EP0113931B1 - Cathode for the electrolytic production of hydrogen, and its use - Google Patents

Cathode for the electrolytic production of hydrogen, and its use Download PDF

Info

Publication number
EP0113931B1
EP0113931B1 EP83201758A EP83201758A EP0113931B1 EP 0113931 B1 EP0113931 B1 EP 0113931B1 EP 83201758 A EP83201758 A EP 83201758A EP 83201758 A EP83201758 A EP 83201758A EP 0113931 B1 EP0113931 B1 EP 0113931B1
Authority
EP
European Patent Office
Prior art keywords
nickel
cathode
cobalt
coating layer
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83201758A
Other languages
German (de)
French (fr)
Other versions
EP0113931A1 (en
Inventor
Edgard Nicolas
Louis Merckaert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay SA
Original Assignee
Solvay SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay SA filed Critical Solvay SA
Priority to AT83201758T priority Critical patent/ATE31431T1/en
Publication of EP0113931A1 publication Critical patent/EP0113931A1/en
Application granted granted Critical
Publication of EP0113931B1 publication Critical patent/EP0113931B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds

Definitions

  • the invention relates to a method for the electrolytic production of hydrogen on a cathode, in particular in an alkaline solution.
  • electrolysis processes it is generally sought to reduce the potentials of electrochemical reactions at the electrodes to as low a value as possible. This is particularly the case in the electrolysis processes in which hydrogen gas is produced on the active surface of a cathode, such as the processes for the electrolysis of water, aqueous solutions of hydrochloric acid and aqueous solutions of sodium chloride.
  • the cathodes most commonly used hitherto for the electrolysis of water or aqueous solutions of sodium or potassium chloride have generally consisted of plates or lattices of mild steel. These known cathodes have the advantage of easy implementation and low cost. The overvoltage on the evolution of hydrogen on these known steel cathodes is however relatively high, which increases the cost of the electrolysis processes. Steel cathodes have the additional disadvantage of being the site of progressive corrosion on contact with concentrated aqueous solutions of sodium hydroxide, as they are generally obtained in electrolysis cells with selective permeability membranes.
  • metal ions with low hydrogen overvoltage are introduced into the catholyte and the plating of these ions, in the metallic state in situ on the cathode, is carried out for 1 'electrolysis.
  • the cathode can be made of copper, steel or any other suitable material; copper cathodes are however especially recommended, in association with metal plating ions selected from iron, nickel, chromium, molybdenum and vanadium.
  • Copper cathodes used in accordance with the preferred embodiment of this known method however, also have the disadvantage of undergoing progressive corrosion during electrolysis.
  • the overvoltage on hydrogen evolution on copper cathodes is generally high and experience has shown that, despite the gain achieved on the overvoltage by the addition of plating ions to the electrolysis bath, the overall voltage remained abnormally high.
  • Electrodes intended for electrochemical oxidation processes the active surface of which has a dendritic structure. This is how, in document DE-A-2037968, an electrolysis cell is described, a positive electrode of which comprises nickel dendrites.
  • Document FR-A-1427244 describes a porous electrode comprising, on a nickel substrate, a dendritic coating of active metal, this electrode being intended to be the seat of an electrochemical oxidation reaction in a fuel cell .
  • the invention aims to provide a method for the electrolytic production of hydrogen, which allows a gain on the electrolysis voltage, significantly greater than the gains which can be obtained with the cathodes and the known methods described above, and which does not have the disadvantages.
  • the invention therefore relates to a process for the electrolytic production of hydrogen, on a cathode, according to which an electrode is used for the cathode, the active surface of which comprises a nickel substrate and a coating layer of nickel dendrites. or cobalt.
  • the dendrites of the coating layer of the cathode are single crystals of small dimensions, having a branched structure, very aerated, resulting from the interruption of the growth of crystalline germs (A. DE SY and J. VIDTS, "'Treaty of structural metallurgy", 1962, NICl and DUNOD, pages 38 and 39).
  • the nickel substrate can have any shape suitable for the destination of the cathode. It can be, for example, a solid or perforated plate, a wire, a trellis or a stack of beads. It can have a smooth surface state; a rough surface finish is preferred, however, since it generally lends itself to better adhesion of the dendrite layer.
  • the nickel substrate is preferably constituted by a nickel film applied to a support made of a material which is better conductive of electricity than nickel, for example copper or in aluminium. In this embodiment of the invention, the nickel film must be impermeable to electrolytes, when the material used for the underlying support is likely to be degraded on contact with these electrolytes.
  • the nickel film can be either impermeable or permeable, an impermeable film being however preferable in all cases.
  • the thickness to be given to the nickel film depends on various parameters, and in particular on the nature and the surface condition of the underlying support, and it must be at least sufficient to resist being torn off under the effect of thermal expansion of the support or by erosion on contact with the electrolyte. In practice, in the case where the support is made of copper, good results have been obtained with nickel films with a thickness of between 5 and 100 microns, more especially between 10 and 75 microns.
  • the dendrite coating layer be substantially uniform on the nickel substrate and in an amount at least equal to 0.0005 g per dm 2 of area of the substrate.
  • the maximum admissible value for the thickness of the layer of dendrites depends on various factors and it is fixed in particular by the advantage of preserving a homogeneous active surface on the electrode and of avoiding a modification of the geometry of the cathode.
  • a layer of dendrites of exaggerated thickness may indeed be torn locally from the substrate under the action of turbulence created by the release of hydrogen; in the case of openwork cathodes, it also risks causing poorly controlled obstruction of the cathode openings.
  • the coating layer of dendrites does not exceed 25 g and preferably 15 g per dm 2 of area of the substrate.
  • Cathodes which have been found to be particularly advantageous are those in which the dendrite coating layer has a weight of between 0.001 and 10 g per dm 2 of area of the substrate, the values of between 0.002 and 5 g and especially those at least equal. at 1 g per dm 2 of substrate area generally leading to the best results.
  • the dendrite coating layer of the cathode can be produced by any suitable means.
  • a cathode is used whose coating layer of dendrites is an electrolytic deposit of nickel or cobalt, which has been produced in an electrolyte containing nickel or cobalt ions, where the cathode is the seat of a proton reduction.
  • the electrolyte is preferably an aqueous electrolyte, more particularly water, or an aqueous solution of alkali metal chloride or hydroxide, containing nickel or cobalt ions.
  • aqueous solutions of alkali metal hydroxide in particular sodium hydroxide, containing from 20 to 35% by weight of alkali metal hydroxide and, preferably, approximately 30% by weight of alkali metal hydroxide.
  • the cathode is brought to an adequate potential to be the seat of a reduction of protons.
  • the choice of cathode potential which should be imposed on the cathode depends on various parameters and in particular on the nature of the nickel layer (in particular its surface state, the state of its crystal lattice, the possible presence of impurities and, where appropriate, its porosity), the choice of electrolyte used and its concentration. It can be determined in each particular case by routine laboratory work.
  • the cathodic potential must be fixed between -1.30 and -2 V, the most often between -1.55 and -1.65 V compared to a reference calomel electrode, with saturated potassium chloride solution.
  • the quantity of nickel or cobalt ions to be used in the electrolyte depends on various parameters, in particular on the geometry of the cathode, the thickness or the weight desired for the coating layer of dendrites, the surface area nickel substrate, the nature of the electrolyte and its volume. As a general rule, it can be easily determined in each particular case by routine laboratory work.
  • the nickel or cobalt ions can be introduced into the electrolyte all at once or either continuously or intermittently. They can be introduced into the electrolyte by any suitable means, for example by dissolution of a soluble nickel or cobalt compound, such as nickel or cobalt chloride, or by controlled corrosion of a structure (for example a wire, plate or lattice) made of nickel, cobalt or an alloy or compound of these metals, brought to an anode potential regulated in the electrolyte.
  • An interesting means consists in dispersing in the electrolyte a powder of nickel or cobalt, or of a compound or alloy of these metals, the oxides being preferred. In this embodiment of the invention, it is desirable to use a powder as fine as possible.
  • powders are used in which the average particle diameter is less than 50 microns and preferably does not exceed 35 microns.
  • Powders which are generally well suited are those in which the average particle diameter is between 1 and 32 microns, the best results having been obtained with powders whose average particle diameter is less than 25 microns.
  • a cathode is used, the active surface of which comprises, between the nickel substrate and the dendrite coating layer, a porous intermediate layer, intended to reinforce the attachment of the dendrites to the substrate or to improve the electrochemical properties of the cathode.
  • the porous intermediate layer is advantageously made of an electrically conductive material, having good electrochemical properties, this material possibly being, for example, a platinum group metal or an oxidized metallic compound of the spinel type, such as those described in Patent EP-A-8476 (SOLVAY & Cie).
  • the porous intermediate layer is made of platinum or is obtained by spraying a nickel oxide powder in a plasma jet.
  • the cathode used in the method according to the invention can be prefabricated.
  • the dendrite coating layer is formed in situ on the cathode mounted in the electrolysis cell for which it is intended.
  • the cathode provided with the nickel substrate and possibly with an intermediate layer. It may also be necessary to periodically regenerate the dendrite coating layer to account for a progressive destruction thereof, for example under the effect of erosion caused by the alkaline solution or the hydrogen gas produced.
  • the frequency and extent of the regenerations depend on the speed at which the dendrite coating layer is eroded or torn from the cathode; this speed itself depends on a large number of parameters, including in particular the nature of the nickel substrate, the possible presence of a porous intermediate layer between the substrate and the dendrite coating layer, the turbulence and the viscosity of the alkaline solution and the flow of hydrogen produced.
  • the frequency and extent of the regenerations must therefore be determined in each particular case, which can be easily done by routine laboratory work.
  • the process according to the invention finds a particularly advantageous application for the electrolytic production of hydrogen in an alkaline solution, in particular in cells with a permeable diaphragm or a membrane with selective permeability for the electrolysis of sodium chloride brines, such as those described, by way of example, in patents FR-A-2,164,623, 2,223,083, 2,230,411, 2,248,335 and 2,387,897 (SOLVAY & Cie).
  • the cylindrical cell included an anode formed of a circular titanium plate, pierced with vertical slits and coated with an active material of mixed crystals, consisting of 50% by weight of ruthenium dioxide and 50% by weight of titanium dioxide.
  • the cathode consisted of a non-perforated disc whose constitution is defined in each example.
  • each electrode of the cell was 102 cm 2 , and the distance between the anode and the cathode was fixed at 6 mm, the membrane being placed at equal distance from the anode and the cathode.
  • the anode chamber was continuously supplied with the above-mentioned aqueous brine and the cathode chamber with a dilute aqueous solution of sodium hydroxide, the concentration of which was adjusted to maintain, in the catholyte, a concentration of about 32% by weight of sodium hydroxide.
  • the temperature was continuously maintained at 90 ° C in the cell.
  • the density of the electrolysis current was maintained at the fixed value of 3 kA per m 2 of area of the cathode. This produced chlorine at the anode and hydrogen at the cathode.
  • a cathode according to the invention the active surface of which consisted of a nickel substrate and a coating layer of nickel dendrites.
  • a temporary cathode formed of a nickel disc we first placed in the cell, a temporary cathode formed of a nickel disc; to form the layer of nickel dendrites on the disk used as substrate, the anode chamber and the cathode chamber were supplied respectively with the aqueous solution of sodium chloride and the dilute solution of sodium hydroxide and the electrolysis was started with the nickel disc serving as cathode, under the nominal current density of 3 kA / m 2.
  • the electrolysis voltage measured between the anode and the cathode, stabilized at 3.65 V.
  • Example 2 The procedure was as in Example 1, using an aqueous solution of nickel sulfocyanide in place of the nickel chloride solution.
  • the electrolysis voltage stabilized at 3.63 V.
  • the electrolysis voltage fell to 3.38 V, which corresponds to a gain of 250 mV compared to the initial voltage.
  • a cathode according to the invention was used, the active surface of which consisted of a nickel substrate and a coating layer of cobalt dendrites.
  • the procedure was as in Example 1, except that the aqueous solution of nickel chloride was replaced by an aqueous solution of cobalt acetate, in a quantity adjusted so that it corresponded to a addition of 1 g of cobalt.
  • the electrolysis voltage was fixed at 3.70 V. After the formation of a coating layer of cobalt dendrites on the nickel disc, consecutively on addition of the cobalt acetate solution to the catholyte, the electrolysis voltage fell to 3.46 V, which corresponds to a voltage gain of 240 mV.
  • Example 3 The procedure was as in Example 3, the only differences being that the cobalt acetate solution was replaced by an aqueous cobalt chloride solution and that the latter was added to the catholyte in a controlled amount. so that it corresponds to an addition of 2 mg of cobalt.
  • the electrolysis voltage was established at 3.67 V.
  • the electrolysis voltage dropped to 3.58 V, which corresponds to a gain of 90 mV on the original voltage.
  • Example 4 The test of Example 4 was continued, with an additional addition of cobalt chloride solution in a quantity adjusted so that it corresponds to an additional addition of 2 mg of cobalt.
  • the electrolysis voltage fell to 3.46 V, resulting in a total gain of 210 mV compared to the original voltage.
  • Cobalt oxide powder had an average particle diameter of less than 20 microns.
  • the electrolysis voltage was established at 3.68 V.
  • the cobalt oxide powder was then dispersed in the catholyte, in two fractions of equal weight each corresponding to 1 g of cobalt.
  • the electrolysis voltage went successively to 3.44 V and then to 3.36 V, thus resulting in a gain of 320 mV compared to the original voltage.
  • a cathode according to the invention was used, the active surface of which consisted of a nickel substrate and a coating layer of nickel dendrites.
  • a provisional cathode consisting of a mild steel disc carrying an impermeable coating of 30 microns of nickel, obtained by electrolytic deposition, was first placed in the cell. This coating is intended to constitute the above-mentioned substrate. .
  • a layer of nickel dendrites was then deposited on the substrate and, for this purpose, a nickel oxide powder was dispersed in the catholyte, in a quantity adjusted so that it corresponds to 4 g of nickel.
  • the particle size of the nickel oxide powder was characterized by an average particle diameter of less than 20 microns; it was added to the catholyte in four successive fractions of equal weight.
  • the electrolysis conditions are given in table 1.
  • the total gain on the electrolysis voltage is approximately 300 mV.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Dental Preparations (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Luminescent Compositions (AREA)

Abstract

Cathode for the electrolytic production of hydrogen, having an active surface which comprises a nickel substrate and a coating film of dendrites of nickel or cobalt. This cathode can be used in a cell for the electrolysis of sodium chloride brine.

Description

L' invention concerne un procédé pour la production électrolytique d'hydrogène sur une cathode, notamment dans une solution alcaline.The invention relates to a method for the electrolytic production of hydrogen on a cathode, in particular in an alkaline solution.

Dans les procédés d'électrolyse, on cherche généralement à réduire jusqu'à une valeur aussi faible que possible les potentiels des réactions électrochimiques aux électrodes. C'est particulièrement le cas dans les procédés d'électrolyse dans lesquels on produit de l'hydrogène gazeux à la surface active d'une cathode, tels que les procédés d'électrolyse de l'eau, de solutions aqueuses d'acide chlorhydrique et de solutions aqueuses de chlorure de sodium.In electrolysis processes, it is generally sought to reduce the potentials of electrochemical reactions at the electrodes to as low a value as possible. This is particularly the case in the electrolysis processes in which hydrogen gas is produced on the active surface of a cathode, such as the processes for the electrolysis of water, aqueous solutions of hydrochloric acid and aqueous solutions of sodium chloride.

Les cathodes les plus couramment utilisées jusqu'à présent pour l'électrolyse de l'eau ou des solutions aqueuses de chlorure de sodium ou de potassium ont généralement consisté en des plaques ou des treillis d'acier doux. Ces cathodes connues présentent en effet l'avantage d'une mise en oeuvre aisée et d'un faible coût. La surtension au dégagement d'hydrogène sur ces cathodes connues en acier est toutefois relativement élevée, ce qui grève le coût des procédés d'électrolyse. Les cathodes en acier présentent le désavantage supplémentaire d'être le siège d'une corrosion progressive au contact des solutions aqueuses concentrées d'hydroxyde de sodium, telles qu'elles sont généralement obtenues dans les cellules d'électrolyse à membrane à perméabilité sélective.The cathodes most commonly used hitherto for the electrolysis of water or aqueous solutions of sodium or potassium chloride have generally consisted of plates or lattices of mild steel. These known cathodes have the advantage of easy implementation and low cost. The overvoltage on the evolution of hydrogen on these known steel cathodes is however relatively high, which increases the cost of the electrolysis processes. Steel cathodes have the additional disadvantage of being the site of progressive corrosion on contact with concentrated aqueous solutions of sodium hydroxide, as they are generally obtained in electrolysis cells with selective permeability membranes.

Diverses solutions ont été proposées pour diminuer la surtension au dégagement d'hydrogène des cathodes.Various solutions have been proposed to reduce the overvoltage when hydrogen is released from the cathodes.

Ainsi, dans le brevet US-A-4 105 516 (PPG INDUSTRIES, INC.), on propose d'ajouter un composé d'un métal de transition à l'électrolyte en contact avec une cathode en acier doux, par exemple du chlorure de nickel ou de cobalt. Ce procédé connu entraîne une baisse appréciable de la tension d'électrolyse. Par contre, il conserve le désavantage d'utiliser des cathodes en acier qui sont le siège d'une corrosion progressive pendant l'électrolyse.Thus, in US-A-4,105,516 (PPG INDUSTRIES, INC.), It is proposed to add a compound of a transition metal to the electrolyte in contact with a mild steel cathode, for example chloride nickel or cobalt. This known process results in an appreciable drop in the electrolysis voltage. On the other hand, it retains the disadvantage of using steel cathodes which are the seat of progressive corrosion during electrolysis.

Selon le brevet BE-A-864 880 (OLIN CORPORATION), on introduit des ions métalliques à faible surtension d'hydrogène dans le catholyte et on réalise le placage de ces ions, à l'état métallique in situ sur la cathode, pendant l'électrolyse. Dans ce procédé connu, on peut mettre en oeuvre n'importe quels ions métalliques à faible surtension d'hydrogène et la cathode peut être en cuivre, en acier ou en n'importe quel autre matériau approprié; des cathodes en cuivre sont toutefois spécialement conseillées, en association avec des ions de placage de métaux sélectionnés parmi le fer, le nickel, le chrome, le molybdène et le vanadium. Les cathodes en cuivre utilisées conformément à la forme d'exécution préférée de ce procédé connu présentent toutefois aussi le désavantage de subir une corrosion progressive en cours d'électrolyse. De plus, la surtension au dégagement d'hydrogène sur des cathodes en cuivre est généralement élevée et l'expérience a montré que, malgré le gain réalisé sur la surtension par l'addition des ions de placage au bain d'électrolyse, la tension globale d'électrolyse restait anormalement élevée.According to patent BE-A-864 880 (OLIN CORPORATION), metal ions with low hydrogen overvoltage are introduced into the catholyte and the plating of these ions, in the metallic state in situ on the cathode, is carried out for 1 'electrolysis. In this known method, any metal ion with low hydrogen overvoltage can be used and the cathode can be made of copper, steel or any other suitable material; copper cathodes are however especially recommended, in association with metal plating ions selected from iron, nickel, chromium, molybdenum and vanadium. Copper cathodes used in accordance with the preferred embodiment of this known method, however, also have the disadvantage of undergoing progressive corrosion during electrolysis. In addition, the overvoltage on hydrogen evolution on copper cathodes is generally high and experience has shown that, despite the gain achieved on the overvoltage by the addition of plating ions to the electrolysis bath, the overall voltage remained abnormally high.

Dans la demande de brevet EP-A-35 837 (E.I. DU PONT DE NEMOURS AND COMPANY), on décrit un procédé d'électrolyse dans lequel on met en oeuvre une cathode comprenant une couche de revêtement en fer alpha sur un substrat conducteur en acier doux, éventuellement revêtu d'une couche de nickel. Ce procédé connu présente le désavantage d'être mal adapté à l'électrolyse de solutions aqueuses de chlorure de sodium dans des cellules à membrane à perméabilité sélective, car le revêtement de fer alpha de la cathode y subit une corrosion rapide au contact des catholytes à haute teneur en hydroxyde de sodium. Il s'ensuit qu'en pratique, ce procédé connu permet seulement un faible gain sur la tension d'électrolyse, au prix d'une consommation importante de fer alpha qui risque de contaminer le catholyte.In patent application EP-A-35 837 (EI DU PONT DE NEMOURS AND COMPANY), an electrolysis process is described in which a cathode is used comprising a coating layer of alpha iron on a conductive steel substrate. soft, possibly coated with a layer of nickel. This known method has the disadvantage of being ill-suited to the electrolysis of aqueous solutions of sodium chloride in cells with a membrane with selective permeability, since the alpha iron coating of the cathode undergoes rapid corrosion there in contact with the catholytes to high content of sodium hydroxide. It follows that in practice, this known method allows only a small gain on the electrolysis voltage, at the cost of a significant consumption of alpha iron which risks contaminating the catholyte.

On connaît par ailleurs des électrodes destinées à des processus d'oxydation électrochimique, dont la surface active présente une structure dendritique. C'est ainsi que, dans le document DE-A-2037968, on décrit une cellule d'électrolyse dont une électrode positive comprend des dendrites de nickel. Dans le document FR-A-1427244, on décrit une électrode poreuse comprenant, sur un substrat en nickel, un revêtement dendritique de métal actif, cette électrode étant destinée à être le siège d'une réaction électrochimique d'oxydation dans une pile à combustible.Also known are electrodes intended for electrochemical oxidation processes, the active surface of which has a dendritic structure. This is how, in document DE-A-2037968, an electrolysis cell is described, a positive electrode of which comprises nickel dendrites. Document FR-A-1427244 describes a porous electrode comprising, on a nickel substrate, a dendritic coating of active metal, this electrode being intended to be the seat of an electrochemical oxidation reaction in a fuel cell .

L' invention vise à fournir un procédé pour la production électrolytique d'hydrogène, qui permette un gain sur la tension d'électrolyse, nettement supérieur aux gains que l'on peut obtenir avec les cathodes et les procédés connus décrits ci-avant, et qui n'en présente pas les inconvénients.The invention aims to provide a method for the electrolytic production of hydrogen, which allows a gain on the electrolysis voltage, significantly greater than the gains which can be obtained with the cathodes and the known methods described above, and which does not have the disadvantages.

L'invention concerne dès lors un procédé pour la production électrolytique d'hydrogène, sur une cathode, selon lequel on met en oeuvre, pour la cathode une électrode dont la surface active comprend un substrat en nickel et une couche de revêtement de dendrites de nickel ou de cobalt.The invention therefore relates to a process for the electrolytic production of hydrogen, on a cathode, according to which an electrode is used for the cathode, the active surface of which comprises a nickel substrate and a coating layer of nickel dendrites. or cobalt.

Dans le procédé selon l'invention, les dendrites de la couche de revêtement de la cathode sont des monocristaux de petites dimensions, présentant une structure ramifiée, très aérée, résultant de l'interruption de la croissance de germes cristallins (A. DE SY et J. VIDTS, "'Traité de métallurgie structurale", 1962, N.I.C.l. et DUNOD, pages 38 et 39).In the method according to the invention, the dendrites of the coating layer of the cathode are single crystals of small dimensions, having a branched structure, very aerated, resulting from the interruption of the growth of crystalline germs (A. DE SY and J. VIDTS, "'Treaty of structural metallurgy", 1962, NICl and DUNOD, pages 38 and 39).

Le substrat en nickel peut avoir n'importe quelle forme appropriée avec la destination de la cathode. Il peut être, par exemple, une plaque pleine ou ajourée, un fil, un treillis ou un empilage de billes. Il peut présenter un état de surface lisse; un état de surface rugueux est toutefois préféré, car il se prête généralement à une meilleure adhérence de la couche de dendrites. Bien qu'il puisse être formé d'un bloc unitaire en nickel, le substrat en nickel est de préférence constitué par un film en nickel appliqué sur un support en un matériau meilleur conducteur de l'électricité que le nickel, par exemple en cuivre ou en aluminium. Dans cette forme de réalisation de l'invention, le film de nickel doit être imperméable aux électrolytes, lorsque le matériau utilisé pour le support sous-jacent est susceptible d'être dégradé au contact de ces électrolytes. Dans le cas d'un support en un matériau inerte vis-à-vis de ces électrolytes, le film de nickel peut être indifféremment imperméable ou perméable, un film imperméable étant toutefois préférable dans tous les cas. L'épaisseur à conférer au film en nickel dépend de divers paramètres, et notamment de la nature et de l'état de surface du support sous-jacent, et elle doit être au moins suffisante pour résister à un arrachage sous l'effet d'une dilatation thermique du support ou par érosion au contact de l'électrolyte. En pratique, dans le cas où le support est en cuivre, on a obtenu de bons résultats avec des films de nickel d'épaisseur comprise entre 5 et 100 microns, plus spécialement entre 10 et 75 microns.The nickel substrate can have any shape suitable for the destination of the cathode. It can be, for example, a solid or perforated plate, a wire, a trellis or a stack of beads. It can have a smooth surface state; a rough surface finish is preferred, however, since it generally lends itself to better adhesion of the dendrite layer. Although it may be formed from a unitary nickel block, the nickel substrate is preferably constituted by a nickel film applied to a support made of a material which is better conductive of electricity than nickel, for example copper or in aluminium. In this embodiment of the invention, the nickel film must be impermeable to electrolytes, when the material used for the underlying support is likely to be degraded on contact with these electrolytes. In the case of a support made of a material that is inert with respect to these electrolytes, the nickel film can be either impermeable or permeable, an impermeable film being however preferable in all cases. The thickness to be given to the nickel film depends on various parameters, and in particular on the nature and the surface condition of the underlying support, and it must be at least sufficient to resist being torn off under the effect of thermal expansion of the support or by erosion on contact with the electrolyte. In practice, in the case where the support is made of copper, good results have been obtained with nickel films with a thickness of between 5 and 100 microns, more especially between 10 and 75 microns.

Il est souhaitable que la couche de revêtement de dendrites soit sensiblement uniforme sur le substrat en nickel et en quantité au moins égale à 0,0005 g par dm2 d'aire du substrat. La valeur maximum admissible pour l'épaisseur de la couche de dendrites dépend de divers facteurs et elle est fixée notamment par l'intérêt de conserver une surface active homogène sur l'électrode et d'éviter une modification de la géométrie de la cathode. Une couche de dendrites d'épaisseur exagérée risque en effet d'être arrachée localement du substrat sous l'action de la turbulence créée par le dégagement d'hydrogène; dans le cas de cathodes ajourées, elle risque en outre de provoquer une obstruction mal contrôlée des ouvertures de la cathode. Pour ces motifs, il est souhaitable que la couche de revêtement de dendrites n'excède pas 25 g et de préférence 15 g par dm2 d'aire du substrat. Des cathodes qui se sont révélées spécialement avantageuses sont celles dans lesquelles la couche de revêtement de dendrites a un poids compris entre 0,001 et 10 g par dm2 d'aire du substrat, les valeurs comprises entre 0,002 et 5 g et spécialement celles au moins égales à 1 g par dm2 d'aire du substrat conduisant généralement aux meilleurs résultats.It is desirable that the dendrite coating layer be substantially uniform on the nickel substrate and in an amount at least equal to 0.0005 g per dm 2 of area of the substrate. The maximum admissible value for the thickness of the layer of dendrites depends on various factors and it is fixed in particular by the advantage of preserving a homogeneous active surface on the electrode and of avoiding a modification of the geometry of the cathode. A layer of dendrites of exaggerated thickness may indeed be torn locally from the substrate under the action of turbulence created by the release of hydrogen; in the case of openwork cathodes, it also risks causing poorly controlled obstruction of the cathode openings. For these reasons, it is desirable that the coating layer of dendrites does not exceed 25 g and preferably 15 g per dm 2 of area of the substrate. Cathodes which have been found to be particularly advantageous are those in which the dendrite coating layer has a weight of between 0.001 and 10 g per dm 2 of area of the substrate, the values of between 0.002 and 5 g and especially those at least equal. at 1 g per dm 2 of substrate area generally leading to the best results.

Dans le procédé selon l'invention, la couche de revêtement de dendrites de la cathode peut être réalisée par tout moyen approprié. Dans une forme de réalisation préférée de l'invention, on utilise une cathode dont la couche de revêtement de dendrites est un dépôt électrolytique de nickel ou de cobalt, qui a été réalisé dans un électrolyte contenant des ions de nickel ou de cobalt, où la cathode est le siège d'une réduction de protons. L'électrolyte est de préférence un électrolyte aqueux, plus particulièrement de l'eau, ou une solution aqueuse de chlorure ou d'hydroxyde de métal alcalin, contenant des ions de nickel ou de cobalt. De bons résultats ont été obtenus avec des solutions aqueuses d'hydroxyde de métal alcalin, en particulier d'hydroxyde de sodium, contenant de 20 à 35 % en poids d'hydroxyde de métal alcalin et, de préférence, environ 30 % en poids d'hydroxyde de métal alcalin. La cathode est portée à un potentiel adéquat pour être le siège d'une réduction de protons. Le choix du potentiel cathodique qu'il convient d'imposer à la cathode dépend de divers paramètres et notamment de la nature de la couche de nickel (notamment son état de surface, l'état de son réseau cristallin, la présence éventuelle d'impuretés et, le cas échéant, sa porosité), du choix de l'électrolyte utilisé et de sa concentration. Il peut être déterminé dans chaque cas particulier, par un travail de routine au laboratoire. A titre d'exemple, dans le cas où la solution alcaline mise en oeuvre est une solution aqueuse contenant 30 % en poids environ d'hydroxyde de sodium, le potentiel cathodique doit être fixé entre -1,30 et -2 V, le plus souvent entre -1,55 et -1,65 V par rapport à une électrode de référence au calomel, à solution saturée en chlorure de potassium. La quantité d'ions de nickel ou de cobalt à mettre en oeuvre dans l'électrolyte dépend de divers paramètres, notamment de la géométrie de la cathode, de l'épaisseur ou du poids recherché pour la couche de revêtement de dendrites, de la superficie du substrat en nickel, de la nature de l'électrolyte et de son volume. En règle générale, elle peut être déterminée aisément dans chaque cas particulier par un travail de routine au laboratoire. Les ions de nickel ou de cobalt peuvent être introduits dans l'électrolyte en une seule fois ou bien de manière continue ou intermittente. Ils peuvent être introduits dans l'électrolyte par tout moyen approprié, par exemple par dissolution d'un composé soluble de nickel ou de cobalt, tel que du chlorure de nickel ou de cobalt, ou par corrosion contrôlée d'une structure (par exemple un fil, une plaque ou un treillis) en nickel, en cobalt ou en un alliage ou composé de ces métaux, portée à un potentiel anodique réglé dans l'électrolyte. Un moyen intéressant consiste à disperser dans l'électrolyte une poudre de nickel ou de cobalt, ou d'un composé ou alliage de ces métaux, les oxydes étant préférés. Dans ce mode d'exécution de l'invention, il est souhaitable d'utiliser une poudre aussi fine que possible. En règle générale, on utilise des poudres dans lesquelles le diamètre moyen des particules est inférieur à 50 microns et, de préférence, n'excède pas 35 microns. Des poudres qui conviennent généralement bien sont celles dans lesquelles le diamètre moyen des particules est compris entre 1 et 32 microns, les meilleurs résultats ayant été obtenus avec des poudres dont le diamètre moyen des particules est inférieur à 25 microns.In the method according to the invention, the dendrite coating layer of the cathode can be produced by any suitable means. In a preferred embodiment of the invention, a cathode is used whose coating layer of dendrites is an electrolytic deposit of nickel or cobalt, which has been produced in an electrolyte containing nickel or cobalt ions, where the cathode is the seat of a proton reduction. The electrolyte is preferably an aqueous electrolyte, more particularly water, or an aqueous solution of alkali metal chloride or hydroxide, containing nickel or cobalt ions. Good results have been obtained with aqueous solutions of alkali metal hydroxide, in particular sodium hydroxide, containing from 20 to 35% by weight of alkali metal hydroxide and, preferably, approximately 30% by weight of alkali metal hydroxide. The cathode is brought to an adequate potential to be the seat of a reduction of protons. The choice of cathode potential which should be imposed on the cathode depends on various parameters and in particular on the nature of the nickel layer (in particular its surface state, the state of its crystal lattice, the possible presence of impurities and, where appropriate, its porosity), the choice of electrolyte used and its concentration. It can be determined in each particular case by routine laboratory work. By way of example, in the case where the alkaline solution used is an aqueous solution containing approximately 30% by weight of sodium hydroxide, the cathodic potential must be fixed between -1.30 and -2 V, the most often between -1.55 and -1.65 V compared to a reference calomel electrode, with saturated potassium chloride solution. The quantity of nickel or cobalt ions to be used in the electrolyte depends on various parameters, in particular on the geometry of the cathode, the thickness or the weight desired for the coating layer of dendrites, the surface area nickel substrate, the nature of the electrolyte and its volume. As a general rule, it can be easily determined in each particular case by routine laboratory work. The nickel or cobalt ions can be introduced into the electrolyte all at once or either continuously or intermittently. They can be introduced into the electrolyte by any suitable means, for example by dissolution of a soluble nickel or cobalt compound, such as nickel or cobalt chloride, or by controlled corrosion of a structure (for example a wire, plate or lattice) made of nickel, cobalt or an alloy or compound of these metals, brought to an anode potential regulated in the electrolyte. An interesting means consists in dispersing in the electrolyte a powder of nickel or cobalt, or of a compound or alloy of these metals, the oxides being preferred. In this embodiment of the invention, it is desirable to use a powder as fine as possible. Generally, powders are used in which the average particle diameter is less than 50 microns and preferably does not exceed 35 microns. Powders which are generally well suited are those in which the average particle diameter is between 1 and 32 microns, the best results having been obtained with powders whose average particle diameter is less than 25 microns.

Dans une forme de réalisation particulière de l'invention, on utilise une cathode dont la surface active comprend, entre le substrat en nickel et la couche de revêtement de dendrites, une couche intermédiaire poreuse, destinée à renforcer l'accrochage des dendrites au substrat ou à améliorer les propriétés électrochimiques de la cathode. La couche intermédiaire poreuse est avantageusement en un matériau conducteur de l'électricité, présentant de bonnes propriétés électrochimiques, ce matériau pouvant être, par exemple, un métal du groupe du platine ou un composé métallique oxydé du type des spinelles, tel que ceux décrits dans le brevet EP-A-8476 (SOLVAY & Cie). De préférence, la couche intermédiaire poreuse est en platine ou est obtenue par projection d'une poudre d'oxyde de nickel dans un jet de plasma.In a particular embodiment of the invention, a cathode is used, the active surface of which comprises, between the nickel substrate and the dendrite coating layer, a porous intermediate layer, intended to reinforce the attachment of the dendrites to the substrate or to improve the electrochemical properties of the cathode. The porous intermediate layer is advantageously made of an electrically conductive material, having good electrochemical properties, this material possibly being, for example, a platinum group metal or an oxidized metallic compound of the spinel type, such as those described in Patent EP-A-8476 (SOLVAY & Cie). Preferably, the porous intermediate layer is made of platinum or is obtained by spraying a nickel oxide powder in a plasma jet.

La cathode utilisée dans le procédé selon l'invention peut être préfabriquée. Cependant, dans une forme d'exécution préférée de l'invention, la couche de revêtement de dendrites est formée in situ sur la cathode montée dans la cellule d'électrolyse à laquelle elle est destinée. A cet effet, on dispose dans la cellule, la cathode pourvue du substrat en nickel et éventuellement d'une couche intermédiaire. Il peut par ailleurs être nécessaire de régénérer périodiquement la couche de revêtement de dendrites pour tenir compte d'une destruction progressive de celle-ci, par exemple sous l'effet de l'erosion provoquée par la solution alcaline ou l'hydrogène gazeux produit. Il suffit à cet effet, d'ajouter des ions de nickel ou de cobalt à l'électrolyte au moment opportun, chaque ajout pouvant être opéré au cours d'un arrêt momentané de l'électrolyse ou tout en maintenant celle-ci en activité. La fréquence et l'importance des régénérations dépendent de la vitesse à laquelle la couche de revêtement de dendrites est érodée ou arrachée de la cathode; cette vitesse dépend elle-même d'un grand nombre de paramètres, parmi lesquels figurent notamment la nature du substrat en nickel, la présence éventuelle d'une couche intermédiaire poreuse entre le substrat et la couche de revêtement de dendrites, la turbulence et la viscosité de la solution alcaline et le débit de l'hydrogène produit. La fréquence et l'importance des régénérations doivent dés lors être déterminées dans chaque cas particulier, ce qui peut être fait facilement par un travail de routine au laboratoire. En variante, on peut aussi opérer une addition continue d'ions de nickel ou de cobalt à l'électrolyte pendant toute la durée où la cathode est en service.The cathode used in the method according to the invention can be prefabricated. However, in a preferred embodiment of the invention, the dendrite coating layer is formed in situ on the cathode mounted in the electrolysis cell for which it is intended. For this purpose, there is in the cell, the cathode provided with the nickel substrate and possibly with an intermediate layer. It may also be necessary to periodically regenerate the dendrite coating layer to account for a progressive destruction thereof, for example under the effect of erosion caused by the alkaline solution or the hydrogen gas produced. For this purpose, it suffices to add nickel or cobalt ions to the electrolyte at the appropriate time, each addition being able to be carried out during a temporary stoppage of the electrolysis or while maintaining the latter in activity. The frequency and extent of the regenerations depend on the speed at which the dendrite coating layer is eroded or torn from the cathode; this speed itself depends on a large number of parameters, including in particular the nature of the nickel substrate, the possible presence of a porous intermediate layer between the substrate and the dendrite coating layer, the turbulence and the viscosity of the alkaline solution and the flow of hydrogen produced. The frequency and extent of the regenerations must therefore be determined in each particular case, which can be easily done by routine laboratory work. As a variant, it is also possible to carry out a continuous addition of nickel or cobalt ions to the electrolyte throughout the period during which the cathode is in service.

Le procédé selon l'invention trouve une application spécialement intéressante pour la production électrolytique d'hydrogène dans une solution alcaline, notamment dans les cellules à diaphragme perméable ou à membrane à perméabilité sélective pour l'électrolyse de saumures de chlorure de sodium, telles que celles décrites, à titre d'exemple, dans les brevets FR-A-2 164 623, 2 223 083, 2 230 411, 2 248 335 et 2 387 897 (SOLVAY & Cie). On a trouvé que l'utilisation, conformément à l'invention, d'une cathode associant un substrat en nickel et une couche de revêtement de dendrites de nickel ou de cobalt permettait, toutes autres choses restant égales, de réaliser un gain important sur la tension d'électrolyse non seulement par rapport à un procédé utilisant la même cathode dont la couche active est constituée du substrat en nickel seul, sans la couche de revêtement de dendrites, mais également par rapport aux procédés utilisant des cathodes à substrats de nickel portant un revêtement actif poreux constitué d'un matériau à surtension d'hydrogène plus basse que le cobalt ou le nickel, tel que, par exemple, un revêtement poreux de platine ou un revêtement poreux obtenu par projection d'une poudre d'oxyde de nickel dans un jet de plasma.The process according to the invention finds a particularly advantageous application for the electrolytic production of hydrogen in an alkaline solution, in particular in cells with a permeable diaphragm or a membrane with selective permeability for the electrolysis of sodium chloride brines, such as those described, by way of example, in patents FR-A-2,164,623, 2,223,083, 2,230,411, 2,248,335 and 2,387,897 (SOLVAY & Cie). It has been found that the use, in accordance with the invention, of a cathode associating a nickel substrate and a coating layer of dendrites of nickel or cobalt made it possible, all other things remaining equal, to achieve a significant gain on the electrolysis voltage not only compared to a process using the same cathode whose active layer consists of the nickel substrate alone, without the dendrite coating layer, but also compared to the processes using cathodes with nickel substrates carrying a porous active coating made of a material with a hydrogen overvoltage lower than cobalt or nickel, such as, for example, a porous platinum coating or a porous coating obtained by spraying a nickel oxide powder into a plasma jet.

L'intérêt de l'invention va ressortir de la description des exemples d'application suivants. Dans chacun des exemples qui vont suivre, on a procédé à l'électrolyse d'une saumure aqueuse contenant 255 g de chlorure de sodium par kg, dans une cellule de laboratoire à électrodes verticales, séparées par une membrane à perméabilité sélective cationique NAFION NX 90107 (DU PONT DE NEMOURS).The advantage of the invention will become apparent from the description of the following application examples. In each of the following examples, an aqueous brine containing 255 g of sodium chloride per kg was electrolysed in a laboratory cell with vertical electrodes separated by a membrane with selective cation permeability NAFION NX 90107 (FROM THE PONT DE NEMOURS).

La cellule, de forme cylindrique, comprenait une anode formée d'une plaque circulaire en titane, percée de fentes verticales et revêtue d'un matériau actif de cristaux mixtes, constitués de 50 % en poids de bioxyde de ruthénium et 50 % en poids de bioxyde de titane.The cylindrical cell included an anode formed of a circular titanium plate, pierced with vertical slits and coated with an active material of mixed crystals, consisting of 50% by weight of ruthenium dioxide and 50% by weight of titanium dioxide.

La cathode a consisté en un disque non ajouré dont la constitution est définie dans chaque exemple.The cathode consisted of a non-perforated disc whose constitution is defined in each example.

La surface globale de chaque électrode de la cellule était égale à 102 cm2, et la distance entre l'anode et la cathode a été fixée à 6 mm, la membrane étant disposée à égale distance de l'anode et de la cathode.The overall surface of each electrode of the cell was 102 cm 2 , and the distance between the anode and the cathode was fixed at 6 mm, the membrane being placed at equal distance from the anode and the cathode.

Pendant l'électrolyse, on a alimenté en permanence la chambre anodique avec la saumure aqueuse précitée et la chambre cathodique avec une solution aqueuse diluée d'hydroxyde de sodium, dont la concentration a été réglée pour maintenir, dans le catholyte, une concentration d'environ 32 % en poids d'hydroxyde de sodium. La température a été maintenue en permanence à 90°C dans la cellule. Dans tous les essais, la densité du courant d'électrolyse a été maintenue à la valeur fixe de 3 kA par m2 d'aire de la cathode. On a ainsi produit du chlore à l'anode et de l'hydrogène à la cathode.During the electrolysis, the anode chamber was continuously supplied with the above-mentioned aqueous brine and the cathode chamber with a dilute aqueous solution of sodium hydroxide, the concentration of which was adjusted to maintain, in the catholyte, a concentration of about 32% by weight of sodium hydroxide. The temperature was continuously maintained at 90 ° C in the cell. In all the tests, the density of the electrolysis current was maintained at the fixed value of 3 kA per m 2 of area of the cathode. This produced chlorine at the anode and hydrogen at the cathode.

Première série d'essais (conformes à l'invention)First series of tests (in accordance with the invention)

Exemple 1Example 1

Dans l'essai qui va être décrit, on a utilisé, une cathode conformé à l'invention, dont la surface active a consisté en un substrat en nickel et une couche de revêtement de dendrites de nickel. A cet effet, on a d'abord disposé dans la cellule, une cathode provisoire formée d'un disque de nickel; pour former la couche de dendrites de nickel sur le disque utilisé comme substrat, on a alimenté la chambre anodique et la chambre cathodique respectivement avec la solution aqueuse de chlorure de sodium et la solution diluée d'hydroxyde de sodium et on a démarré l'électrolyse avec le disque de nickel servant de cathode, sous la densité de courant nominale de 3 kA/m2. La tension d'électrolyse, mesurée entre l'anode et la cathode, s'est stabilisée à 3,65 V. On a ensuite ajouté une solution de chlorure de nickel au catholyte, en quantité réglée pour qu'il y corresponde une addition de 2 g de nickel. La tension d'électrolyse est tombée à 3,43 V, consécutivement à la formation de la couche de dendrites de nickel. Le gain par rapport à la tension d'origine, avant l'addition du chlorure de nickel, est ainsi de 220 mV.In the test which will be described, there was used a cathode according to the invention, the active surface of which consisted of a nickel substrate and a coating layer of nickel dendrites. For this purpose, we first placed in the cell, a temporary cathode formed of a nickel disc; to form the layer of nickel dendrites on the disk used as substrate, the anode chamber and the cathode chamber were supplied respectively with the aqueous solution of sodium chloride and the dilute solution of sodium hydroxide and the electrolysis was started with the nickel disc serving as cathode, under the nominal current density of 3 kA / m 2. The electrolysis voltage, measured between the anode and the cathode, stabilized at 3.65 V. We then added a nickel chloride solution to the catholyte, in a quantity adjusted so that it corresponds to an addition of 2 g of nickel. The electrolysis voltage fell to 3.43 V, following the formation of the layer of nickel dendrites. The gain compared to the original voltage, before the addition of nickel chloride, is therefore 220 mV.

Exemple 2Example 2

On a procédé comme à l'exemple 1, en utilisant une solution aqueuse de sulfocyanure de nickel à la place de la solution de chlorure de nickel. Au démarrage de la cellule, avant l'addition de la solution de sulfocyanure de nickel, la tension d'électrolyse s'est stabilisée à 3,63 V. Après l'addition de la solution de sulfocyanure de nickel et la formation subséquente de la couche de dendrites de nickel sur le substrat en nickel de la cathode, la tension d'électrolyse est tombée à 3,38 V, ce qui correspond à un gain de 250 mV par rapport à la tension de départ.The procedure was as in Example 1, using an aqueous solution of nickel sulfocyanide in place of the nickel chloride solution. At the start of the cell, before the addition of the nickel sulfocyanide solution, the electrolysis voltage stabilized at 3.63 V. After the addition of the nickel sulfocyanide solution and the subsequent formation of the layer of nickel dendrites on the nickel substrate of the cathode, the electrolysis voltage fell to 3.38 V, which corresponds to a gain of 250 mV compared to the initial voltage.

Exemple 3Example 3

Dans cet essai, on a utilisé une cathode conforme à l'invention, dont la surface active a consisté en un substrat en nickel et une couche de revêtement de dendrites de cobalt. A cet effet, on a procédé comme à l'exemple 1, aux seules différences près que l'on remplacé la solution aqueuse de chlorure de nickel par une solution aqueuse d'acétate de cobalt, en quantité réglée pour qu'il y corresponde une addition de 1 g de cobalt.In this test, a cathode according to the invention was used, the active surface of which consisted of a nickel substrate and a coating layer of cobalt dendrites. For this purpose, the procedure was as in Example 1, except that the aqueous solution of nickel chloride was replaced by an aqueous solution of cobalt acetate, in a quantity adjusted so that it corresponded to a addition of 1 g of cobalt.

Au démarrage de la cellule en utilisant le disque en nickel comme cathode provisoire, la tension d'électrolyse s'est fixée à 3,70 V. Après la formation d'une couche de revêtement de dendrites de cobalt sur le disque en nickel, consécutivement à l'addition de la solution d'acétate de cobalt au catholyte, la tension d'électrolyse est tombée à 3,46 V, ce qui correspond à un gain de tension de 240 mV.At the start of the cell using the nickel disc as a temporary cathode, the electrolysis voltage was fixed at 3.70 V. After the formation of a coating layer of cobalt dendrites on the nickel disc, consecutively on addition of the cobalt acetate solution to the catholyte, the electrolysis voltage fell to 3.46 V, which corresponds to a voltage gain of 240 mV.

Exemple 4Example 4

On a procédé comme à l'exemple 3, aux seules différences prés que l'on a remplacé la solution d'acétate de cobalt par une solution aqueuse de chlorure de cobalt et que l'on a ajouté celle-ci au catholyte en quantité réglée pour qu'il y corresponde une addition de 2 mg de cobalt. Au démarrage de la cellule avec la cathode provisoire, la tension d'électrolyse s'est établie à 3,67 V. Après l'addition de la solution de chlorure de cobalt, la tension d'électrolyse a chuté jusqu'à 3,58 V, ce qui correspond à un gain de 90 mV sur la tension d'origine.The procedure was as in Example 3, the only differences being that the cobalt acetate solution was replaced by an aqueous cobalt chloride solution and that the latter was added to the catholyte in a controlled amount. so that it corresponds to an addition of 2 mg of cobalt. At the start of the cell with the temporary cathode, the electrolysis voltage was established at 3.67 V. After the addition of the cobalt chloride solution, the electrolysis voltage dropped to 3.58 V, which corresponds to a gain of 90 mV on the original voltage.

Exemple 5Example 5

On a poursuivi l'essai de l'exemple 4, en procédant à une addition supplémentaire de solution de chlorure de cobalt en quantité réglée pour qu'il y corresponde une addition supplémentaire de 2 mg de cobalt. La tension d'électrolyse est tombée à 3,46 V, entraînant ainsi un gain total de 210 mV par rapport à la tension d'origine.The test of Example 4 was continued, with an additional addition of cobalt chloride solution in a quantity adjusted so that it corresponds to an additional addition of 2 mg of cobalt. The electrolysis voltage fell to 3.46 V, resulting in a total gain of 210 mV compared to the original voltage.

Exemple 6Example 6

On a procédé comme à l'exemple 3, mais en substituant une poudre d'oxyde de cobalt à la solution d'acétate de cobalt. La poudre d'oxyde de cobalt présentait un diamètre moyen de particules inférieur à 20 microns.The procedure was as in Example 3, but substituting a cobalt oxide powder for the cobalt acetate solution. Cobalt oxide powder had an average particle diameter of less than 20 microns.

Au démarrage de la cellule avec la cathode provisoire, la tension d'électrolyse s'est établie à 3,68 V. On a alors dispersé la poudre d'oxyde de cobalt dans le catholyte, en deux fractions de poids égaux correspondant chacune à 1 g de cobalt. La tension d'électrolyse est passée successivement a 3,44 V puis à 3,36 V, entraînant ainsi un gain de 320 mV par rapport à la tension d'origine.When the cell started with the temporary cathode, the electrolysis voltage was established at 3.68 V. The cobalt oxide powder was then dispersed in the catholyte, in two fractions of equal weight each corresponding to 1 g of cobalt. The electrolysis voltage went successively to 3.44 V and then to 3.36 V, thus resulting in a gain of 320 mV compared to the original voltage.

Exemple 7Example 7

Dans cet essai, on a utilisé une cathode conforme à l'invention dont la surface active a consisté en un substrat en nickel et une couche de revêtement de dendrites de nickel. Pour réaliser la cathode, on a d'abord disposé dans la cellule une cathode provisoire constituée d'un disque en acier doux portant un revêtement imperméable de 30 microns de nickel, obtenu par un dépôt électrolytique, ce revêtement étant destiné à constituer le substrat précité. On alors procédé au dépôt d'une couche de dendrites de nickel sur le substrat et, à cet effet, on a dispersé une poudre d'oxyde de nickel dans le catholyte, en quantité réglée pour qu'il y corresponde 4 g de nickel. La granulométrie de la poudre d'oxyde de nickel était caractérisée par un diamètre moyen des particules inférieur à 20 microns; elle a été ajoutée au catholyte en quatre fractions successives de poids égaux. Les conditions de l'électrolyse sont consignées au tableau 1. Le gain total sur la tension d'électrolyse est d'environ 300 mV.

Figure imgb0001
In this test, a cathode according to the invention was used, the active surface of which consisted of a nickel substrate and a coating layer of nickel dendrites. To make the cathode, a provisional cathode consisting of a mild steel disc carrying an impermeable coating of 30 microns of nickel, obtained by electrolytic deposition, was first placed in the cell. This coating is intended to constitute the above-mentioned substrate. . A layer of nickel dendrites was then deposited on the substrate and, for this purpose, a nickel oxide powder was dispersed in the catholyte, in a quantity adjusted so that it corresponds to 4 g of nickel. The particle size of the nickel oxide powder was characterized by an average particle diameter of less than 20 microns; it was added to the catholyte in four successive fractions of equal weight. The electrolysis conditions are given in table 1. The total gain on the electrolysis voltage is approximately 300 mV.
Figure imgb0001

Exemple 8Example 8

On a procédé comme dans l'essai de l'exemple 7, en utilisant, pour la cathode provisoire, un disque en cuivre recouvert d'un film de 16 à 64 microns de nickel, appliqué par projection d'une poudre de nickel dans un jet de plasma. Au démarrage de la cellule avec cette cathode provisoire, la tension d'électrolyse s'est établie à 3,50 V. On a alors procédé d'abord à un dépôt électrolytique d'une couche poreuse de platine sur le substrat. A cet effet, tout en maintenant la cellule en activité, on a procédé à trois additions consécutives d'une solution d'acide hexachloroplatinique, les trois additions étant réglées pour qu'il y corresponde respectivement 2, 3 et 20 mg de platine. Après formation de la couche poreuse de platine, la tension d'électrolyse est tombée à 3,28 V. On a ensuite ajouté au catholyte, successivement:

  • - deux fractions d'une poudre d'oxyde de nickel ayant un diamètre moyen de particules inférieur à 20 microns, chaque fraction étant réglée pour qu'il y corresponde une addition de 1 g de nickel;
  • - deux fractions d'une poudre d'oxyde de cobalt ayant un diamètre moyen de particules compris entre 2 et 32 microns, chaque fraction étant réglée pour qu'il y corresponde une addition de 1 g de cobalt.
The procedure was as in the test of Example 7, using, for the temporary cathode, a copper disc covered with a film of 16 to 64 microns of nickel, applied by spraying a nickel powder into a plasma jet. When the cell started with this temporary cathode, the electrolysis voltage was established at 3.50 V. An electrolytic deposition of a porous layer of platinum was then carried out on the substrate. To this end, while keeping the cell in activity, three consecutive additions of a hexachloroplatinic acid solution were carried out, the three additions being adjusted so that they correspond respectively to 2, 3 and 20 mg of platinum. After formation of the porous platinum layer, the electrolysis voltage fell to 3.28 V. The catholyte was then added in succession:
  • - two fractions of a nickel oxide powder having an average particle diameter of less than 20 microns, each fraction being adjusted so that there corresponds an addition of 1 g of nickel;
  • - two fractions of a cobalt oxide powder having an average particle diameter of between 2 and 32 microns, each fraction being adjusted so that it corresponds to an addition of 1 g of cobalt.

On a consigné les conditions de l'électrolyse au tableau Il ci-dessous. On y observe qu'un premier gain sur la tension d'électrolyse, par rapport à sa valeur au démarrage de la cellule, a été réalisé après la formation du revêtement en platine et qu'un second gain a encore été réalisé après le dépôt d'une couche de dendrites de nickel et de cobalt résultant de l'addition des poudres de nickel et de cobalt.

Figure imgb0002
On a répertorié au Tableau III ci-dessous les résultats obtenus dans chacun des essais précédents.
Figure imgb0003
Seconde série d'essais (essais de comparaison)The conditions of the electrolysis are recorded in Table II below. It is observed there that a first gain on the electrolysis voltage, relative to its value at the start of the cell, was realized after the formation of the platinum coating and that a second gain was still realized after the deposition of 'a layer of nickel and cobalt dendrites resulting from the addition of nickel and cobalt powders.
Figure imgb0002
The results obtained in each of the preceding tests are listed in Table III below.
Figure imgb0003
Second series of tests (comparison tests)

Exemple 9Example 9

Dans cet exemple, on a procédé de la manière décrite dans le brevet EP-A-35 837 cité plus haut. A cet effet, on a monté dans la cellule une cathode constituée d'un disque plein en acier doux et on a démarré l'électrolyse dans les mêmes conditions qu'aux essais précédents. La tension d'électrolyse s'est établie à 3,64 V. On a alors ajouté au catholyte 2 g de fer alpha. La tension d'électrolyse est restée inchangée.In this example, the procedure was described in patent EP-A-35,837 cited above. To this end, a cathode consisting of a solid mild steel disc was mounted in the cell and electrolysis was started under the same conditions as in the previous tests. The electrolysis voltage was established at 3.64 V. 2 g of alpha iron were then added to the catholyte. The electrolysis voltage remained unchanged.

Exemple 10Example 10

Dans cet essai, on a procédé comme décrit dans le brevet BE-A-864 880 cité plus haut. A cet effet, on a utilisé, dans la cellule, une cathode formée d'un disque plein en cuivre et on a démarré l'électrolyse. La tension d'électrolyse s'est établie à 4 V. On a alors dispersé dans le catholyte une poudre d'oxyde de nickel en quantité réglée pour qu'il y corresponde un poids de 2 g de nickel. La poudre d'oxyde de nickel présentait une granulométrie caractérisée par un diamètre moyen de particules inférieur à 20 microns. Elle a été dispersée dans le catholyte en deux fractions de poids égaux. Après l'addition de la poudre d'oxyde de nickel, la tension d'électrolyse est tombée à 3,80 V.In this test, the procedure was as described in patent BE-A-864,880 cited above. For this purpose, a cathode formed from a solid copper disc was used in the cell and electrolysis was started. The electrolysis voltage was established at 4 V. A nickel oxide powder was then dispersed in the catholyte in a quantity adjusted so that it corresponds to a weight of 2 g of nickel. The nickel oxide powder had a particle size characterized by an average particle diameter of less than 20 microns. It was scattered in the catholyte in two equal weight fractions. After the addition of the nickel oxide powder, the electrolysis voltage dropped to 3.80 V.

Exemple 11Example 11

Dans cet essai, on a procédé comme décrit dans le brevet US-A-4 105 516 cité plus haut. A cet effet, on a utilisé, pour la cathode, un disque en acier doux et on a démarré l'électrolyse. La tension d'électrolyse s'est établie à environ 3,91 V. On a ensuite dispersé dans le catholyte une poudre d'oxyde de nickel en quantité réglée pour qu'il y corresponde un poids de 2 g de nickel. Le diamètre moyen des grains de la poudre était inférieur à 20 microns. La poudre a été ajoutée au catholyte en deux fractions séparées, de poids égaux, ce qui a eu pour résultat de faire choir la tension d'électrolyse à 3,78 V.In this test, the procedure was as described in US Pat. No. 4,105,516 cited above. For this purpose, a mild steel disc was used for the cathode and electrolysis was started. The electrolysis voltage was established at approximately 3.91 V. A nickel oxide powder was then dispersed in the catholyte in a quantity adjusted so that it corresponds to a weight of 2 g of nickel. The average grain diameter of the powder was less than 20 microns. The powder was added to the catholyte in two separate fractions, of equal weight, which resulted in the electrolysis voltage falling to 3.78 V.

Une comparaison des tensions d'électrolyse atteintes dans les essais des exemples 1 à 8, selon l'invention, avec celles atteintes dans les essais des exemples 9, 10 et 11 fait apparaître immédiatement l'intérêt de l'invention.A comparison of the electrolysis voltages reached in the tests of Examples 1 to 8, according to the invention, with those reached in the tests of Examples 9, 10 and 11 immediately shows the advantage of the invention.

Claims (10)

1. Process for the electrolytic production of hydrogen on a cathode, characterized in that an electrode whose active surface comprises a nickel substrate and a coating layer of dendrites of nickel or cobalt is used as the cathode.
2. Process according to Claim 1, characterized in that the dendrite coating layer of the electrode used has a weight of between 0.002 and 5 g per dm3 of substrate.
3. Process according to Claim 1 or 2, characterized in that the nickel substrate of the electrode used is an impervious nickel film on a support made of an electrically conductive material.
4. Process according to any one of Claims 1 to 3, characterized in that the electrode used comprises, between the nickel substrate and the dendrite coating layer, a porous intermediate layer made of an electrically conductive material.
5. Process according to Claim 4, characterized in that the porous intermediate layer of the electrode used is obtained by spattering a nickel oxide powder in a plasma jet onto the substrate.
6. Process according to any one of Claims 1 to 5, characterized in that the dendrite coating layer of the electrode used is an electrolytic deposit of nickel or cobalt produced in an electrolyte containing nickel ions or cobalt ions, in which the electrode is the seat of electrolytic proton reduction.
7. Process according to Claim 6, characterized in that the dendrite coating layer of the electrode used is an electrolytic deposit produced in an aqueous solution of an alkali metal hydroxide.
8. Process according to Claim 6 or 7, characterized in that the dendrite coating layer of the electrode used is an electrolytic deposit produced from nickel ions or cobalt ions, introduced in the form of a powder of nickel oxide or cobalt oxide.
9. Process according to Claim 6 or 7, characterized in that the dendrite coating layer of the electrode used is an electrolytic deposit produced from nickel ions or cobalt ions, introduced in the form of an aqueous solution of nickel chloride or cobalt chloride.
10. Process according to any one of Claims 1 to 9, characterized in that it is used in a cell for the electrolysis of sodium chloride brine.
EP83201758A 1982-12-17 1983-12-13 Cathode for the electrolytic production of hydrogen, and its use Expired EP0113931B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83201758T ATE31431T1 (en) 1982-12-17 1983-12-13 CATHODE FOR THE ELECTROLYTIC PRODUCTION OF HYDROGEN AND ITS APPLICATION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8221390A FR2538005B1 (en) 1982-12-17 1982-12-17 CATHODE FOR THE ELECTROLYTIC PRODUCTION OF HYDROGEN AND ITS USE
FR8221390 1982-12-17

Publications (2)

Publication Number Publication Date
EP0113931A1 EP0113931A1 (en) 1984-07-25
EP0113931B1 true EP0113931B1 (en) 1987-12-16

Family

ID=9280315

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83201758A Expired EP0113931B1 (en) 1982-12-17 1983-12-13 Cathode for the electrolytic production of hydrogen, and its use

Country Status (12)

Country Link
US (1) US4555317A (en)
EP (1) EP0113931B1 (en)
JP (1) JPS59166689A (en)
AT (1) ATE31431T1 (en)
BR (1) BR8306939A (en)
CA (1) CA1247047A (en)
DE (1) DE3374950D1 (en)
ES (1) ES8406570A1 (en)
FI (1) FI73247C (en)
FR (1) FR2538005B1 (en)
NO (1) NO159295C (en)
PT (1) PT77833B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670113A (en) * 1984-10-30 1987-06-02 Lewis Arlin C Electrochemical activation of chemical reactions
DE3543455A1 (en) * 1985-12-09 1987-06-11 Varta Batterie CURRENT ARRESTER FOR A METAL OXIDE ELECTRODE RELATED TO ALKALINE ELECTROLYTE
US5062930A (en) * 1990-07-24 1991-11-05 Shipley Company Inc. Electrolytic permanganate generation
JP3612365B2 (en) * 1995-04-26 2005-01-19 クロリンエンジニアズ株式会社 Active cathode and method for producing the same
US5700363A (en) * 1996-02-15 1997-12-23 Inco Limited Porous nickel electrode substrate
US6770113B2 (en) 1996-02-21 2004-08-03 Mykrolis Corporation Method for forming anisotrophic metal particles
US5814272A (en) 1996-02-21 1998-09-29 Millipore Corporation Method for forming dendritic metal particles
JP3923157B2 (en) * 1997-12-11 2007-05-30 松下電器産業株式会社 Alkaline storage battery
EP1077499A3 (en) * 1999-08-17 2005-10-05 Schmidlin Labor + Service AG Electrolysis or fuel cell, electrode for electrolysis or for fuel cell and process for electrolysis or fuel cell
CA2547183A1 (en) 2006-05-17 2007-11-17 Ozomax Inc. Portable ozone generator for purifying water and use thereof
DE102007003554A1 (en) 2007-01-24 2008-07-31 Bayer Materialscience Ag Method for improving the performance of nickel electrodes used in sodium chloride electrolysis comprises adding a platinum compound soluble in water or in alkali during the electrolysis
JP4857255B2 (en) * 2007-12-17 2012-01-18 株式会社日立製作所 Electrolysis electrode, method for producing the same, and hydrogen production apparatus
US9200375B2 (en) 2011-05-19 2015-12-01 Calera Corporation Systems and methods for preparation and separation of products
SA112330516B1 (en) * 2011-05-19 2016-02-22 كاليرا كوربوريشن Electrochemical hydroxide systems and methods using metal oxidation
TWI633206B (en) 2013-07-31 2018-08-21 卡利拉股份有限公司 Electrochemical hydroxide systems and methods using metal oxidation
KR101726575B1 (en) 2015-08-21 2017-04-14 한국과학기술연구원 Ultra-low Loading of Pt-decorated Ni Electrocatalyst, Manufacturing Method of the Same and Anion Exchange Membrane Water Electrolyzer Using the Same
CN108290807B (en) 2015-10-28 2021-07-16 卡勒拉公司 Electrochemical, halogenation and oxyhalogenation system and method
US10619254B2 (en) 2016-10-28 2020-04-14 Calera Corporation Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide
US10556848B2 (en) 2017-09-19 2020-02-11 Calera Corporation Systems and methods using lanthanide halide
US10590054B2 (en) 2018-05-30 2020-03-17 Calera Corporation Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid
PT3597791T (en) 2018-07-20 2022-01-27 Covestro Deutschland Ag Method for improving the performance of nickel electrodes
EP4281600A1 (en) * 2021-01-19 2023-11-29 Totalenergies Onetech An oxygen evolution reaction electrode catalyst assembly, its use and a method to produce said assembly

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1427244A (en) * 1964-01-10 1966-02-04 Texas Instruments Inc Porous reaction media and method of making such media
JPS4825148B1 (en) * 1969-07-30 1973-07-26
US4049841A (en) * 1975-09-08 1977-09-20 Basf Wyandotte Corporation Sprayed cathodes
DE2652152A1 (en) * 1975-11-18 1977-09-15 Diamond Shamrock Techn Electrodes for electrolytic devices - comprising conductive substrate, electrolyte-resistant coating with occlusions to improve electrode activity
US4116804A (en) * 1976-11-17 1978-09-26 E. I. Du Pont De Nemours And Company Catalytically active porous nickel electrodes
CA1141327A (en) * 1977-04-29 1983-02-15 Han C. Kuo Plating low overvoltage metal ions on cathode in membrane electrolytic cell
US4160704A (en) * 1977-04-29 1979-07-10 Olin Corporation In situ reduction of electrode overvoltage
CA1128458A (en) * 1977-06-06 1982-07-27 Tokuyama Soda Kabushiki Kaisha Electrolysis with cathode of iron or nickel with electroplate from s/n nickel bath
US4105516A (en) * 1977-07-11 1978-08-08 Ppg Industries, Inc. Method of electrolysis
CA1106797A (en) * 1977-07-22 1981-08-11 Mohammad B.I. Janjua Active cobalt electrode for the cathodic evolution of hydrogen
US4170536A (en) * 1977-11-11 1979-10-09 Showa Denko K.K. Electrolytic cathode and method for its production
US4224133A (en) * 1977-12-07 1980-09-23 Showa Denko K.K. Cathode
JPS54110938A (en) * 1978-02-20 1979-08-30 Matsushita Electric Ind Co Ltd Method and apparatus for controlling film thickness
JPS54112785A (en) * 1978-02-24 1979-09-03 Asahi Glass Co Ltd Electrode and manufacture thereof
US4162204A (en) * 1978-04-03 1979-07-24 Olin Corporation Plated metallic cathode
US4251478A (en) * 1979-09-24 1981-02-17 Ppg Industries, Inc. Porous nickel cathode
JPS5834185A (en) * 1981-08-21 1983-02-28 Chlorine Eng Corp Ltd Cathode for electrolysis

Also Published As

Publication number Publication date
NO159295C (en) 1988-12-14
FI834649A (en) 1984-06-18
FR2538005B1 (en) 1987-06-12
NO834654L (en) 1984-06-18
FR2538005A1 (en) 1984-06-22
ATE31431T1 (en) 1988-01-15
BR8306939A (en) 1984-07-24
FI834649A0 (en) 1983-12-16
JPS59166689A (en) 1984-09-20
DE3374950D1 (en) 1988-01-28
CA1247047A (en) 1988-12-20
US4555317A (en) 1985-11-26
FI73247B (en) 1987-05-29
EP0113931A1 (en) 1984-07-25
ES528101A0 (en) 1984-08-01
ES8406570A1 (en) 1984-08-01
NO159295B (en) 1988-09-05
FI73247C (en) 1987-09-10
PT77833A (en) 1984-01-01
PT77833B (en) 1986-03-19

Similar Documents

Publication Publication Date Title
EP0113931B1 (en) Cathode for the electrolytic production of hydrogen, and its use
CA1158600A (en) Cathode for the production of hydrogen through electrolysis
EP0008476B1 (en) Process for the electrolytic production of hydrogen in an alkaline medium
EP0131978B1 (en) Process for manufacturing an electrode for electrochemical processes, and cathode for the electrolytic production of hydrogen
FR2471424A1 (en) LOW HYDROGEN OVERVOLTAGE CATHODES, PRODUCTION FOR THEIR PRODUCTION AND ELECTROLYTIC CELLS COMPRISING THE SAME
FR2711675A1 (en) Brine electrolysis process and cell.
EP0707095B1 (en) Electrode for electrochemical processes and use thereof
FR2494307A1 (en) PROCESS FOR THE ELECTROLYSIS OF A BRINE OF AN ALKALI METAL CHLORIDE IN A PERMIONIC MEMBRANE TANK
FR2462489A1 (en) PROCESS FOR THE PREPARATION OF ELECTRODES WITH LOW HYDROGEN OVERVOLTAGE, ELECTRODES FORMED THEREFOR, AND APPLICATION TO ELECTROLYSIS OF AQUEOUS SOLUTIONS OF ALKALINE CHLORIDES
FR2519030A1 (en) METHOD FOR PRODUCING CAUSTIC PRODUCT, MEMBRANE-ELECTRODE UNIT ASSEMBLY, AND MULTILAYER ELECTRODE STRUCTURE
CA2280584C (en) Procedure for improving metal particle adherence to a carbon substrate
FR2461023A1 (en) PROCESS FOR PREPARING CONDUCTIVE SUBSTRATES AND ELECTRODES FOR THE ELECTROLYSIS OF A BRINE, AND THE LOW-VOLTAGE ELECTRODE THUS OBTAINED
FR2624885A1 (en) Electrodes-solid polymeric electrolyte system usable, for example, for the electrolysis of water, and process for its manufacture
FR2527227A1 (en) Electrolytic hydrogen prodn. process - using cell having hydrogen evolution cathode with porous beta phase nickel molybdenum alloy surface layer
EP0903425B1 (en) Process for the electrolysis of brine
FR2542763A1 (en) METHOD AND APPARATUS FOR ELECTROLYSIS OF AQUEOUS SOLUTION DILUTED FROM CAUSTIC ALKALI
EP0221790A1 (en) Process for the production of glyoxylic acid by the electrochemical reduction of oxalic acid
CA1103204A (en) Electrode for electrolysis
FR2465795A1 (en) Electrolytic oxidn. of thallous ions to thallic - using graphite cathode coated with precious metal
JP3664519B2 (en) Method for producing active cathode
FR2510143A1 (en) ION-EXCHANGING MEMBRANE ELECTROLYTIC DEVICE AND METHOD OF MANUFACTURING THE SAME
BE1005730A4 (en) Tin electroplating process and / or alloys tin on a metal support.
BE875584A (en) ELECTROLYSIS PROCESS OF AN AQUEOUS SOLUTION OF AN ALKALINE METAL CHLORIDE
FR2569726A1 (en) Process for the preparation of glyoxylic acid by anodic electrochemical oxidation of glyoxal
WO1993014246A1 (en) Method for producing an intermetallic lithium compound

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19850115

17Q First examination report despatched

Effective date: 19860312

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19871216

REF Corresponds to:

Ref document number: 31431

Country of ref document: AT

Date of ref document: 19880115

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19871231

REF Corresponds to:

Ref document number: 3374950

Country of ref document: DE

Date of ref document: 19880128

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19881231

Ref country code: CH

Effective date: 19881231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

ITPR It: changes in ownership of a european patent

Owner name: CAMBIO RAGIONE SOCIALE;SOLVAY

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: SOLVAY (SOCIETE ANONYME) TE BRUSSEL, BELGIE.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19941110

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19941116

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941205

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941229

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941231

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19951231

BERE Be: lapsed

Owner name: SOLVAY

Effective date: 19951231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960830

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960903

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST