JPS6136593B2 - - Google Patents

Info

Publication number
JPS6136593B2
JPS6136593B2 JP57076953A JP7695382A JPS6136593B2 JP S6136593 B2 JPS6136593 B2 JP S6136593B2 JP 57076953 A JP57076953 A JP 57076953A JP 7695382 A JP7695382 A JP 7695382A JP S6136593 B2 JPS6136593 B2 JP S6136593B2
Authority
JP
Japan
Prior art keywords
iridium
ion exchange
exchange membrane
platinum
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57076953A
Other languages
Japanese (ja)
Other versions
JPS58193380A (en
Inventor
Yasuyoshi Kamino
Kiichi Nagaya
Yukihiko Naka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP57076953A priority Critical patent/JPS58193380A/en
Publication of JPS58193380A publication Critical patent/JPS58193380A/en
Publication of JPS6136593B2 publication Critical patent/JPS6136593B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】 この発明は、イオン交換膜とりわけカチオン交
換膜に化学メツキにより電極特にアノードを形成
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming an electrode, particularly an anode, on an ion exchange membrane, particularly a cation exchange membrane, by chemical plating.

最近、フロロカーボンを基材とするカチオン交
換膜の研究のめざましい進歩にともなつて、この
膜に直接電極を形成して、電極反応を行なわせる
SPE電解や燃料電池の研究開発が著しい発展をと
げている。
Recently, with the remarkable progress in research on cation exchange membranes based on fluorocarbon, electrodes can be formed directly on this membrane and electrode reactions can be carried out.
Research and development of SPE electrolysis and fuel cells is making remarkable progress.

イオン交換膜に設けられる電極としては、酸素
過電圧の低いものが要望されている。
There is a demand for electrodes provided in ion exchange membranes that have a low oxygen overvoltage.

イリジウムは白金より低い酸素過電圧を有して
いる。したがつてイリジウムよりなる電極膜を形
成すれば、酸素過電圧の低い電極が得られること
になるが、イリジウムは白金に比べて高価である
上に、電極として必要な導電性を保持するには、
イリジウム量を極端に減らすことができない。そ
こでイリジウムと白金の合金よりなる化学メツキ
層を成することこにより、イリジウム量を減少さ
せることが考えられるが、この場合イリジウムと
白金の還元特性が異なるため、所望のメツキ層が
得られない。
Iridium has a lower oxygen overpotential than platinum. Therefore, if an electrode film made of iridium is formed, an electrode with low oxygen overvoltage can be obtained, but iridium is more expensive than platinum, and in order to maintain the conductivity necessary for an electrode,
It is not possible to drastically reduce the amount of iridium. Therefore, it is possible to reduce the amount of iridium by forming a chemical plating layer made of an alloy of iridium and platinum, but in this case, the desired plating layer cannot be obtained because the reduction properties of iridium and platinum are different.

イリジウムの還元特性について検討したとこ
ろ、塩化イリジウムはアルカリ性においてはヒド
ラジンによつて還元されないが、白金が存在する
と、これが触媒作用を果して、塩化イリジウムが
還元されることがわかつた。
When investigating the reducing properties of iridium, it was found that iridium chloride is not reduced by hydrazine in alkaline conditions, but in the presence of platinum, it acts as a catalyst and reduces iridium chloride.

この発明は上記の知見に基づいてなされたもの
であつて、低価格でかつ酸素過電圧の低い電極層
を形成することのできる方法を提供することを目
的とする。
The present invention has been made based on the above findings, and an object of the present invention is to provide a method that can form an electrode layer at low cost and with a low oxygen overvoltage.

この発明による電極の形成方法は、イオン交換
膜に白金メツキ層を形成せしめ、ついでイリジウ
ム化合物をヒドラジンで還元させて、白金メツキ
層を被覆するイリジウムメツキ層を形成せしめる
ことを特徴とするイオン交換膜における電極の形
成方法である。
The method for forming an electrode according to the present invention includes forming a platinum plating layer on an ion exchange membrane, and then reducing an iridium compound with hydrazine to form an iridium plating layer covering the platinum plating layer. This is a method for forming an electrode.

白金メツキ層の形成は、白金化合物を用いた化
学メツキによつてなされる。白金化合物の代表例
としては塩化白金酸が挙げられる。
The platinum plating layer is formed by chemical plating using a platinum compound. A typical example of the platinum compound is chloroplatinic acid.

イリジウムメツキ層の形成は、イリジウム化合
物とヒドラジンを含みかつPH5〜6に維持された
メツキ液をイオン交換膜の一方の面に保持し、ア
ルカリ溶液を同膜の他方の面から浸透させ、同膜
〓〓〓〓〓
の一方の面上で透過アルカリの存在下にヒドラジ
ンによる還元反応を行なわせる方法か、またはヒ
ドラジンをアルカリ溶液とともにイオン交換膜の
他方の面から浸透させて、やはり同膜の一方の面
上で還元反応を行なわせる方法でなされる。
The iridium plating layer is formed by holding a plating solution containing an iridium compound and hydrazine and maintained at pH 5 to 6 on one side of the ion exchange membrane, and infiltrating the alkaline solution from the other side of the membrane. 〓〓〓〓〓
Either the reduction reaction with hydrazine is carried out on one side of the ion exchange membrane in the presence of a permeated alkali, or the hydrazine is permeated with an alkaline solution from the other side of the ion exchange membrane, and the reduction reaction is carried out on one side of the same membrane. It is done by a method that causes a reaction to occur.

イリジウム化合物の代表例としては塩化イリジ
ウムが挙げられる。またアルカリ溶液としては水
酸化ナトリウム溶液がよく用いられが、もちろん
これに限定されない。メツキ液のPHは、アルカリ
水溶液によつて5〜6に調整され、クエン酸、ク
エン酸ナトリウム系などの緩衝液によりこの範囲
に維持される。メツキ液および/またはアルカリ
液は界面活性剤を含むこともある。界面活性剤の
代表例としては、陰イオン系のものたとえばアル
キルベンゼンスルホン酸ナトリウムが挙げられ
る。
A typical example of the iridium compound is iridium chloride. Further, as the alkaline solution, a sodium hydroxide solution is often used, but of course it is not limited to this. The pH of the plating solution is adjusted to 5 to 6 with an aqueous alkaline solution, and maintained within this range with a buffer such as citric acid or sodium citrate. The plating solution and/or the alkaline solution may also contain a surfactant. Typical examples of surfactants include anionic surfactants, such as sodium alkylbenzenesulfonate.

この発明による電極の形成方法によれば、イオ
ン交換膜に白金メツキ層を形成せしめ、ついでイ
リジウム化合物をヒドラジンで還元させて、白金
メツキ層を被覆するイリジウムメツキ層を形成せ
しめるので、酸素過電圧の低い電極を比較的低価
格で形成することができる。またアルカリがイオ
ン交換膜の他方の面から浸透するので、還元反応
は同膜の一方の面上で透過アルカリの存在下に生
起し、そのため高価な白金化合物およびイリジウ
ム化合物のロスが少なくなり、またイオン交換膜
への付着性のすぐれた電極が形成される。
According to the method for forming an electrode according to the present invention, a platinum plating layer is formed on the ion exchange membrane, and then an iridium compound is reduced with hydrazine to form an iridium plating layer covering the platinum plating layer, so that the oxygen overvoltage is low. Electrodes can be formed at relatively low cost. Also, since the alkali permeates from the other side of the ion exchange membrane, the reduction reaction takes place on one side of the membrane in the presence of the permeating alkali, thus reducing the loss of expensive platinum and iridium compounds, and An electrode with excellent adhesion to the ion exchange membrane is formed.

実施例 1 0.1Mクエン酸・クエン酸ナトリウム系緩衝液
(PH=6)にH2PtCl6・6H2OとH2NNH2・2HClと
ドデシルベンゼンスルホン酸ナトリウムを、それ
ぞれ重量濃度で0.5%と2.0%と0.8%になるように
溶解し、さらに2%NaOH水溶液を添加してPHを
5〜6に調整し、メツキ液を調製した。
Example 1 H 2 PtCl 6 6H 2 O, H 2 NNH 2 2HCl and sodium dodecylbenzenesulfonate were added to a 0.1M citric acid/sodium citrate buffer (PH = 6) at a weight concentration of 0.5%. A plating solution was prepared by dissolving the components at concentrations of 2.0% and 0.8%, and further adding a 2% NaOH aqueous solution to adjust the pH to 5 to 6.

イオン交換膜として米国デユポン社製のイオン
交換膜(商品名:ナフイオン125)を用意し、添
付図面に示すメツキ槽1において上側のメツキ液
ホルダ2と下側のアルカリ液ホルダ3の間にイオ
ン交換膜4を挟持した。そして先に調製したメツ
キ液5をメツキ液ホルダ2にイオン交換膜1cm2
り0.5ml入れて保持した。またNaOHとドデシル
ベンゼンスルホン酸ナトリウムをそれぞれ0.02重
量%と0.3重量%含むアルカリ水溶液6をマイク
ロポンプで入口7からイオン交換膜1cm2当り2
ml/分の流量で3時間アルカリ液ホルダ3に流入
して、同ホルダ3を満たし、出力8から排出し
た。こうしてイオン交換膜4の一方の面に白金メ
ツキ層を形成した。
An ion exchange membrane (product name: Nafion 125) manufactured by DuPont in the United States was prepared as an ion exchange membrane, and ion exchange was carried out between the upper plating liquid holder 2 and the lower alkaline liquid holder 3 in the plating tank 1 shown in the attached drawing. Membrane 4 was sandwiched. Then, 0.5 ml of the plating solution 5 prepared earlier was put into the plating solution holder 2 per 1 cm 2 of the ion exchange membrane and held. In addition, an alkaline aqueous solution 6 containing 0.02% by weight and 0.3% by weight of NaOH and sodium dodecylbenzenesulfonate, respectively, was added to the inlet 7 using a micropump at a rate of 2 per 1 cm 2 of the ion exchange membrane.
The alkaline solution flowed into the lye holder 3 for 3 hours at a flow rate of ml/min, filling the holder 3 and discharging through the output 8. In this way, a platinum plating layer was formed on one side of the ion exchange membrane 4.

つぎに、H2PtCl6・6H2Oの代わりにIrCl4を0.2
%含むメツキ液を用いる点を除いて上記と同一条
件で、上記化学メツキ操作を再度実施し、白金メ
ツキ層の上にイリジウムメツキ層を形成した。こ
うしてイオン交換膜4の一方の面に白金層とこれ
を被覆するイリジウム層よりなるメツキ層9を形
成した。
Next, add 0.2 IrCl 4 instead of H 2 PtCl 6 6H 2 O.
The above chemical plating operation was carried out again under the same conditions as above except that a plating solution containing % of the plating solution was used to form an iridium plating layer on the platinum plating layer. In this way, a plating layer 9 consisting of a platinum layer and an iridium layer covering the platinum layer was formed on one surface of the ion exchange membrane 4.

上記メツキ層を有するイオン交換膜をヒドラジ
ンのアルカリ水溶液に浸漬したところ、気泡が発
生した。イリジウムはアルカリ性でヒドラジンを
分解する性質を有するので、上記気泡の発生によ
り白金とともにイリジウムがメツキされたことが
証明された。
When the ion exchange membrane having the plating layer was immersed in an alkaline aqueous solution of hydrazine, bubbles were generated. Since iridium is alkaline and has the property of decomposing hydrazine, the generation of the bubbles proved that iridium was plated together with platinum.

つぎに、イオン交換膜4をメツキ槽1から外し
て、これを上下逆にして再びメツキ液ホルダ2と
アルカリ液ホルダ3の間に挟持した。そして、
H2PtCl6・6H2Oを含む上記メツキ液を用いて上記
と同一条件で、上記化学メツキ操作をもう一度実
施した。こうしてイオン交換膜の他方の面に白金
のメツキ層を形成した。
Next, the ion exchange membrane 4 was removed from the plating tank 1, turned upside down, and again sandwiched between the plating liquid holder 2 and the alkaline liquid holder 3. and,
The above chemical plating operation was performed once again using the above plating solution containing H 2 PtCl 6 .6H 2 O under the same conditions as above. In this way, a platinum plating layer was formed on the other side of the ion exchange membrane.

こうして製作したSPEを用いて、イリジウムを
含むメツキ層をアノードとし、白金メツキ層をカ
ソードとし、白金メツキしたチタン製エキスパン
ドメタルを電極コレクタとしたSPE電解槽で、水
の電解を行なつた。この場合の電流−電圧曲線を
第2図に示す。また白金のみをメツキしてなるア
ノードを用いた場合の同曲線も、同図に示した。
これらの曲線の比較から明らかなように、この実
施例で形成したアノードを備えたSPEを用いれ
ば、高い電流密度でも低い電圧で電解を行なうこ
とができる。
Using the SPE fabricated in this way, water was electrolyzed in an SPE electrolytic cell with a plating layer containing iridium as an anode, a platinum plating layer as a cathode, and a platinum-plated expanded titanium metal as an electrode collector. The current-voltage curve in this case is shown in FIG. The same curve is also shown in the same figure when an anode plated only with platinum is used.
As is clear from the comparison of these curves, by using the SPE with the anode formed in this example, electrolysis can be performed at a low voltage even at a high current density.

実施例 2 イリジウムメツキ層の形成工程において、
H2NNH2・2HClがメツキ液に含まれないで、アル
カリ水溶液に0.5%含まれ、同水溶液のPHが1%
NaOHで12に調整されており、同水溶液をボルダ
3に5時間流す点を除いて、実施例1と同一条件
で、メツキ操作を繰返し、得られたSPEを用いて
実施例1と同一条件で水の電解を行なつた。その
結果温度95℃、電流密度1A/cm2の電解条件で、
〓〓〓〓〓
電解槽電圧は1.69Vであり、実施例1の場合とほ
ぼ等しい(第2図)。
Example 2 In the process of forming an iridium plating layer,
H 2 NNH 2・2HCl is not included in the plating solution, but is included in the alkaline aqueous solution at 0.5%, and the pH of the aqueous solution is 1%.
12 with NaOH, and the plating operation was repeated under the same conditions as in Example 1, except that the same aqueous solution was passed through Boulder 3 for 5 hours. Using the obtained SPE, the plating operation was performed under the same conditions as in Example 1. Performed water electrolysis. As a result, under the electrolytic conditions of a temperature of 95℃ and a current density of 1A/ cm2 ,
〓〓〓〓〓
The electrolytic cell voltage was 1.69V, which was almost the same as in Example 1 (FIG. 2).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の実施例で用いたメツキ槽
を示す垂直断面図、第2図は電流密度と槽電圧の
関係を示すグラフである。 2……メツキ液ホルダ、3……アルカリ液ホル
ダ、4……イオン交換膜、9……メツキ層。 〓〓〓〓〓
FIG. 1 is a vertical sectional view showing a plating tank used in an example of the present invention, and FIG. 2 is a graph showing the relationship between current density and tank voltage. 2... Plating liquid holder, 3... Alkaline liquid holder, 4... Ion exchange membrane, 9... Plating layer. 〓〓〓〓〓

Claims (1)

【特許請求の範囲】 1 イオン交換膜に白金メツキ層を形成せしめ、
ついでイリジウム化合物をヒドラジンで還元させ
て、白金メツキ層を被覆するイリジウムメツキ層
を形成せしめることを特徴とするイオン交換膜に
おける電極の形成方法。 2 イリジウム化合物が塩化イリジウムである特
許請求の範囲第1項記載の方法。 3 イオン交換膜がカチオン交換膜である特許請
求の範囲第1または2項記載の方法。
[Claims] 1. Forming a platinum plating layer on an ion exchange membrane,
1. A method for forming an electrode in an ion exchange membrane, comprising: then reducing an iridium compound with hydrazine to form an iridium plating layer covering the platinum plating layer. 2. The method according to claim 1, wherein the iridium compound is iridium chloride. 3. The method according to claim 1 or 2, wherein the ion exchange membrane is a cation exchange membrane.
JP57076953A 1982-05-07 1982-05-07 Formation of electrode in ion-exchange membrane Granted JPS58193380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57076953A JPS58193380A (en) 1982-05-07 1982-05-07 Formation of electrode in ion-exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57076953A JPS58193380A (en) 1982-05-07 1982-05-07 Formation of electrode in ion-exchange membrane

Publications (2)

Publication Number Publication Date
JPS58193380A JPS58193380A (en) 1983-11-11
JPS6136593B2 true JPS6136593B2 (en) 1986-08-19

Family

ID=13620137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57076953A Granted JPS58193380A (en) 1982-05-07 1982-05-07 Formation of electrode in ion-exchange membrane

Country Status (1)

Country Link
JP (1) JPS58193380A (en)

Also Published As

Publication number Publication date
JPS58193380A (en) 1983-11-11

Similar Documents

Publication Publication Date Title
US4224121A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
US5415759A (en) Water ionizing electrode and electrochemical process for using
JPS6127472B2 (en)
US20010025798A1 (en) Synthesis of tetramethylammonium hydroxide
US4578159A (en) Electrolysis of alkali metal chloride brine in catholyteless membrane cells employing an oxygen consuming cathode
EP0043854B1 (en) Aqueous electrowinning of metals
US4956061A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
US4772364A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
US5879521A (en) Gas-diffusion cathode and salt water electrolytic cell using the gas-diffusion cathode
WO2019076151A1 (en) Electro-deposition method for producing metallic silver
JPS6112033B2 (en)
JPS6136593B2 (en)
JP2699793B2 (en) Method for producing hydrogen peroxide
US4569735A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
HU180463B (en) Process for producing halogenes and alkali-metal-hydrocides with elektrolysis of alkali-metal-halogenides
JP3420790B2 (en) Electrolyzer and electrolysis method for alkali chloride electrolysis
JP2574678B2 (en) Equipment for producing aqueous solution containing peroxide
JP3651871B2 (en) Ion exchange membrane electrolytic cell operation start method
JPH10280180A (en) Apparatus for production of hydrogen peroxide water and method therefor
SU1584752A3 (en) Method of producing chlorine and sodium hydroxide
JPH10110283A (en) Electrolytic soda process
JP3344801B2 (en) Gas electrode structure
JPS5827988A (en) Electrolyzing method for hydrochloric acid
JPH09220573A (en) Electrolytic method using two-chamber type electrolytic cell
JPS5964789A (en) Electrolytic catalyst