EP0903425B1 - Process for the electrolysis of brine - Google Patents

Process for the electrolysis of brine Download PDF

Info

Publication number
EP0903425B1
EP0903425B1 EP98402268A EP98402268A EP0903425B1 EP 0903425 B1 EP0903425 B1 EP 0903425B1 EP 98402268 A EP98402268 A EP 98402268A EP 98402268 A EP98402268 A EP 98402268A EP 0903425 B1 EP0903425 B1 EP 0903425B1
Authority
EP
European Patent Office
Prior art keywords
cathode
membrane
oxygen
compartment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98402268A
Other languages
German (de)
French (fr)
Other versions
EP0903425A1 (en
Inventor
Françoise Andolfatto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9511354&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0903425(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP0903425A1 publication Critical patent/EP0903425A1/en
Application granted granted Critical
Publication of EP0903425B1 publication Critical patent/EP0903425B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the present invention relates to a method for electrolysis of a brine, and more specifically to an aqueous solution of sodium chloride by means of a membrane electrolysis cell and a gas electrode, said electrode being placed directly against the membrane and in a cathode compartment powered solely by gas.
  • the present invention relates to a process for producing an aqueous solution of sodium hydroxide by electrolysis of an aqueous solution of sodium chloride using an "oxygen reduction cathode" having a yield of sodium hydroxide (current efficiency) and improved membrane life.
  • a conventional membrane electrolysis cell comprises a placed gas electrode in the cathode compartment of the electrolysis cell to divide this compartment into a solution compartment on the ion exchange membrane side and a gas compartment on the opposite side.
  • the gas electrode is usually obtained by molding a mixture of a hydrophobic substance such as a polytetrafluoroethylene resin (hereinafter referred to as PTFE) and a supported catalyst or catalyst so that it presents hydrophobic properties preventing the passage of liquids.
  • PTFE polytetrafluoroethylene resin
  • a supported catalyst or catalyst so that it presents hydrophobic properties preventing the passage of liquids.
  • PTFE polytetrafluoroethylene resin
  • a supported catalyst or catalyst so that it presents hydrophobic properties preventing the passage of liquids.
  • such a gas electrode progressively loses its hydrophobic properties when it is exposed to a high temperature of the order of 90 ° C and to an aqueous solution of sodium hydroxide of high concentration of about 32% or more.
  • the gas electrode consists of a mixture comprising mainly a carbonaceous material and a resin, it has a mechanical fragility and tends to crack.
  • the soda produced must have a titer of between 30 and 35%, otherwise the current efficiency will be reduced by increasing the back migration. hydroxyl ions in the membrane, and physically degrade the membrane. These specifications are given by chlor-alkali membrane manufacturers, and are valid for all types of membranes. This involves adding water to dilute the soda produced, 4.5 moles of water per mole of soda (to have a 33% soda).
  • the electroosmotic flow through the membrane brings into the cathode compartment 3.5 moles of water per mole of Na + , when the concentration of NaCl in the anode compartment is 220 g / l.
  • the amount of water available in contact with the membrane will be at most 3.5 moles of water per mole of sodium hydroxide, assuming that the water required for the electrochemical reaction is provided by the gas.
  • a method of electrolysis of an aqueous solution of sodium chloride has now been found by means of an oxygen reduction membrane and cathode electrolysis cell comprising a cation exchange membrane which divides the cell into a compartment. anode and a cathode compartment in which said cathode is placed directly against the cation exchange membrane, said cathode compartment being fed with a humidified gas containing oxygen, characterized in that, to obtain a weight concentration of sodium hydroxide between the exchange membrane cation and the cathode less than 38.8%, an aqueous chloride solution is used.
  • sodium (anolyte) having a sodium chloride concentration of less than 200 g / l and preferably of between 160 g / l and 190 g / l and that the water moistening the oxygen-containing gas is under form of water vapor.
  • the temperature of the cathode compartment may be greater than the temperature of the anode compartment.
  • the temperature of the cathode compartment may be greater than 5 ° C. to 20 ° C. at the temperature of the anode compartment and, preferably, greater than 10 ° C. to 15 ° C.
  • the cathode compartment is fed with an oxygen-containing gas, previously wetted by bubbling in water heated to a temperature ranging from 50 ° C. to 100 ° C. and preferably at a temperature of between 80 ° C. and 100 ° C.
  • the humidified oxygen will be introduced into the cathode compartment so that the water humidifying the oxygen is in the form of water vapor. This can be achieved by keeping the temperature of the bubbler lower than or equal to that of the cathode compartment.
  • the volume content of water vapor of the humidified gas containing oxygen is between 10% and 80% and preferably between 20% and 60%.
  • the oxygen-containing gas may be air, oxygen-enriched air or even oxygen. Preferably, oxygen will be used.
  • the volume concentration of oxygen in the gas is less than 20%, and preferably at least 50%.
  • the gases enriched with oxygen are preferably decarbonated beforehand.
  • the weight concentration of sodium hydroxide between the cation exchange membrane and the cathode is less than 38.8%, preferably less than 37%.
  • the method of the invention has the advantage of leading to a high yield of sodium hydroxide (current yield), to improve the lifetime of the cation exchange membranes and not to significantly disturb the voltage of the cell.
  • the sodium hydroxide obtained by the process according to the present invention has a purity equivalent to the sodium hydroxide obtained by conventional methods of hydrogen evolution cathodes.
  • the invention may be implemented with a device as described below.
  • a capillary placed between the cathodic seal and the membrane (not shown in FIG. 1) makes it possible to take sodium hydroxide between the membrane and the cathode in order to measure its concentration. The chlorine comes out at (15).
  • An aqueous solution of NaCl is introduced into the anode compartment (1) by (3) at a weight concentration of NaCl as defined above and humidified gas containing oxygen in the cathode compartment (11) by (12); the water moistening the gas containing oxygen being in the form of water vapor.
  • the temperature of the electrolysis is set to 80-90 ° C
  • the temperature of the cathode compartment may be greater than the temperature of the anode compartment.
  • the present invention it is advantageous to operate with a flow rate of oxygen which is greater than the consumption of the cathode.
  • the temperature of the water in which the oxygen-containing gas is bubbling can be increased or decreased, as can the flow rate of humidified gas containing oxygen to adjust the titer of the soda at the outlet (14) of the cell. .
  • the electrolytic cell of aqueous sodium chloride solution as shown in FIG. 1 is used.
  • the electrolysis is carried out with a source of energy which is connected to the anode (+) and to the cathode (-) of the cell so as to apply to the cell a current density i of 3 to 4 k A / m 2 .
  • the anode (8) consists of a titanium substrate coated with ruthenium oxide RuO 2 .
  • the cathode (10) consists of platinum carbon shaped with PTFE on a nickel silver grid. (10% platinum on carbon, 0.56 mg Pt per cm 2 ).
  • This cathode is marketed by E-TEK, Inc.
  • the cation exchange membrane (9) is a Nafion N966 membrane, produced by the departments du Pont de Nemours.
  • the gas used is pure oxygen.
  • the operating conditions are identical to those of Example 3, except that the weight concentration of NaCl in the anolyte is 170 g / l.

Abstract

An electrolytic process for the production of an aqueous sodium hydroxide solution uses an oxygen reduction cathode and a cation exchange membrane. The electrolytic cell comprises a cation exchange membrane dividing it into anodic and cathodic compartments. The cathode is placed directly against the membrane and the compartment is supplied with a moist gas containing O2. To obtain a weight concentration between the cation exchange membrane and the cathode of less than 38.8% of NaOH (a higher concentration reduces the life of the membrane), aqueous solutions of NaCl (anolyte) with a weight concentration of NaCl less than 200 g/l are electrolyzed. The O2-containing gas contains water vapor.

Description

La présente invention concerne un procédé d'électrolyse d'une saumure, et, plus précisément d'une solution aqueuse de chlorure de sodium au moyen d'une cellule d'électrolyse à membrane et d'une électrode à gaz, ladite électrode étant placée directement contre la membrane et dans un compartiment cathodique alimenté uniquement par du gaz.The present invention relates to a method for electrolysis of a brine, and more specifically to an aqueous solution of sodium chloride by means of a membrane electrolysis cell and a gas electrode, said electrode being placed directly against the membrane and in a cathode compartment powered solely by gas.

Plus particulièrement, la présente invention concerne un procédé de production d'une solution aqueuse d'hydroxyde de sodium par électrolyse d'une solution aqueuse de chlorure de sodium au moyen d'une "cathode à réduction d'oxygène" ayant un rendement en soude (rendement de courant) et une durée de vie de la membrane améliorés.More particularly, the present invention relates to a process for producing an aqueous solution of sodium hydroxide by electrolysis of an aqueous solution of sodium chloride using an "oxygen reduction cathode" having a yield of sodium hydroxide (current efficiency) and improved membrane life.

Des améliorations remarquables ont été obtenues récemment en ce qui concerne les membranes échangeuses d'ions fluorées et ont permis le développement de procédés d'électrolyse de solutions de chlorure de sodium au moyen de membranes échangeuses d'ions. Cette technique permet de produire de l'hydrogène et de l'hydroxyde de sodium dans le compartiment cathodique et du chlore dans le compartiment anodique d'une cellule d'électrolyse de saumure.Remarkable improvements have recently been achieved with respect to fluorinated ion exchange membranes and have enabled the development of processes for the electrolysis of sodium chloride solutions by means of ion exchange membranes. This technique makes it possible to produce hydrogen and sodium hydroxide in the cathode compartment and chlorine in the anode compartment of a brine electrolysis cell.

Pour réduire la consommation d'énergie, il a été proposé dans la demande de brevet JP 52124496 d'utiliser une électrode à réduction d'oxygène comme cathode et d'introduire un gaz contenant de l'oxygène dans le compartiment cathodique pour supprimer le dégagement d'hydrogène et pour réduire dans une large mesure la tension d'électrolyse.To reduce energy consumption, it has been proposed in the patent application JP 52124496 using an oxygen reduction electrode as the cathode and introducing an oxygen-containing gas into the cathode compartment to suppress hydrogen evolution and to greatly reduce the electrolysis voltage.

Théoriquement, il est possible de réduire la tension d'électrolyse de 1,23 V en utilisant la réaction cathodique avec apport d'oxygène représentée par (1) à la place de la réaction cathodique sans apport d'oxygène représentée par (2) :

        2H2O + O2 + 4e- → 4OH-     (1)

E = + 0,40V (par rapport à une électrode normale à hydrogène).

        4H2O + 4e- → 2H2 + 4OH-     (2)

E = -0,83 V (par rapport à une électrode normale à hydrogène).
Theoretically, it is possible to reduce the electrolysis voltage by 1.23 V by using the cathodic reaction with oxygen supply represented by (1) in place of the cathodic reaction without oxygen supply represented by (2):

2H 2 O + O 2 + 4e - → 4OH - (1)

E = + 0.40V (relative to a normal hydrogen electrode).

4H 2 O + 4e - → 2H 2 + 4OH - (2)

E = -0.83 V (relative to a normal hydrogen electrode).

En général, une cellule conventionnelle d'électrolyse à membrane selon la technologie électrode à gaz, comprend une électrode à gaz placée dans le compartiment cathodique de la cellule d'électrolyse pour diviser ce compartiment en un compartiment à solution du côté de la membrane échangeuse d'ions et en un compartiment à gaz du côté opposé. L'électrode à gaz est habituellement obtenue en moulant un mélange d'une substance hydrophobe telle qu'une résine de polytétrafluoroéthylène (appelée dans la suite PTFE) et d'un catalyseur ou d'un catalyseur sur support, de manière qu'elle présente des propriétés hydrophobes empêchant le passage des liquides. Cependant, une telle électrode à gaz perd progressivement ses propriétés hydrophobes lorsqu'elle est exposée à une température élevée de l'ordre de 90°C et à une solution aqueuse d'hydroxyde de sodium de concentration élevée d'environ 32 % voir plus en masse au cours d'une électrolyse de longue durée. De ce fait, le liquide présent dans le compartiment à solution a tendance à pénétrer dans le compartiment à gaz. De plus, du fait que l'électrode à gaz est constituée par un mélange comprenant principalement une matière carbonée et une résine, elle présente une fragilité mécanique et a tendance à se fissurer. Ces inconvénients ont interdit l'utilisation pratique d'une telle électrode à gaz pour l'électrolyse d'une saumure.In general, a conventional membrane electrolysis cell according to the gas electrode technology comprises a placed gas electrode in the cathode compartment of the electrolysis cell to divide this compartment into a solution compartment on the ion exchange membrane side and a gas compartment on the opposite side. The gas electrode is usually obtained by molding a mixture of a hydrophobic substance such as a polytetrafluoroethylene resin (hereinafter referred to as PTFE) and a supported catalyst or catalyst so that it presents hydrophobic properties preventing the passage of liquids. However, such a gas electrode progressively loses its hydrophobic properties when it is exposed to a high temperature of the order of 90 ° C and to an aqueous solution of sodium hydroxide of high concentration of about 32% or more. mass during a long-lasting electrolysis. As a result, the liquid in the solution compartment tends to enter the gas compartment. In addition, because the gas electrode consists of a mixture comprising mainly a carbonaceous material and a resin, it has a mechanical fragility and tends to crack. These disadvantages have prohibited the practical use of such a gas electrode for the electrolysis of a brine.

Une telle configuration de cellule d'électrolyse est décrite dans la demande de brevet FR 2 711 675 (page 2, ligne 13 à page 3 ligne 7 et figure 1).Such an electrolysis cell configuration is described in the patent application FR 2,711,675 (page 2, line 13 to page 3 line 7 and figure 1).

Afin de résoudre les inconvénients mentionnés plus haut, il a été proposé dans le brevet JP-B-61-6155 de réunir une cathode à gaz et une membrane échangeuse d'ions en une seule structure intégrale, c'est-à-dire une cellule de type électrode à gaz/membrane échangeuse d'ions solidaire sans division du compartiment cathodique.In order to overcome the disadvantages mentioned above, it has been proposed in the patent JP-B-61-6155 to join a gas cathode and an ion exchange membrane in a single integral structure, that is to say a gas-type cell / ion exchange membrane integral solidarity without division of the cathode compartment.

Si les problèmes de fragilité mécanique ont été ainsi résolus, il n'en reste pas moins que ce type de configuration de cellule présente des inconvénients tels que notamment le changement de la membrane et de la cathode.If the problems of mechanical fragility have been thus resolved, the fact remains that this type of cell configuration has disadvantages such as in particular the change of the membrane and the cathode.

Si on effectue le bilan eau dans une cellule d'électrolyse à membrane comprenant une cathode constituée de carbone platiné mis en forme avec du PTFE sur une grille de nickel argenté, on constate que la réaction électrochimique mise en jeu à la cathode-réaction (1)- consomme 2 moles d'eau pour 4 moles de soude produites, soit 0,5 mole d'eau pour une mole de soude.If the water balance is carried out in a membrane electrolysis cell comprising a cathode made of platinum carbon shaped with PTFE on a silver nickel grid, it is found that the electrochemical reaction involved at the cathode-reaction (1 ) - consumes 2 moles of water per 4 moles of sodium hydroxide produced, ie 0.5 moles of water per mole of sodium hydroxide.

La soude produite doit avoir un titre compris entre 30 et 35 % sous peine de diminuer le rendement en courant en augmentant la rétro-migration des ions hydroxyle dans la membrane, et de dégrader physiquement la membrane. Ces spécifications sont données par les fabricants de membrane chlore-soude, et sont valables pour tous les types de membranes. Cela implique un apport d'eau pour diluer la soude produite, de 4,5 moles d'eau par mole de soude (pour avoir une soude à 33 %).The soda produced must have a titer of between 30 and 35%, otherwise the current efficiency will be reduced by increasing the back migration. hydroxyl ions in the membrane, and physically degrade the membrane. These specifications are given by chlor-alkali membrane manufacturers, and are valid for all types of membranes. This involves adding water to dilute the soda produced, 4.5 moles of water per mole of soda (to have a 33% soda).

Le flux électro-osmotique à travers la membrane apporte dans le compartiment cathodique 3,5 moles d'eau par mole de Na+, lorsque la concentration en NaCl dans le compartiment anodique est de 220 g/l.The electroosmotic flow through the membrane brings into the cathode compartment 3.5 moles of water per mole of Na + , when the concentration of NaCl in the anode compartment is 220 g / l.

On consomme donc 0,5 + 4,5 = 5 moles d'eau pour une mole de soude. On apporte donc 3,5 moles d'eau par mole de soude, soit un déficit de 1,5 moles d'eau par mole de soude dans les conditions classiques de fonctionnement.0.5 + 4.5 = 5 moles of water are therefore consumed for one mole of soda. 3.5 moles of water are thus added per mole of sodium hydroxide, ie a deficit of 1.5 moles of water per mole of sodium hydroxide under the conventional conditions of operation.

Il a été proposé dans la demande de brevet EP 686 709 d'apporter cette eau "manquante" sous forme de gouttelettes d'eau en suspension dans l'oxygène (brouillard). Or, la cathode est une électrode hydrophobe, en raison du PTFE qui sert de liant, relativement compacte. De plus l'oxygène est en contact avec la face arrière de l'électrode. Toute l'eau apportée par le gaz ne va pas traverser la cathode vers la membrane (à contre-courant de la soude produite) et va donc servir à diluer la soude de l'arrière de l'électrode et non pas à l'interface membrane/cathode. Il en résulte que la quantité d'eau disponible au contact de la membrane sera au mieux de 3,5 moles d'eau par mole de soude, à supposer que l'eau nécessaire à la réaction électrochimique soit apportée par le gaz. Cela signifie que la concentration en soude à l'interface membrane/cathode sera supérieure à 40/(3,5 x 18 + 40) x 100 = 38,8 %. Dans ces conditions, le rendement en courant est mauvais et la durée de vie de la membrane est diminuée.It has been proposed in the patent application EP 686,709 to bring this "missing" water in the form of droplets of water suspended in oxygen (fog). However, the cathode is a hydrophobic electrode, because of PTFE which serves as a binder, relatively compact. In addition, the oxygen is in contact with the rear face of the electrode. All the water brought by the gas will not cross the cathode to the membrane (against the current of the produced soda) and will therefore serve to dilute the soda of the back of the electrode and not the interface membrane / cathode. As a result, the amount of water available in contact with the membrane will be at most 3.5 moles of water per mole of sodium hydroxide, assuming that the water required for the electrochemical reaction is provided by the gas. This means that the soda concentration at the membrane / cathode interface will be greater than 40 / (3.5 x 18 + 40) x 100 = 38.8%. Under these conditions, the current efficiency is poor and the life of the membrane is reduced.

On a maintenant trouvé un procédé d'électrolyse d'une solution aqueuse de chlorure de sodium au moyen d'une cellule d'électrolyse à membrane et à cathode à réduction d'oxygène comprenant une membrane échangeuse de cations qui divise la cellule en un compartiment anodique et un compartiment cathodique dans lequel ladite cathode est placée directement contre la membrane échangeuse de cations, ledit compartiment cathodique étant alimenté par un gaz humidifié contenant de l'oxygène, caractérisé en ce que, pour obtenir une concentration pondérale en soude entre la membrane échangeuse de cation et la cathode inférieure à 38,8 %, on utilise une solution aqueuse de chlorure de sodium (anolyte) ayant une concentration en chlorure de sodium inférieure à 200 g/l et, de préférence comprise entre 160 g/l et 190 g/l et en ce que l'eau humidifiant le gaz contenant de l'oxygène est sous forme de vapeur d'eau.A method of electrolysis of an aqueous solution of sodium chloride has now been found by means of an oxygen reduction membrane and cathode electrolysis cell comprising a cation exchange membrane which divides the cell into a compartment. anode and a cathode compartment in which said cathode is placed directly against the cation exchange membrane, said cathode compartment being fed with a humidified gas containing oxygen, characterized in that, to obtain a weight concentration of sodium hydroxide between the exchange membrane cation and the cathode less than 38.8%, an aqueous chloride solution is used. of sodium (anolyte) having a sodium chloride concentration of less than 200 g / l and preferably of between 160 g / l and 190 g / l and that the water moistening the oxygen-containing gas is under form of water vapor.

En outre, selon la présente invention, la température du compartiment cathodique peut être supérieure à la température du compartiment anodique.In addition, according to the present invention, the temperature of the cathode compartment may be greater than the temperature of the anode compartment.

Selon la présente invention, la température du compartiment cathodique peut être supérieure de 5°C à 20°C à la température du compartiment anodique et, de préférence supérieure de 10°C à 15°C.According to the present invention, the temperature of the cathode compartment may be greater than 5 ° C. to 20 ° C. at the temperature of the anode compartment and, preferably, greater than 10 ° C. to 15 ° C.

Le compartiment cathodique est alimenté par un gaz contenant de l'oxygène, préalablement humidifié par barbotage dans de l'eau chauffée à une température allant de 50°C à 100°C et, de préférence, à une température comprise entre 80°C et 100°C.The cathode compartment is fed with an oxygen-containing gas, previously wetted by bubbling in water heated to a temperature ranging from 50 ° C. to 100 ° C. and preferably at a temperature of between 80 ° C. and 100 ° C.

Selon la présente invention, l'oxygène humidifié sera introduit dans le compartiment cathodique de façon à ce que l'eau humidifiant l'oxygène se trouve sous forme de vapeur d'eau. Ceci peut être obtenu en maintenant la température du barboteur inférieure ou égale à celle du compartiment cathodique.According to the present invention, the humidified oxygen will be introduced into the cathode compartment so that the water humidifying the oxygen is in the form of water vapor. This can be achieved by keeping the temperature of the bubbler lower than or equal to that of the cathode compartment.

La teneur volumique en vapeur d'eau du gaz humidifié contenant de l'oxygène est comprise entre 10 % et 80 % et, de préférence comprise entre 20 % et 60 %.The volume content of water vapor of the humidified gas containing oxygen is between 10% and 80% and preferably between 20% and 60%.

Le gaz contenant de l'oxygène peut être de l'air, de l'air enrichi en oxygène ou bien encore de l'oxygène. De préférence, on utilisera de l'oxygène. La concentration volumique en oxygène dans le gaz est moins égale à 20 %, et, de préférence, au moins égale à 50 %.The oxygen-containing gas may be air, oxygen-enriched air or even oxygen. Preferably, oxygen will be used. The volume concentration of oxygen in the gas is less than 20%, and preferably at least 50%.

Les gaz enrichis en oxygène, sont, de préférence, préalablement décarbonatés.The gases enriched with oxygen are preferably decarbonated beforehand.

Selon la présente invention, la concentration pondérale en soude entre la membrane échangeuse de cations et la cathode est inférieure à 38,8 %, de préférence inférieure à 37 %. Le procédé de l'invention présente l'avantage de conduire à un rendement en soude élevé (rendement du courant), d'améliorer la durée de vie des membranes échangeuses de cations et de ne pas perturber de façon significative la tension de la cellule.According to the present invention, the weight concentration of sodium hydroxide between the cation exchange membrane and the cathode is less than 38.8%, preferably less than 37%. The method of the invention has the advantage of leading to a high yield of sodium hydroxide (current yield), to improve the lifetime of the cation exchange membranes and not to significantly disturb the voltage of the cell.

En outre, la soude obtenue par le procédé selon la présente invention possède une pureté équivalente à la soude obtenue selon les procédés classiques des cathodes à dégagement d'hydrogène.In addition, the sodium hydroxide obtained by the process according to the present invention has a purity equivalent to the sodium hydroxide obtained by conventional methods of hydrogen evolution cathodes.

L'invention peut être mise en oeuvre avec un dispositif tel que décrit ci-après.The invention may be implemented with a device as described below.

La figure 1 schématise une cellule qui est constituée de :

  • un compartiment anodique constitué d'un corps de cellule (1), d'un dégazeur (2). La solution de chlorure de sodium (saumure) est introduite par (3) et circule par gaz lift entre le corps de la cellule et le dégazeur (conduites (4) et (5)). Un trop plein (6) permet d'éliminer par (7) une partie de la saumure appauvrie. Des ajouts de saumure concentrée permettent de maintenir la concentration en NaCl dans l'anolyte à la valeur choisie ;
  • une anode (8) qui peut être constituée par substrat en titane revêtu de RuO2,
  • une membrane échangeuse de cations (9),
  • une cathode (10) placée directement contre la membrane (9), qui peut être constituée d'une grille de nickel argenté recouverte de carbone platiné,
  • un compartiment cathodique (11) constitué d'un corps de cellule. Le gaz humidifié contenant de l'oxygène est alimenté par le bas de la cellule (12) et ressort en partie haute (13) dans une colonne d'eau non représentée sur la figure 1 qui fixe la pression de travail. La soude est soutirée en (14) directement au titre voulue dans le bas de la cellule.
Figure 1 shows a cell that consists of:
  • an anode compartment consisting of a cell body (1), a degasser (2). The solution of sodium chloride (brine) is introduced by (3) and circulates by lift gas between the body of the cell and the degasser (lines (4) and (5)). An overflow (6) allows to eliminate (7) part of the depleted brine. Additions of concentrated brine make it possible to maintain the concentration of NaCl in the anolyte at the chosen value;
  • an anode (8) which can be constituted by titanium substrate coated with RuO 2 ,
  • a cation exchange membrane (9),
  • a cathode (10) placed directly against the membrane (9), which may consist of a nickel-silver grid coated with platinum carbon,
  • a cathode compartment (11) consisting of a cell body. The humidified gas containing oxygen is fed from the bottom of the cell (12) and exits at the top (13) in a water column not shown in Figure 1 which sets the working pressure. The soda is drawn at (14) directly to the desired title in the bottom of the cell.

Un capillaire placé entre le joint cathodique et la membrane (non représenté sur la figure 1 permet de prélever de la soude entre la membrane et la cathode afin de mesurer sa concentration. Le chlore sort en (15).A capillary placed between the cathodic seal and the membrane (not shown in FIG. 1) makes it possible to take sodium hydroxide between the membrane and the cathode in order to measure its concentration.The chlorine comes out at (15).

On introduit une solution aqueuse de NaCl dans le compartiment anodique (1) par (3) à une concentration pondérale en NaCl telle que définie précédemment et du gaz humidifié contenant de l'oxygène dans le compartiment cathodique (11) par (12) ; l'eau humidifiant le gaz contenant de l'oxygène étant sous forme de vapeur d'eau.An aqueous solution of NaCl is introduced into the anode compartment (1) by (3) at a weight concentration of NaCl as defined above and humidified gas containing oxygen in the cathode compartment (11) by (12); the water moistening the gas containing oxygen being in the form of water vapor.

Il n'y a ni ajout d'eau liquide, ni circulation de soude, dans le dispositif décrit ci-dessus.There is no addition of liquid water or circulation of soda in the device described above.

Selon la présente invention, la température de l'électrolyse est réglée vers 80-90°C, la température du compartiment cathodique pouvant être supérieure à la température du compartiment anodique.According to the present invention, the temperature of the electrolysis is set to 80-90 ° C, the temperature of the cathode compartment may be greater than the temperature of the anode compartment.

Lorsque l'on applique une densité de courant aux électrodes, du chlore provenant de l'électrolyse de la solution aqueuse de NaCl se dégage dans le compartiment anodique et est évacué via (4) et (15), les ions hydroxyles, formés par réduction de l'oxygène forment avec les cations alcalins circulant à travers la membrane, de la soude.When a current density is applied to the electrodes, chlorine resulting from the electrolysis of the aqueous NaCl solution is evolved in the anode compartment and is discharged via (4) and (15). Hydroxyl ions, formed by reduction of oxygen form with sodium cations circulating through the membrane, sodium hydroxide.

Selon la présente invention, on opère avantageusement avec un débit d'oxygène qui est supérieur à la consommation de la cathode. La température de l'eau dans laquelle barbote le gaz contenant de l'oxygène peut être augmentée ou diminuée, de même que le débit de gaz humidifié contenant de l'oxygène pour ajuster le titre de la soude en sortie (14) de la cellule.According to the present invention, it is advantageous to operate with a flow rate of oxygen which is greater than the consumption of the cathode. The temperature of the water in which the oxygen-containing gas is bubbling can be increased or decreased, as can the flow rate of humidified gas containing oxygen to adjust the titer of the soda at the outlet (14) of the cell. .

Les exemples qui suivent illustrent l'invention.The following examples illustrate the invention.

On utilise la cellule d'électrolyse de solution aqueuse de chlorure de sodium tel que représentée sur la figure 1.The electrolytic cell of aqueous sodium chloride solution as shown in FIG. 1 is used.

L'électrolyse est réalisée avec une source d'énergie qui est reliée à l'anode (+) et à la cathode (-) de la cellule de façon à appliquer à la cellule une densité de courant i de 3 à 4 k A/m2.The electrolysis is carried out with a source of energy which is connected to the anode (+) and to the cathode (-) of the cell so as to apply to the cell a current density i of 3 to 4 k A / m 2 .

L'anode (8) est constituée par un substrat en titane revêtu d'oxyde de ruthénium RuO2.The anode (8) consists of a titanium substrate coated with ruthenium oxide RuO 2 .

La cathode (10) est constituée par du carbone platiné mis en forme avec du PTFE sur une grille de nickel argenté. (10 % de platine sur le carbone ; 0,56 mg de Pt par cm2).The cathode (10) consists of platinum carbon shaped with PTFE on a nickel silver grid. (10% platinum on carbon, 0.56 mg Pt per cm 2 ).

Cette cathode est commercialisée par la Société E-TEK, Inc.This cathode is marketed by E-TEK, Inc.

La membrane changeuse de cations (9) est une membrane Nafion N966, produite par la Société du Pont de Nemours.The cation exchange membrane (9) is a Nafion N966 membrane, produced by the Société du Pont de Nemours.

Le gaz utilisé est de l'oxygène pur.The gas used is pure oxygen.

EXEMPLE 1 (non conforme à l'invention)EXAMPLE 1 (not in accordance with the invention) UTILISATION DANS LES CONDITIONS CLASSIQUES D'UNE CELLULE D'ELECTROLYSE CHLORE-SOUDEUSE IN THE CLASSIC CONDITIONS OF A CHLORINE-SOLD ELECTROLYSIS CELL Conditions opératoires :Operating conditions:

  • Membrane Nafion® N966 ; anode substrat de titane recouvert de Ru02.Nafion ® N966 membrane; anode titanium substrate covered with Ru02.
  • Température anodique = Température cathodique = 80°C.Anode temperature = Cathode temperature = 80 ° C.
  • Densité de courant i = 3 kA/m2.Current density i = 3 kA / m 2 .
  • L'oxygène est humidifié par barbotage dans de l'eau à 80°C avant son entrée dans la cellule. Son débit est de 5 l/h.The oxygen is wetted by bubbling in water at 80 ° C before entering the cell. Its flow rate is 5 l / h.
  • La teneur volumique en vapeur d'eau de l'oxygène humidifié est d'environ 55 %.The volume content of water vapor of humidified oxygen is about 55%.
  • Concentration pondérale en NaCl dans l'anolyte = 220 g/l.NaCl concentration in the anolyte = 220 g / l.
  • Concentration pondérale de la soude en sortie de cellule = 30 %.Weight concentration of sodium hydroxide at the outlet of the cell = 30%.
  • Concentration pondérale de la soude entre la membrane et la cathode = 40 %.Weight concentration of the soda between the membrane and the cathode = 40%.
  • Tension de cellule = 2,2 V.Cell voltage = 2.2 V.
  • Rendement en soude = 93 % (bilan réalisé sur 24 heures de fonctionnement continu).Soda yield = 93% (balance achieved over 24 hours of continuous operation).

On constate que le titre soude en sortie de cellule est correct, mais le rendement est largement inférieur aux valeurs attendues avec ce type de membrane.It is found that the solder titre at the cell outlet is correct, but the yield is much lower than the expected values with this type of membrane.

EXEMPLE 2 (non conforme à l'invention)EXAMPLE 2 (not in accordance with the invention) APPORT D'EAU EN AUGMENTANT LE DEBIT D'OXYGENEWATER SUPPLY BY INCREASING OXYGEN FLOW Conditions opératoires :Operating conditions:

  • Membrane Nafion® N966 ; anode substrat de titane recouvert de Ru02.Nafion ® N966 membrane; anode titanium substrate covered with Ru02.
  • Température anodique = Température cathodique = 80°C.Anode temperature = Cathode temperature = 80 ° C.
  • Densité de courant i = 3 kA/m2.Current density i = 3 kA / m 2 .
  • L'oxygène est humidifié par barbotage dans de l'eau à 80°C avant son entrée dans la cellule, son débit est doublé par rapport à l'exemple 1.The oxygen is humidified by bubbling in water at 80 ° C before entering the cell, its flow rate is doubled compared to Example 1.
  • Concentration pondérale en NaCl dans l'anolyte = 220 g/l.NaCl concentration in the anolyte = 220 g / l.
  • Concentration pondérale de la soude en sortie de cellule 28,5 %.Weight concentration of sodium hydroxide at the outlet of the cell 28.5%.
  • Concentration pondérale de la soude entre la membrane et la cathode = 39 %.Weight concentration of the soda between the membrane and the cathode = 39%.
  • Tension de cellule Ecell = 2,2 V.Ecell cell voltage = 2.2 V.
  • Rendement en soude = 93,4 % (bilan réalisé sur 24 heures de fonctionnement continu).Soda yield = 93.4% (balance achieved over 24 hours of continuous operation).

On constate que le titre soude en sortie de cellule est trop faible, la concentration en soude à l'interface membrane/cathode est inchangée et est élevée, le rendement quasi-identique : l'eau apportée par l'oxygène ne traverse pas la cathode pour diluer la soude à l'interface membrane/cathode, elle ne sert donc qu'à diluer la soude à l'arrière de la cathode.It is found that the solder titer at the cell outlet is too low, the sodium concentration at the membrane / cathode interface is unchanged and is high, the almost identical yield: the water supplied by the oxygen does not pass through the cathode to dilute the soda at the membrane / cathode interface, it is only used to dilute the soda at the rear of the cathode.

EXEMPLE 3 (conforme à l'invention)EXAMPLE 3 (in accordance with the invention) DIMINUTION DE LA CONCENTRATION EN NACL DANS L'ANOLYTEDECREASE IN NACL CONCENTRATION IN ANOLYTE Conditions opératoires :Operating conditions:

  • Membrane Nafion® N966 ; anode substrat de titane recouvert de RuO2.Nafion ® N966 membrane; anode titanium substrate covered with RuO 2 .
  • Température anodique = Température cathodique = 80°C.Anode temperature = Cathode temperature = 80 ° C.
  • Densité de courant i = 3 kA/m2.Current density i = 3 kA / m 2 .
  • L'oxygène est humidifié par barbotage dans de l'eau à 80°C avant son entrée dans la cellule, le débit d'oxygène est identique à celui de l'exemple 1.The oxygen is wetted by bubbling in water at 80 ° C before entering the cell, the flow rate of oxygen is identical to that of Example 1.
  • Concentration pondérale en NaCl dans l'anolyte = 190 g/l.Weight concentration of NaCl in the anolyte = 190 g / l.
  • Concentration pondérale de la soude en sortie de cellule = 30 %.Weight concentration of sodium hydroxide at the outlet of the cell = 30%.
  • Concentration pondérale de la soude entre la membrane et la cathode = 37,5 %.Weight concentration of the soda between the membrane and the cathode = 37.5%.
  • Tension de cellule = 2,2 V.Cell voltage = 2.2 V.
  • Rendement en soude = 95,9 % (bilan réalisé sur 24 heures de fonctionnement continu).Soda yield = 95.9% (balance achieved over 24 hours of continuous operation).

On constate que le titre soude en sortie de cellule est inchangé, le rendement est nettement supérieur à celui obtenu dans l'exemple 1, la tension de cellule n'est pas perturbée.It is found that the solder titer at the cell outlet is unchanged, the yield is significantly higher than that obtained in Example 1, the cell voltage is not disturbed.

EXEMPLE 4 (conforme à l'invention)EXAMPLE 4 (in accordance with the invention)

Les conditions opératoires sont identiques à celles de l'exemple 3, excepté que la concentration pondérale en NaCl dans l'anolyte est de 170 g/l.The operating conditions are identical to those of Example 3, except that the weight concentration of NaCl in the anolyte is 170 g / l.

Les résultats sont les suivants :

  • concentration pondérale de la soude sortie cellule : 32 %,
  • concentration pondérale de la soude entre la membrane et la cathode : 35 %,
  • rendement en soude : 96 %.
The results are as follows:
  • weight concentration of the soda output cell: 32%,
  • weight concentration of the soda between the membrane and the cathode: 35%,
  • soda yield: 96%.

Claims (8)

  1. Process for the electrolysis of an aqueous sodium chloride solution by means of a membrane electrolysis cell having an oxygen reduction cathode, comprising a cation exchange membrane that divides the cell into an anode compartment and a cathode compartment, in which said cathode is placed directly against the cation exchange membrane, said cathode compartment being supplied with an oxygen-containing humidified gas, characterized in that, to obtain a sodium hydroxide weight concentration between the cation exchange membrane and the cathode of less than 38.8%, an aqueous sodium chloride solution (anolyte) having a sodium chloride weight concentration of less than 200 g/l is used and in that the water humidifying the oxygen-containing gas is in the form of water vapour.
  2. Process according to Claim 1, characterized in that the sodium chloride weight concentration of the aqueous sodium chloride solution is between 160 g/l and 190 g/l.
  3. Process according to either of Claims 1 and 2, characterized in that the gas is oxygen.
  4. Process according to one of Claims 1 to 3, characterized in that the volume content of water vapour of the oxygen-containing humidified gas is between 10% and 80%.
  5. Process according to Claim 4, characterized in that the volume content of water vapour of the oxygen-containing humidified gas is between 20% and 60%.
  6. Process according to one of Claims 1 to 5, characterized in that, in addition, the temperature of the cathode compartment is above the temperature of the anode compartment.
  7. Process according to Claim 6, characterized in that the temperature of the cathode compartment is 5°C to 20°C above the temperature of the anode compartment.
  8. Process according to Claim 7, characterized in that the temperature of the cathode compartment is 10°C to 15°C above the temperature of the anode compartment.
EP98402268A 1997-09-23 1998-09-15 Process for the electrolysis of brine Expired - Lifetime EP0903425B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9711795 1997-09-23
FR9711795A FR2768751B1 (en) 1997-09-23 1997-09-23 ELECTROLYSIS OF A BRINE

Publications (2)

Publication Number Publication Date
EP0903425A1 EP0903425A1 (en) 1999-03-24
EP0903425B1 true EP0903425B1 (en) 2007-10-31

Family

ID=9511354

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98402268A Expired - Lifetime EP0903425B1 (en) 1997-09-23 1998-09-15 Process for the electrolysis of brine

Country Status (12)

Country Link
US (1) US6080298A (en)
EP (1) EP0903425B1 (en)
JP (1) JP3073968B2 (en)
KR (1) KR100313259B1 (en)
CN (1) CN1107744C (en)
AT (1) ATE377100T1 (en)
BR (1) BR9803590A (en)
CA (1) CA2245144C (en)
DE (1) DE69838632T2 (en)
ES (1) ES2296325T3 (en)
FR (1) FR2768751B1 (en)
NO (1) NO322395B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050011753A1 (en) * 2003-06-23 2005-01-20 Jackson John R. Low energy chlorate electrolytic cell and process
FR2930541B1 (en) 2008-04-29 2010-05-21 Solvay PROCESS FOR PURIFYING AQUEOUS SOLUTIONS
KR101239145B1 (en) 2009-03-17 2013-03-06 김영준 Device to electrolysis of aquous solution of sodium chloride contained in food waste
CN102134724B (en) * 2010-12-31 2012-06-20 北京化工大学 Method for desalting waste liquor in sodium carbonate production by using anion-exchange membrane electrolyzer
CN106148992A (en) * 2015-04-20 2016-11-23 李坚 Ionic membrane catalysis method or electrodialysis catalysis method water hydrogen manufacturing and application thereof
WO2018180726A1 (en) 2017-03-30 2018-10-04 株式会社カネカ Method for manufacturing sodium hydroxide and/or chlorine and 2 chamber type saltwater electrolytic cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221644A (en) * 1979-08-14 1980-09-09 Diamond Shamrock Corporation Air-depolarized chlor-alkali cell operation methods
JPS5641392A (en) * 1979-09-11 1981-04-18 Toyo Soda Mfg Co Ltd Electrolytic method of alkali chloride aqueous solution
JP3400508B2 (en) * 1993-10-27 2003-04-28 ペルメレック電極株式会社 Brine electrolysis method and electrolyzer
JP3344828B2 (en) * 1994-06-06 2002-11-18 ペルメレック電極株式会社 Saltwater electrolysis method
JPH08333693A (en) * 1995-06-05 1996-12-17 Permelec Electrode Ltd Electrolytic cell

Also Published As

Publication number Publication date
KR19990029993A (en) 1999-04-26
NO322395B1 (en) 2006-10-02
NO984306D0 (en) 1998-09-17
JPH11152591A (en) 1999-06-08
DE69838632D1 (en) 2007-12-13
FR2768751A1 (en) 1999-03-26
FR2768751B1 (en) 1999-10-29
CA2245144A1 (en) 1999-03-23
CA2245144C (en) 2002-08-13
KR100313259B1 (en) 2002-02-19
NO984306L (en) 1999-03-24
BR9803590A (en) 1999-12-14
CN1107744C (en) 2003-05-07
ATE377100T1 (en) 2007-11-15
ES2296325T3 (en) 2008-04-16
US6080298A (en) 2000-06-27
DE69838632T2 (en) 2008-08-28
CN1219610A (en) 1999-06-16
JP3073968B2 (en) 2000-08-07
EP0903425A1 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
JP3182216B2 (en) Gas depolarized electrode structure and method and apparatus for performing an electrochemical reaction using the same
US4221644A (en) Air-depolarized chlor-alkali cell operation methods
US9273404B2 (en) Process for electrolysis of alkali metal chlorides with oxygen-consuming electrodes
EP0113931B1 (en) Cathode for the electrolytic production of hydrogen, and its use
JP3344828B2 (en) Saltwater electrolysis method
FR2711675A1 (en) Brine electrolysis process and cell.
EP0903425B1 (en) Process for the electrolysis of brine
FR2803856A1 (en) SYNTHESIS OF TETRAMETHYLAMMONIUM HYDROXIDE
US9150970B2 (en) Process for electrolysis of alkali metal chlorides with oxygen-consuming electrodes in micro-gap arrangement
JP2002275670A (en) Ion exchange membrane electrolytic cell and electrolysis method
CA1155792A (en) Air-depolarized chlor-alkali cell operation methods
JP2699793B2 (en) Method for producing hydrogen peroxide
JP3538271B2 (en) Hydrochloric acid electrolyzer
RU2785846C1 (en) Water electrolysis with cross flow
EP0221790A1 (en) Process for the production of glyoxylic acid by the electrochemical reduction of oxalic acid
JP3395416B2 (en) Method for producing hydrogen peroxide
JP4251432B2 (en) Method for electrochemical production of chlorine from aqueous hydrogen chloride solution
JP4251432B6 (en) Method for electrochemical production of chlorine from aqueous hydrogen chloride solution
JP3420790B2 (en) Electrolyzer and electrolysis method for alkali chloride electrolysis
JPH10110283A (en) Electrolytic soda process
JP3706716B2 (en) Electrolysis method
RU2086706C1 (en) Method of producing perchloric acid
FI65281B (en) FOERFARANDE FOER DRIFT AV EN KLOR-ALKALIELEKTROLYSCELL
JPS6112033B2 (en)
JPH05339771A (en) Diaphragm for sodium chloride electrolysis and method for electrolyzing sodium chloride

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981005

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ATOFINA

17Q First examination report despatched

Effective date: 20010523

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARKEMA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARKEMA FRANCE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARKEMA FRANCE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69838632

Country of ref document: DE

Date of ref document: 20071213

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080206

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2296325

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080331

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110907

Year of fee payment: 14

Ref country code: FR

Payment date: 20110922

Year of fee payment: 14

Ref country code: GB

Payment date: 20110914

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110916

Year of fee payment: 14

Ref country code: NL

Payment date: 20110922

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20111017

Year of fee payment: 14

Ref country code: BE

Payment date: 20110913

Year of fee payment: 14

BERE Be: lapsed

Owner name: ARKEMA FRANCE

Effective date: 20120930

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120915

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130403

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120915

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120915

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69838632

Country of ref document: DE

Effective date: 20130403

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20131018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120916