JPS6112033B2 - - Google Patents

Info

Publication number
JPS6112033B2
JPS6112033B2 JP57076954A JP7695482A JPS6112033B2 JP S6112033 B2 JPS6112033 B2 JP S6112033B2 JP 57076954 A JP57076954 A JP 57076954A JP 7695482 A JP7695482 A JP 7695482A JP S6112033 B2 JPS6112033 B2 JP S6112033B2
Authority
JP
Japan
Prior art keywords
iridium
platinum
ion exchange
exchange membrane
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57076954A
Other languages
Japanese (ja)
Other versions
JPS58193381A (en
Inventor
Yasuyoshi Kamino
Kiichi Nagaya
Yukihiko Naka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP57076954A priority Critical patent/JPS58193381A/en
Publication of JPS58193381A publication Critical patent/JPS58193381A/en
Publication of JPS6112033B2 publication Critical patent/JPS6112033B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 この発明は、イオン交換膜とりわけカチオン交
換膜に化学メツキにより電極特にアノードを形成
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming an electrode, particularly an anode, on an ion exchange membrane, particularly a cation exchange membrane, by chemical plating.

最近、フロロカーボンを基材とするカチオン交
換膜の研究のめざましい進歩にともなつて、この
膜に直接電極を形成して、電極反応を行なわせる
SPE電解や燃料電池の研究開発が著しい発展をと
げている。
Recently, with the remarkable progress in research on cation exchange membranes based on fluorocarbon, electrodes can be formed directly on this membrane and electrode reactions can be carried out.
Research and development of SPE electrolysis and fuel cells is making remarkable progress.

イオン交換膜に設けられる電極としては、酸素
過電圧の低いものが要望されている。
There is a demand for electrodes provided in ion exchange membranes that have a low oxygen overvoltage.

イリジウムは白金より低い酸素過電圧を有して
いる。したがつてイリジウムよりなる電極膜を形
成すれば、酸素過電圧の高い電極が得られること
になるが、イリジウムは白金に比べて高価である
上に、電極として必要な導電性を保持するには、
イリジウム量を極端に減すことができない。そこ
でイリジウムと白金の合金よりなる化学メツキ層
を形成することにより、イリジウム量を減少させ
ることが考えられるが、この場合イリジウムと白
金の還元特性が異なるため、所望の電極層が得ら
れない。
Iridium has a lower oxygen overpotential than platinum. Therefore, if an electrode film made of iridium is formed, an electrode with a high oxygen overvoltage can be obtained, but iridium is more expensive than platinum, and in order to maintain the conductivity necessary for an electrode,
It is not possible to drastically reduce the amount of iridium. Therefore, it is possible to reduce the amount of iridium by forming a chemically plated layer made of an alloy of iridium and platinum, but in this case, the desired electrode layer cannot be obtained because the reduction properties of iridium and platinum are different.

イリジウムの還元特性について検討したとこ
ろ、塩化イリジウムはアルカリ性においてはヒド
ラジンによつて還元されないが、白金が存在する
と、これが触媒作用を果して、塩化イリジウムは
還元されることがわかつた。
A study of the reducing properties of iridium revealed that iridium chloride is not reduced by hydrazine in alkaline conditions, but in the presence of platinum, platinum acts as a catalyst and reduces iridium chloride.

この発明は上記の知見に基づいてなされたもの
であつて、低価格でかつ酸素過電圧の低い電極層
を形成することのできる方法を提供することを目
的とする。
The present invention has been made based on the above findings, and an object of the present invention is to provide a method that can form an electrode layer at low cost and with a low oxygen overvoltage.

この発明による電極の形成方法は、白金化合物
とイリジウム化合物とヒドラジンを含みかつPH5
〜6に維持されたメツキ液をイオン交換膜の一方
の面に保持し、アルカリ溶液を同膜の他方の面か
ら浸透させ、同膜の一方の面上で透過アルカリの
存在下にヒドラジンによる還元反応を行なわせ
て、同面上に白金とイリジウムよりなるメツキ層
を形成することを特徴とするイオン交換膜におけ
る電極の形成方法である。
The method for forming an electrode according to the present invention includes a platinum compound, an iridium compound, and hydrazine, and has a pH of 5.
A plating solution maintained at a temperature of ~6 is held on one side of an ion exchange membrane, an alkaline solution is permeated from the other side of the membrane, and reduction with hydrazine is performed on one side of the membrane in the presence of the permeated alkali. This is a method for forming an electrode in an ion exchange membrane, characterized by forming a plating layer made of platinum and iridium on the same surface by performing a reaction.

白金化合物の代表例としては塩化白金酸が挙げ
られ、イリジウム化合物の代表例としては塩化イ
リジウムが挙げられる。またアルカリ溶液として
は水酸化ナトリウム水溶液がよく用いられが、も
ちろんこれに限定されない。メツキ液のPHは、ア
ルカリ水溶液によつて5〜6に調整され、クエン
酸・クエン酸ナトリウム系などの緩衝液によりこ
の範囲に維持される。メツキ液および/またはア
ルカリ液は界面活性剤を含むこともある。界面活
性剤の代表例としては、陰イオン系のものたとえ
ばアルキルベンゼンスルホン酸ナトリウムが挙げ
られる。
A typical example of a platinum compound is chloroplatinic acid, and a typical example of an iridium compound is iridium chloride. Further, as the alkaline solution, an aqueous sodium hydroxide solution is often used, but of course it is not limited to this. The pH of the plating solution is adjusted to 5 to 6 with an alkaline aqueous solution, and maintained within this range with a buffer such as citric acid/sodium citrate. The plating solution and/or the alkaline solution may also contain a surfactant. Typical examples of surfactants include anionic surfactants, such as sodium alkylbenzenesulfonate.

この発明による電極の形成方法によれば、メツ
キ用化合物として白金化合物とともにイリジウム
化合物を用いるので、酸素過電圧の低い電極膜を
比較的低価格で形成することができる。またヒド
ラジンを含むメツキ液のPHは5〜6に維持されて
いるので、還元反応はメツキ液中では生起し得
ず、またアルカリがイオン交換膜の他方の面から
浸透するので、還元反応は同膜の一方の面上で透
過アルカリの存在下に生起する。そのため高価な
白金化合物およびイリジウム化合物のロスが少な
くなり、またイオン交換膜への付着性のすぐれた
電極層が形成される。
According to the method for forming an electrode according to the present invention, since an iridium compound is used together with a platinum compound as a plating compound, an electrode film with a low oxygen overvoltage can be formed at a relatively low cost. In addition, since the pH of the plating solution containing hydrazine is maintained at 5 to 6, the reduction reaction cannot occur in the plating solution, and since the alkali permeates from the other side of the ion exchange membrane, the reduction reaction is not the same. Occurs in the presence of permeated alkali on one side of the membrane. Therefore, loss of expensive platinum compounds and iridium compounds is reduced, and an electrode layer with excellent adhesion to the ion exchange membrane is formed.

実施例 0.1Mクエン酸・クエン酸ナトリウム系緩衝液
(PH=6)にH2PtCl6・6H2OとIrCl4とH2NNH2
2HClとドデシルベンゼンスルホン酸ナトリウム
を、それぞれ重量濃度で0.5%と0.2%と2.0%と
0.8%になるように溶解し、さらに2%NaOH水
溶液を添加してPHを5〜6に調整し、メツキ液を
調製した。
Example H 2 PtCl 6 6H 2 O, IrCl 4 and H 2 NNH 2 in 0.1M citric acid/sodium citrate buffer (PH=6)
2HCl and sodium dodecylbenzenesulfonate at weight concentrations of 0.5%, 0.2%, and 2.0%, respectively.
The solution was dissolved to a concentration of 0.8%, and a 2% NaOH aqueous solution was further added to adjust the pH to 5 to 6 to prepare a plating solution.

イオン交換膜として米国デユポン社製のイオン
交換膜(商品名:ナフイオン125)を用意し、添
付図面に示すメツキ槽1において上側のメツキ液
ホルダ2と下側のアルカリ液ホルダ3の間にイオ
ン交換膜4を挾持した。そして先に調製したメツ
キ液5をメツキ液ホルダ2にイオン交換膜1cm2
り0.5ml入れて保持した。またNaOHとドデシル
ベンゼンスルホン酸ナトリウムをそれぞれ0.02重
量%と0.3重量%含むアルカリ水溶液6をマイク
ロポンプで入口7からイオン交換膜1cm2当り2
ml/分の流量で4時間アルカリ液ホルダ3に流入
して、同ホルダ3を満たし、出口8から排出し
た。こうしてイオン交換膜4の上面に電極用メツ
キ層9を形成した。
An ion exchange membrane (product name: Nafion 125) manufactured by DuPont in the United States was prepared as an ion exchange membrane, and ion exchange was carried out between the upper plating liquid holder 2 and the lower alkaline liquid holder 3 in the plating tank 1 shown in the attached drawing. Membrane 4 was sandwiched. Then, 0.5 ml of the plating solution 5 prepared earlier was put into the plating solution holder 2 per 1 cm 2 of the ion exchange membrane and held. In addition, an alkaline aqueous solution 6 containing 0.02% by weight and 0.3% by weight of NaOH and sodium dodecylbenzenesulfonate, respectively, was added to the inlet 7 using a micropump at a rate of 2 per 1 cm 2 of the ion exchange membrane.
The alkaline solution flowed into the alkaline solution holder 3 for 4 hours at a flow rate of ml/min to fill the holder 3 and was discharged from the outlet 8. In this way, an electrode plating layer 9 was formed on the upper surface of the ion exchange membrane 4.

上記メツキ層を有するイオン交換膜をヒドラジ
ンのアルカリ水溶液に浸漬したところ、気泡が発
生した。イリジウムはアルカリ性でヒドラジンを
分解する性質を有するので、上記気泡の発生によ
り白金とともにイリジウムがメツキされたことが
証明された。
When the ion exchange membrane having the plating layer was immersed in an alkaline aqueous solution of hydrazine, bubbles were generated. Since iridium is alkaline and has the property of decomposing hydrazine, the generation of the bubbles proved that iridium was plated together with platinum.

つぎに、イオン交換膜4をメツキ槽1から外し
て、これを上下逆にして再びメツキ液ホルダ2と
アルカリ液ホルダ3の間に挾持した。そして、
IrCl4を含まないメツキ液を用いる点を除いて上
記と同一条件で、上記化学メツキ操作を再度実施
した。この結果、イオン交換膜の一方の面に1cm2
当り白金1mgとイリジウム0.5mgよりなるメツキ
層が形成され、他方の面に1cm2当り白金1mgのメ
ツキ層が形成された。
Next, the ion exchange membrane 4 was removed from the plating tank 1, turned upside down, and again sandwiched between the plating liquid holder 2 and the alkaline liquid holder 3. and,
The above chemical plating operation was carried out again under the same conditions as above except that a plating solution containing no IrCl 4 was used. As a result, 1 cm 2 on one side of the ion exchange membrane
A plating layer containing 1 mg of platinum and 0.5 mg of iridium was formed on the other side, and a plating layer containing 1 mg of platinum per cm 2 was formed on the other side.

こうして製作したSPEを用いて、イリジウムを
含むメツキ層をアノードとし、白金メツキ層をカ
ソードとし、白金メツキしたチタン製エキスパン
ドメタルを電極コレクタとしたSPE電解槽で、水
の電解を行なつた。その結果、温度95℃、電流密
度1A/cm2の電解条件で、電解槽電圧は1.68Vであ
つた。なお、水素化ホウ素ナトリウムを還元剤と
して用い、イリジウムをイオン交換膜1cm2当り2
mgメツキしたメツキ層をアノードとし、白金メツ
キ層をカソードとしたSPEによる水の電解では、
温度95℃、電流密度1A/cm2の電解条件で、電解
槽電圧は1.67Vであつた。したがつてイリジウム
の一部を白金で置換えても、電解槽電圧にはほと
んど差がなく、白金置換えの分だけコストダウン
を果すことができた。
Using the SPE fabricated in this way, water was electrolyzed in an SPE electrolytic cell with a plating layer containing iridium as an anode, a platinum plating layer as a cathode, and a platinum-plated expanded titanium metal as an electrode collector. As a result, the electrolytic cell voltage was 1.68 V under electrolysis conditions of a temperature of 95° C. and a current density of 1 A/cm 2 . In addition, sodium borohydride was used as a reducing agent, and iridium was added at a rate of 2 per cm 2 of ion exchange membrane.
In water electrolysis by SPE using the mg plating layer as the anode and the platinum plating layer as the cathode,
The electrolytic cell voltage was 1.67V under electrolysis conditions of a temperature of 95°C and a current density of 1A/cm 2 . Therefore, even if some of the iridium was replaced with platinum, there was almost no difference in the voltage of the electrolytic cell, and the cost could be reduced by the amount of platinum replacement.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明の実施例で用いたメツキ槽を
示す垂直断面図である。 2……メツキ液ホルダ、3……アルカリ液ホル
ダ、4……イオン交換膜、9……メツキ層。
The drawing is a vertical sectional view showing a plating tank used in an embodiment of the present invention. 2... Plating liquid holder, 3... Alkaline liquid holder, 4... Ion exchange membrane, 9... Plating layer.

Claims (1)

【特許請求の範囲】 1 白金化合物とイリジウム化合物とヒドラジン
を含みかつPH5〜6に維持されたメツキ液をイオ
ン交換膜の一方の面に保持し、アルカリ溶液を同
膜の他方の面から浸透させ、同膜の一方の面上で
透過アルカリの存在下にヒドラジンによる還元反
応を行なわせて、同面上に白金とイリジウムより
なるメツキ層を形成することを特徴とするイオン
交換膜における電極の形成方法。 2 白金化合物が塩化白金酸である特許請求の範
囲第1項記載の方法。 3 イリジウム化合物が塩化イリジウムである特
許請求の範囲第1または2項記載の方法。 4 イオン交換膜がカチオン交換膜である特許請
求の範囲第1〜3項のうちいずれか1項記載の方
法。
[Claims] 1. A plating solution containing a platinum compound, an iridium compound, and hydrazine and maintained at pH 5 to 6 is held on one side of an ion exchange membrane, and an alkaline solution is permeated from the other side of the membrane. Formation of an electrode in an ion exchange membrane, characterized in that a reduction reaction with hydrazine is carried out on one side of the membrane in the presence of a permeated alkali to form a plating layer made of platinum and iridium on the same side. Method. 2. The method according to claim 1, wherein the platinum compound is chloroplatinic acid. 3. The method according to claim 1 or 2, wherein the iridium compound is iridium chloride. 4. The method according to any one of claims 1 to 3, wherein the ion exchange membrane is a cation exchange membrane.
JP57076954A 1982-05-07 1982-05-07 Formation of electrode in ion-exchange membrane Granted JPS58193381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57076954A JPS58193381A (en) 1982-05-07 1982-05-07 Formation of electrode in ion-exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57076954A JPS58193381A (en) 1982-05-07 1982-05-07 Formation of electrode in ion-exchange membrane

Publications (2)

Publication Number Publication Date
JPS58193381A JPS58193381A (en) 1983-11-11
JPS6112033B2 true JPS6112033B2 (en) 1986-04-05

Family

ID=13620168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57076954A Granted JPS58193381A (en) 1982-05-07 1982-05-07 Formation of electrode in ion-exchange membrane

Country Status (1)

Country Link
JP (1) JPS58193381A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163706A (en) * 1987-03-26 1989-06-28 Nippon Denso Co Ltd Multi-direction optical waveguide circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2686597B2 (en) * 1994-12-01 1997-12-08 財団法人地球環境産業技術研究機構 Iridium electroless plating bath and method for producing joined body for electrolysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163706A (en) * 1987-03-26 1989-06-28 Nippon Denso Co Ltd Multi-direction optical waveguide circuit

Also Published As

Publication number Publication date
JPS58193381A (en) 1983-11-11

Similar Documents

Publication Publication Date Title
US4224121A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
EP0636051B1 (en) Apparatus comprising a water ionizing electrode and process of use of said apparatus
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
JPS5949318B2 (en) Electrolytic production method of alkali metal hypohalite salt
JPS5915990B2 (en) Improved operation method for liquid-gas electrochemical tanks
US4578159A (en) Electrolysis of alkali metal chloride brine in catholyteless membrane cells employing an oxygen consuming cathode
KR20010086305A (en) Synthesis of tetramethylammonium hydroxide
EP0043854B1 (en) Aqueous electrowinning of metals
EP0132816B1 (en) A method for preventing degradation in activity of a low hydrogen overvoltage cathode
US4956061A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
US4772364A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
US5879521A (en) Gas-diffusion cathode and salt water electrolytic cell using the gas-diffusion cathode
JPS6112033B2 (en)
CN114402095A (en) Cross-flow water electrolysis
JPS6136593B2 (en)
JP2699793B2 (en) Method for producing hydrogen peroxide
EP0086896A1 (en) Improved method of operating a liquid-gas electrochemical cell
WO2019076151A1 (en) Electro-deposition method for producing metallic silver
US4569735A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
JP2574678B2 (en) Equipment for producing aqueous solution containing peroxide
JPH06184781A (en) Method for electrolyzing aqueous sodium sulfate solution
JP2670935B2 (en) Electrolysis method
SU1584752A3 (en) Method of producing chlorine and sodium hydroxide
JP3344801B2 (en) Gas electrode structure
JPS5827988A (en) Electrolyzing method for hydrochloric acid