (KF1, KF2) are so large that, in the end positions of the closing body (42) at one or other of the valve seats (54, 55), a resulting force towards the respective valve seat is formed in the closed position.
  2. Fuel injection device according to Claim 1, characterized in that the differential area resulting from the difference between the circular areas (KF1, KF2) and/or between the annular areas (RF1, RF2) is so large that the forces resulting from the loading by the fuel high pressure are respectively no larger than approximately 40% of the force which can be applied by the actuating drive (59).
  3. Fuel injection device according to Claim 1, characterized in that the second annular area (RF2) is smaller than the first annular area (RF1) and the first circular area (KF1) is smaller than the second circular area (KF2).
  4. Fuel injection device as claimed in Claim 3, characterized in that the first valve seat (54) is arranged on a reduced-diameter part (52) of the guide bore (50).
  5. Fuel injection device according to one of Claims.1 to 4, characterized in that the actuating drive (59) is only supplied with energy in order to actuate the closing body (42).
EP98111577A 1997-10-10 1998-06-24 Fuel injection apparatus Expired - Lifetime EP0908617B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19744723A DE19744723A1 (en) 1997-10-10 1997-10-10 Fuel injector
DE19744723 1997-10-10

Publications (2)

Publication Number Publication Date
EP0908617A1 EP0908617A1 (en) 1999-04-14
EP0908617B1 true EP0908617B1 (en) 2006-04-26

Family

ID=7845116

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98111577A Expired - Lifetime EP0908617B1 (en) 1997-10-10 1998-06-24 Fuel injection apparatus

Country Status (4)

Country Link
US (1) US5915361A (en)
EP (1) EP0908617B1 (en)
JP (1) JPH11193765A (en)
DE (2) DE19744723A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9713791D0 (en) * 1997-07-01 1997-09-03 Lucas Ind Plc Fuel injector
DE19701879A1 (en) 1997-01-21 1998-07-23 Bosch Gmbh Robert Fuel injection device for internal combustion engines
DE19732802A1 (en) * 1997-07-30 1999-02-04 Bosch Gmbh Robert Fuel injection device for internal combustion engines
DE19742320A1 (en) * 1997-09-25 1999-04-01 Bosch Gmbh Robert Fuel injector
DE19752150A1 (en) * 1997-11-25 1999-05-27 Focke & Co Valve, especially glue valve
DE19756087A1 (en) * 1997-12-17 1999-06-24 Bosch Gmbh Robert High pressure pump for fuel supply in fuel injection systems of internal combustion engines
DE19827267A1 (en) * 1998-06-18 1999-12-23 Bosch Gmbh Robert Fuel injection valve for high pressure injection with improved control of the fuel supply
DE19860678A1 (en) * 1998-12-29 2000-07-06 Bosch Gmbh Robert Fuel injection device for internal combustion engines
DE19919432C2 (en) * 1999-04-29 2002-07-04 Bosch Gmbh Robert Common rail injector
DE19949528A1 (en) * 1999-10-14 2001-04-19 Bosch Gmbh Robert Double-switching control valve for an injector of a fuel injection system for internal combustion engines with hydraulic amplification of the actuator
US6196199B1 (en) * 1999-12-28 2001-03-06 Detroit Diesel Corporation Fuel injector assembly having an improved solenoid operated check valve
WO2001071823A2 (en) 2000-03-22 2001-09-27 Siemens Vdo Automotive Corporation Method of control for a self-sensing magnetostrictive actuator
EP1167745A1 (en) * 2000-07-01 2002-01-02 Robert Bosch GmbH Method for operating injector and/or injection system
DE10058760C2 (en) * 2000-11-27 2003-05-28 Bosch Gmbh Robert Split control valve body for injector control valves
US6454238B1 (en) * 2001-06-08 2002-09-24 Hoerbiger Kompressortechnik Services Gmbh Valve
DE10131631A1 (en) * 2001-06-29 2003-01-16 Bosch Gmbh Robert Fuel injector with control chamber optimized for high pressure resistance
US6647966B2 (en) * 2001-09-21 2003-11-18 Caterpillar Inc Common rail fuel injection system and fuel injector for same
DE10155718C2 (en) * 2001-11-13 2003-09-18 Hermann Golle Injection system for diesel engines
DE10163693A1 (en) * 2001-12-21 2003-07-10 Orange Gmbh Injection injector for internal combustion engines
GB0215488D0 (en) * 2002-07-04 2002-08-14 Delphi Tech Inc Fuel injection system
DE10241445A1 (en) * 2002-09-06 2004-03-18 Daimlerchrysler Ag Fuel injection control valve has first valve component which with regard to HP flow direction is installed before first sealing face and second valve component with regard to LP flow direction is located after second sealing face
DE102004018927A1 (en) * 2004-04-20 2005-11-17 Robert Bosch Gmbh Common rail injector
DE102005060552B4 (en) * 2005-12-17 2009-06-10 Man Diesel Se Injection device for fuel engines
DE102007006939A1 (en) 2007-02-13 2008-08-14 Robert Bosch Gmbh Injector for injecting fuel into combustion chamber of internal-combustion engine, particularly common-rail injector, has control chamber actively connected with servo valve, by which fuel discharge path is released or blocked
CN104819083A (en) * 2015-04-27 2015-08-05 江苏海事职业技术学院 High-pressure common rail fuel injection control system of large-sized low-speed two-stroke diesel engine
US11933257B2 (en) * 2022-03-18 2024-03-19 Caterpillar Inc. Fuel injector lift control

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2041170B (en) * 1979-01-25 1983-02-16 Lucas Industries Ltd Flow control valve
US4603671A (en) * 1983-08-17 1986-08-05 Nippon Soken, Inc. Fuel injector for an internal combustion engine
JPH0759919B2 (en) * 1986-04-04 1995-06-28 日本電装株式会社 Fuel injection controller for diesel engine
WO1992012341A1 (en) * 1991-01-14 1992-07-23 Nippondenso Co., Ltd. Pressure accumulation type fuel jetting device
DE4236882C1 (en) * 1992-10-31 1994-04-21 Daimler Benz Ag IC engine fuel injection system with high pump pressure - uses electromagnetically operated three=way valve in fuel path to each fuel injection jet.
CH686845A5 (en) * 1993-03-08 1996-07-15 Ganser Hydromag Control arrangement for an injection valve for internal combustion engines.
EP0752062A1 (en) * 1994-03-24 1997-01-08 Siemens Aktiengesellschaft Injection valve for internal combustion engines
JP2885076B2 (en) * 1994-07-08 1999-04-19 三菱自動車工業株式会社 Accumulator type fuel injection device
DE4445586A1 (en) * 1994-12-20 1996-06-27 Bosch Gmbh Robert Method for reducing fuel pressure in a fuel injector
US5732679A (en) * 1995-04-27 1998-03-31 Isuzu Motors Limited Accumulator-type fuel injection system
DE19616812B4 (en) * 1995-04-27 2004-09-30 Nippon Soken, Inc., Nishio Fuel injector
JPH09209867A (en) * 1996-02-07 1997-08-12 Mitsubishi Motors Corp Fuel injector

Also Published As

Publication number Publication date
DE19744723A1 (en) 1999-04-15
JPH11193765A (en) 1999-07-21
DE59813510D1 (en) 2006-06-01
US5915361A (en) 1999-06-29
EP0908617A1 (en) 1999-04-14

Similar Documents

Publication Publication Date Title
EP0908617B1 (en) Fuel injection apparatus
EP0925440B1 (en) Fuel injector
EP0828936B1 (en) Injection valve
EP0828935B1 (en) Injection valve
WO1997048900A1 (en) Fuel injection device for internal combustion engines
DE102005057526A1 (en) Control valve for fuel injection valve of internal combustion engine, has valve materials which selectively connect either of two ports to control channel
DE10001828A1 (en) Direct-control fuel injection device for combustion engine has valve body with actuator to move it in opening direction to let fuel flow from high pressure channel to connecting channel
EP0960274A1 (en) Fuel injection device for internal combustion engines
DE19709794A1 (en) Valve for controlling liquids
EP0050710B1 (en) Fuel injection system
DE102013112751A1 (en) fuel injector
EP1068445A1 (en) Fuel injection device for internal combustion engines
WO1999018349A1 (en) Directly controlled injection valve, especially a fuel injection valve
EP1899597A1 (en) Injector with a pressure intensifier that can be switched on
EP1927748A2 (en) Fuel injector
EP3055551B1 (en) Control valve
AT502512B1 (en) gas metering valve
EP1325228B1 (en) Injection valve comprising a pump piston
EP2286080A1 (en) Fuel injector with perforated seat nozzle
DE10333690A1 (en) Fuel injection device for internal combustion engines, has movable valve part whose direction of opening movement corresponds to that of fuel flowing out of control chamber
EP3184802B1 (en) Fuel injector
EP3184803B1 (en) Fuel injector
DE102016206261A1 (en) fuel injector
WO2001014721A1 (en) Fuel injection device for fuel internal combustion engines
DE10333691B3 (en) Fuel injection system with hydraulic circuit for internal combustion engine receives high-pressure fuel from common rail which passes to injection valve and spaces over pistons

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991014

AKX Designation fees paid

Free format text: DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59813510

Country of ref document: DE

Date of ref document: 20060601

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060830

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130620

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130703

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130622

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140624

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140624

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160810

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59813510

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103