EP0906561A1 - Procede et dispositif de detection optique de la presence d'ingredients d'un produit coulant - Google Patents
Procede et dispositif de detection optique de la presence d'ingredients d'un produit coulantInfo
- Publication number
- EP0906561A1 EP0906561A1 EP98919183A EP98919183A EP0906561A1 EP 0906561 A1 EP0906561 A1 EP 0906561A1 EP 98919183 A EP98919183 A EP 98919183A EP 98919183 A EP98919183 A EP 98919183A EP 0906561 A1 EP0906561 A1 EP 0906561A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- free
- measuring
- optical determination
- ingredients
- flowing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000004615 ingredient Substances 0.000 title claims abstract description 15
- 238000004497 NIR spectroscopy Methods 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 42
- 238000005259 measurement Methods 0.000 claims description 34
- 230000003287 optical effect Effects 0.000 claims description 22
- 238000003860 storage Methods 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 6
- 230000005484 gravity Effects 0.000 claims description 6
- 238000004611 spectroscopical analysis Methods 0.000 claims description 6
- 238000001228 spectrum Methods 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims 1
- 230000000717 retained effect Effects 0.000 abstract 1
- 230000006835 compression Effects 0.000 description 8
- 238000007906 compression Methods 0.000 description 8
- 239000013590 bulk material Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000011545 laboratory measurement Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
- G01N2021/8592—Grain or other flowing solid samples
Definitions
- the invention relates to a device for optically determining the contents of a free-flowing product, the product passing through a measurement window as a stream, in particular for analysis by means of a spectrometer with a specific measurement duration for producing the analysis.
- the invention also relates to a method for the prompt optical determination of ingredients in the flow of a free-flowing material, preferably by spectroscopic methods, in particular by NIR spectroscopy.
- Devices and methods of this type are used for the presentation of free-flowing material, so-called bulk material, for optical analysis, for example by means of coloretric methods, but in particular for spectroscopic optical analysis.
- a reproducible presentation which keeps the variance of the result as small as possible with identically composed bulk goods, poses problems especially with very fine-grained, poorly flowing powdery bulk goods. Special attention must therefore be paid to sample preparation. In laboratory operation, this can be done by appropriate manual
- the on-line measurement has some additional problems, without which an accurate measurement is not possible.
- the product must be continuously conveyed to the optics, but must not be moved during the individual measuring cycles lasting up to about 20 seconds. It must also be ensured that the product is mixed well. The correct, reproducible product compression ultimately has a significant influence.
- EP 0 585 691 provides for fluidizing the powder, that is, for converting it into a fluidized bed by blowing gases into which the measuring window of a spectroscopic analysis system is immersed.
- the crop flow is directed via an oscillating conveyor trough.
- the vibrating conveyor trough conveys the goods horizontally.
- a measuring window is provided on the boundary walls of the vibrating conveyor trough, through which the spectroscopic analysis is carried out.
- a measuring system of the elderly known under the name InfraAlyzer 600, is constructed in a similar manner.
- the vibrating conveyor trough serves to provide a layer thickness of the bulk material flow that is as constant as possible.
- the arrangement of the measuring window above the vibrating channel prevents the window from becoming dirty.
- a device for measuring powdery material in which the material is transported past a measuring window in a line with the aid of a screw conveyor. The conveyance is interrupted during the measurement.
- a disadvantage of the known devices is their relatively complicated structure, which requires a high level of technical equipment. In addition, constant operating conditions are difficult to ensure.
- the object of the invention is therefore another device of the type mentioned
- the method of the generic type is intended to provide an operationally reliable, constant mechanical quality of the sample and, therefore, low variance of the measurement results.
- the device task is solved in a generic device in that the current at the measuring point has a direction of flow with a component in the direction of gravity, a valve with an open position and a closed position is arranged in the line downstream of the measuring window, and a control is provided, which is designed to move the valve into its closed position at least for the duration of the measurement.
- the construction of this device is surprisingly simple and can be put together with little effort due to the usual parts in plant construction.
- the line in the area of the measuring window is designed as a movable container with, preferably flat, side walls, and a drive is provided for generating an oscillating movement of the container.
- a constant self-cleaning of the measuring window is achieved in that the measuring window in the container has an angle of inclination to the horizontal which is equal to or greater than an angle of repose of the free-flowing material.
- the container has a drop line in the area of which the measuring window is arranged is.
- the measurement window should be arranged in the projection of a downpipe onto the horizontal plane.
- the measure serves the same purpose that the movement of the container has a directional component which deviates from the direction of the measurement window surface normal, preferably corresponds to the fall line of the measurement window surface.
- An explosion-proof version of the drive can be dispensed with if the drive of the container is designed as a pneumatic drive, preferably with a piston that moves in a straight line.
- Such pistons which are moved back and forth on a straight line by compressed air and whose reaction forces are provided for shaking the container, are known as free-flight vibrators. They have the advantage that the reaction forces, which serve to drive the container, essentially only in
- Act direction of movement of the piston can therefore be used specifically to compress and convey the material in the direction of action of the drive.
- the spectrometer is an NIR spectrometer, in particular with a filter wheel.
- Such spectrometers are particularly suitable in connection with the device according to the invention, since they have relatively long measuring times.
- the sample must not change during this measurement period. This is ensured in a particularly suitable manner by the device according to the invention if the controller is designed to switch off the drive during the measurement period.
- a bridging of the goods in the container can be avoided in that the control is designed to operate the drive as long as the valve is in its open position. This also supports the conveyance of the goods from the container.
- the procedural object is achieved in a generic method in that the material flows past a measuring point with a directional component in the direction of gravity, and the flow of the material is blocked downstream from the measuring point in such a way that a storage path results that the flow comes to rest at the measuring point leaves, then the ingredients are determined by measuring a spectrum at the measuring location and then the material is removed from the storage section.
- the gravity of the free-flowing material itself for reproducible compaction, as a result of which the method according to the invention can advantageously be implemented in a simple, constructive manner without excessive effort. Since gravity is not subject to external influences, the method has a particularly high level of operational reliability with little variance in compression.
- a constant static pressure in the container is achieved in that the flow of the material upstream from the measuring location during the determination of the Ingredients at the measuring point is interrupted or bypassed, preferably by overflowing.
- the outflow of the goods from the storage section is facilitated in that the goods are loosened to remove the goods from the storage section, preferably by vibrations.
- a bridge formed during compression can easily be broken up again.
- a vibrator can be used to discharge the goods without additional equipment expenditure if the goods were previously compacted by the vibrator.
- the method can be used particularly when the measurement is carried out at specific bands of an NIR spectrum, which are determined by filtering.
- Figure 1 a view of the invention
- Figure 2 is a side view of the device according to
- the device according to the invention serves for the presentation of free-flowing material for the spectroscopic measurement by an optics module 1 (FIG. 2).
- the device itself consists of a
- Container 2 which is movably mounted in a holder 3 by means of rubber spring elements 7.
- the upper end of the container is defined by an overflow 4, while the lower end of the container is formed by a flap 8.
- An upper end 9 and a lower tube end 10 are used for connection in a line, not shown, for transporting the free-flowing material.
- a vibration drive 5 is permanently attached to the container 2 by means of a bracket 11. Inside this drive 5, a piston moves in the direction of the arrow 12, so that its reaction forces also act in the direction of the arrows 12. These reaction forces are transmitted to the container 2 via the console 11. As a result, the container essentially also swings in the direction of the arrows 12. However, the eccentric arrangement of the drive 5 also exerts an alternating moment on the container 2, which imparts further movement components to the container 2, which, however, are considerably less than the component in the direction arrows 12.
- the container 2 has a square cross section, which is formed by the two side walls 13 and an upper wall 14 and a lower wall 15.
- the lower wall 15 is provided with a window 6 through which the optical module 1 takes the measurement.
- the window 6 has an inclination of approximately 60 ° with respect to the horizontal. " This angle exceeds a slope angle of the free-flowing material.
- Slope angle is understood here to mean the angle that arises between the surface and the horizontal of a bed that is at rest or is exposed to vibrations. There are measuring devices that measure this angle dynamically or statically.
- the measuring window 6 is provided in the lower wall 15 of the container, a product exchange always takes place at the measuring window. To support this effect, it lies within the projection surface of the pipe end 9 on the horizontal.
- the movement component which is directed across, i.e. parallel to the surface of the window, has a product-exchanging effect.
- two angle pieces 16 and adapter pieces 17 are provided at the top and bottom, which in turn adapt the square cross-section to the circular cross-section of the subsequent pipe.
- the flap 8 is first closed by means of an actuator (not shown) attached to a shaft 18 which is brought out.
- the free-flowing material entering at the upper end of the tube is thereby blocked by flap 8 until it reaches the lower edge of the overflow 4.
- the free flowing material that is flowing in can flow past the device through overflow 4.
- the vibrator 5 is operated.
- the free-flowing material contained in it is compressed by the movements of the container 2. Trapped air bubbles can escape upwards. After about 20 to 40 seconds, preferably 30 seconds, the free-flowing material is compacted, which does not change significantly even with further shaking.
- the vibrator is then switched off and the optical module 1 of the spectrometer can carry out the measurement through window 6.
- the control opens the flap 8 again, so that the free-flowing material in the container can flow out.
- the formation of bridges and plugs in the line is effectively avoided by switching on the drive 5.
- the flowing material strikes the inclined window 6 in the wall 15 in the vertical case. Any adhering grains from the previous measurement are entrained by the flowing material. After the flap 8 is closed again, the material is stowed for a further measurement. This is followed by a measurement cycle, as previously described.
- the container can have a vertical axis so that the pipe ends 9 and 10 are arranged concentrically.
- the device according to the invention can be easily installed in existing downpipes. This creates a device and a method that enables a uniform and reproducible compression of bulk material and an optimal sample presentation at the optical window to ensure the repeatability of the
- the device Due to the small number of parts and especially when choosing a flying piston vibrator as the drive, the device has a particularly robust construction. In addition, the device can be easily integrated into a wide variety of production processes with appropriate pipe components. It is particularly important that the device is also CIP / SIP cleanable for food production. This hygiene and food-safe structure enables pharmaceuticals and food in particular to be analyzed online by spectroscopy. Hardly accessible corners and dead spaces in which microorganisms could nest are advantageously avoided with this structure.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Measuring Cells (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
L'invention concerne un procédé et un dispositif permettant de détecter de manière optique la présence d'ingrédients d'un produit coulant par spectroscopie en proche infrarouge. Afin de parvenir à des résultats de mesure reproductibles, il est prévu pour ce qui est du dispositif, que le produit s'écoule dans le sens de la force de gravité, qu'un clapet (8) soit monté dans la conduite en amont de la fenêtre de mesure (6) et qu'un système de commande permette de déplacer le clapet dans sa position de fermeture, au moins le temps de la mesure. Ce procédé se caractérise en ce que le produit s'écoule dans le sens de la force de gravité et passe devant un lieu de mesure, est refoulé en amont du lieu de mesure, de manière que l'écoulement s'arrête au niveau du lieu de mesure et qu'une fois la mesure effectuée, le produit soit éloigné de la section de stagnation.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19714115 | 1997-04-05 | ||
DE19714115A DE19714115C2 (de) | 1997-04-05 | 1997-04-05 | Vorrichtung zur optischen Bestimmung von Inhaltsstoffen eines rieselfähigen Gutes |
PCT/EP1998/001837 WO1998045678A1 (fr) | 1997-04-05 | 1998-03-28 | Procede et dispositif de detection optique de la presence d'ingredients d'un produit coulant |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0906561A1 true EP0906561A1 (fr) | 1999-04-07 |
Family
ID=7825556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98919183A Withdrawn EP0906561A1 (fr) | 1997-04-05 | 1998-03-28 | Procede et dispositif de detection optique de la presence d'ingredients d'un produit coulant |
Country Status (5)
Country | Link |
---|---|
US (1) | US6271521B1 (fr) |
EP (1) | EP0906561A1 (fr) |
JP (1) | JP2000511646A (fr) |
DE (1) | DE19714115C2 (fr) |
WO (1) | WO1998045678A1 (fr) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6804251B1 (en) | 1998-11-12 | 2004-10-12 | Broadcom Corporation | System and method for multiplexing data from multiple sources |
US7333495B2 (en) | 1999-10-27 | 2008-02-19 | Broadcom Corporation | Method for scheduling upstream communications |
US6999414B2 (en) | 1999-10-27 | 2006-02-14 | Broadcom Corporation | System and method for combining requests for data bandwidth by a data provider for transmission of data over an asynchronous communication medium |
DE10119763A1 (de) * | 2001-04-23 | 2002-10-24 | Hans Joachim Bruins | Verfahren und Vorrichtung zur Getreideanalyse |
DE10161208B4 (de) * | 2001-12-13 | 2008-04-17 | Bran + Luebbe Gmbh | Probenzuführvorrichtung |
US6847899B2 (en) | 2002-04-26 | 2005-01-25 | Dean Allgeyer, M.D., Inc. | Device and method for qualitative and quantitative determination of intravenous fluid components |
DE10358135A1 (de) * | 2003-12-12 | 2005-07-21 | L. B. Bohle Pharmatechnik Gmbh | Verfahren und Vorrichtung zur Qualitätsbestimmung granulatförmigen Materials |
RU2264610C2 (ru) * | 2004-01-16 | 2005-11-20 | Общество с ограниченной ответственностью "ВИНТЕЛ" | Способ измерения спектроскопических свойств сыпучих продуктов и устройство для его осуществления |
CN102686998A (zh) * | 2009-12-22 | 2012-09-19 | 布勒股份公司 | 测量散装物料的装置和方法 |
US9885655B2 (en) * | 2012-11-13 | 2018-02-06 | Viavi Solutions Inc. | Spectrometer with a relay lightpipe |
AR107595A1 (es) * | 2017-02-10 | 2018-05-16 | Tecnocientifica S A | Sonda espectrométrica para muestreo de material a granel y calador automático de muestreo que incorpora la sonda |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4180331A (en) * | 1976-04-19 | 1979-12-25 | Bindicator Company | Method and apparatus for sampling and measuring a characteristic of flowing granular material |
US4154533A (en) * | 1977-07-01 | 1979-05-15 | Bindicator Company | Method and apparatus for measuring a characteristic of flowing material |
GB2087841B (en) * | 1980-11-21 | 1984-09-12 | Smidth & Co As F L | Method and apparatus for continuous sampling |
SE458724B (sv) * | 1981-03-16 | 1989-04-24 | Peter Perten | Infraroedanalysator foer relativ maengdbestaemning av visst eller vissa aemnen i ett prov, saerskilt i livsmedel saasom mjoel |
SE454387B (sv) * | 1983-07-04 | 1988-04-25 | Peter Perten | Anordning vid en infrarodanalysator for relativ mengdbestemning av ett visst eller vissa emnen i ett pulverformigt material |
GB8906020D0 (en) * | 1989-03-16 | 1989-04-26 | Shields Instr Ltd | Infrared spectrometer |
FI901257A (fi) * | 1990-03-14 | 1991-09-15 | Outokumpu Oy | Maetcell. |
US5278412A (en) * | 1992-08-18 | 1994-01-11 | Nirsystems Incorporated | System for measuring the moisture content of powder and fiber optic probe therefor |
DK170899B1 (da) * | 1994-03-11 | 1996-03-04 | Tecator Ab | Prøvebeholder til brug ved analyse af en heri anbragt materialeprøve |
DK171926B1 (da) * | 1995-02-10 | 1997-08-11 | Slagteriernes Forskningsinst | Apparat til undersøgelse af strømningsdygtigt materiale og indretning til fremføring af prøver |
JPH08285763A (ja) * | 1995-04-18 | 1996-11-01 | Iseki & Co Ltd | 近赤外線分光分析装置 |
JP3582151B2 (ja) * | 1995-06-14 | 2004-10-27 | 井関農機株式会社 | 穀類品質分析装置 |
JPH08338804A (ja) * | 1996-07-01 | 1996-12-24 | Iseki & Co Ltd | 米の品質表示装置 |
-
1997
- 1997-04-05 DE DE19714115A patent/DE19714115C2/de not_active Expired - Fee Related
-
1998
- 1998-03-28 WO PCT/EP1998/001837 patent/WO1998045678A1/fr not_active Application Discontinuation
- 1998-03-28 JP JP10542334A patent/JP2000511646A/ja not_active Ceased
- 1998-03-28 EP EP98919183A patent/EP0906561A1/fr not_active Withdrawn
- 1998-03-28 US US09/194,375 patent/US6271521B1/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO9845678A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2000511646A (ja) | 2000-09-05 |
WO1998045678A1 (fr) | 1998-10-15 |
DE19714115C2 (de) | 1999-12-23 |
US6271521B1 (en) | 2001-08-07 |
DE19714115A1 (de) | 1998-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0179108B1 (fr) | Installation de mesure aux infrarouges pour l'analyse continue de produits moulus | |
EP0466857B2 (fr) | Dispositif, procede et mise en uvre du procede pour la detection d'un flux de production | |
WO1998045678A1 (fr) | Procede et dispositif de detection optique de la presence d'ingredients d'un produit coulant | |
EP0225632B1 (fr) | Procédé et dispositif pour l'échantillonnage intégré et division in-line d'échantillons de produits en dispersion de conduites de transport ou à endroits de transfert de courants de produits | |
EP0417219B1 (fr) | Balance à récipient tournant | |
DE3441856C2 (de) | Verfahren zum laufenden quantitativen Bestimmen von Inhaltsstoffen, insbesondere von Proteinen und Wasser, in mehlförmigen oder anderen Nahrungsmittel-Mahlgütern durch Infrarotmessung und Vorrichtung zur Durchführung dieses Verfahrens | |
DE102008020253A1 (de) | Packanlage zum Füllen von vorkonfektionierten offenen Säcken mit Schüttgütern | |
WO1989010548A1 (fr) | Dispositif et procede pour saisir des parametres de produit en mode operationnel | |
EP1381850B1 (fr) | Procede et dispositif d'analyse de cereales | |
EP0950169A1 (fr) | Dispositif de dosage volumetrique discontinu | |
DE10226722B4 (de) | Waage zur Erfassung des Massendurchsatzes nach dem Differentialprinzip | |
DE102018113852B4 (de) | Labor-Dosiervorrichtung | |
DE573764C (de) | Verfahren zur Bestimmung des Feinheitsgrades eines staubfoermigen oder koernigen Gutes | |
DE2815940C3 (de) | Dosiereinrichtung zur Portionierung von kontinuierlich anfallenden festen und/oder flüssigen Stoffen | |
DE3115472C2 (de) | Vorrichtung zur dosierten Aufgabe von staubförmigen Substanzen | |
DE10103854A1 (de) | Messvorrichtung und Verfahren zur Ermittlung eines kontinuierlichen Massenstroms von fliessfähigen Gütern | |
DE1954251C3 (de) | Strömungsmeßgerät zum Bestimmen des Mengenstromes von partikelförmigem Massengut | |
WO1998019149A1 (fr) | Procede et dispositif permettant de mettre a disposition des echantillons de produits en vrac pour l'analyse de constituants | |
DD205667A1 (de) | Fuelleinrichtung zur losen verladung staubfoermiger bis feinkoerniger schuettgueter | |
DE2327624C3 (de) | Vorrichtung zur kontinuierlichen Mengenmessung von Materialströmen aus schüttfähigen Feststoffen | |
DE2303011A1 (de) | Verfahren und vorrichtung zur volumetrischen erfassung der einzelkomponenten eines rohstoffgemenges | |
DE1954251B2 (de) | Stroemungsmessgeraet zum bestimmen des mengenstromes von partikelfoermigem massengut | |
DE29502487U1 (de) | Probenentnahmegerät für mehlige bis körnige Schüttgüter | |
DE202010013205U1 (de) | Vorrichtung zum Bereitstellen von definierten Probenmengen aus schüttfähigen Feststoffen | |
DE6605730U (de) | Foerdervorrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE ES FR GB IT LI NL |
|
17P | Request for examination filed |
Effective date: 19990415 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20071002 |