EP0886777A1 - Messgerät zur ermittlung von zustandsgrössen eines flüssigen mediums - Google Patents

Messgerät zur ermittlung von zustandsgrössen eines flüssigen mediums

Info

Publication number
EP0886777A1
EP0886777A1 EP97914247A EP97914247A EP0886777A1 EP 0886777 A1 EP0886777 A1 EP 0886777A1 EP 97914247 A EP97914247 A EP 97914247A EP 97914247 A EP97914247 A EP 97914247A EP 0886777 A1 EP0886777 A1 EP 0886777A1
Authority
EP
European Patent Office
Prior art keywords
measuring
measuring device
housing part
sensors
data logger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97914247A
Other languages
English (en)
French (fr)
Inventor
Edgar Bauth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEFEI MEI AN DA SUGANG MECHAUNG YOUXIANGONGSI
Original Assignee
HEFEI MEI AN DA SUGANG MECHAUNG YOUXIANGONGSI
ELBAGU MESS und REGELUNGSTECHN
Elbagu Mess- und Regelungstechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEFEI MEI AN DA SUGANG MECHAUNG YOUXIANGONGSI, ELBAGU MESS und REGELUNGSTECHN, Elbagu Mess- und Regelungstechnik GmbH filed Critical HEFEI MEI AN DA SUGANG MECHAUNG YOUXIANGONGSI
Publication of EP0886777A1 publication Critical patent/EP0886777A1/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D9/00Recording measured values
    • G01D9/005Solid-state data loggers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1886Water using probes, e.g. submersible probes, buoys
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/283Means for supporting or introducing electrochemical probes
    • G01N27/286Power or signal connectors associated therewith

Definitions

  • Measuring device for determining state variables of a liquid medium
  • the invention relates to a measuring device that can be completely immersed in a liquid medium and that can be connected via electrical lines to a power supply and a data processing device to determine chemical and / or physical state variables of the liquid medium.
  • a measuring probe In the case of a measuring device (DE-94 04 359.0 Ul), a measuring probe has a cylindrical probe body, into the lower end of which an adapter is inserted which is designed to hold measuring sensors in such a way that cylindrical measuring sensors also have their rear end in the adapter are inserted, whereas their front end - and thus the measuring head - projects downward beyond the adapter piece and the housing edge and is overlapped by a protective grille.
  • DE-25 31 784 C2 discloses a measuring arrangement for measuring the temperature and pressure of a medium in boreholes, in which a resistance which changes its electrical resistance value with temperature and a pressure sensor are provided for measuring the pressure which are connected via measuring signal lines to an evaluation unit located outside the borehole.
  • This arrangement is only suitable for recording temperatures and pressure measurements. Adaptability to high measurement requirements, for example if five or more system parameters are to be measured, cannot be achieved with this measurement arrangement.
  • a combination probe for exhaust gas measurements on gas and oil heating systems is known from DE 80 26 460 U1, in which a double jacket tube with an inner jacket and an outer jacket and a thermocouple are provided. to This probe is not suitable for determining any measured values in liquid media.
  • the invention is based on the problem of creating a device for measuring the nature of liquid media, which can be expanded from an inexpensive probe for detecting the water pressure to a most complex measuring device for detecting various parameters.
  • a high degree of variability of the measuring device is achieved through the optional mounting of a pressure measuring housing part receiving the pressure measurement either directly onto the housing part receiving the data logger or with the interposition of an intermediate housing part enclosing a sensor unit.
  • the pressure measuring housing part can be mounted directly on the housing part receiving the data logger, a very cheap basic measuring device, which can be expanded at any time, is made available when there is an exclusive demand for a pressure measurement - possibly even combined with a temperature measurement .
  • the sensor unit can be equipped particularly advantageously with a plurality of sensors, all of which have their sensor head in one measuring plane, both the number of sensors installed and their arrangement in the sensor unit being variable.
  • the measuring device cannot only be expanded from a pressure measuring device to a multiple measuring device, but the type of measurements can be adapted to the needs of the users at any time.
  • the sensors can be disassembled after replacement, so that the used measuring electrode can be released from its mechanical holder and electrical contact and the latter can be provided with a new measuring electrode. Further advantages result from the following description and the drawing.
  • the drawing shows:
  • FIG. 1 shows a cross section through a measuring device according to the invention with housing parts mounted to one another and with a mounted pressure measuring area and a mounted sensor unit,
  • FIG. 6 shows a cross section of a measuring device for pressure and temperature measurement without an assembled intermediate housing part and without a sensor unit
  • FIG. 7 shows a cross section of the housing part accommodating the data logger with the sensor unit inserted and the pressure measuring area installed, but without the intermediate housing part and the pressure measuring housing part
  • 8 shows a cross-sectional detailed illustration of the upper end of the sensor unit.
  • the measuring device 1 comprises a housing part 2 for receiving the data logger 5, an intermediate housing part 3 for receiving the sensor unit 6 and a pressure measuring housing part 4 for receiving the pressure measuring area 7.
  • the housing part 2 has an analogous conclusion on its lower edge 8 the intermediate housing part 3 on its lower edge 9, so that the pressure measuring housing part 4 can be mounted both on the lower edge 8 of the housing part 2 receiving the data logger 5 and on the lower edge 9 of the intermediate housing part 3 receiving the sensor unit 6.
  • the data logger housing 2 is provided at its upper end, ie connected to the lines leading to the outside, with an end cap 11 which is placed on the upper edge 10 of the housing part 2 receiving the data logger 5 and is provided with reliable protection against it by a sealing body 14 provides penetrating liquids.
  • the sealing body 14 has two sealing seats 12 and 13, which are filled with O-rings and thereby bring about the required tightness. In the middle of the sealing body 14 there is the plug-in projection 15 for the assembly of the outwardly leading and not shown ten cable, which serves on the one hand as a data line and on the other hand as a supply line for the measuring device 1.
  • the cable can either be cast on, in order to represent a cost-effective and tight solution, or it can, as in the case shown here, be plugged on, so that cables of different lengths can optionally be installed and exchanged for one another.
  • the energy supply is expediently located outside of the measuring device and can be lowered as a battery pack below the surface of the earth, for example when the measuring device is lowered in a level tube for groundwater measurement.
  • the data logger 5 represents a cylindrical component, in the interior of which there is essentially an analog-digital converter, which converts the incoming and incoming data as analog voltages into digital measurement signals, as well as an intermediate memory in which the digitized data are stored, as well as a possibility of forwarding the stored data to an externally connected computer.
  • the addressing and control components required for carrying out measurement programs and forwarding measurement data are implemented either in hardware or software in the data logger 5.
  • the data logger 5 there can be one unit for calculating one that is still available Battery or an accumulator removable - residual energy may be arranged.
  • connection between the individual housing parts can, for example, be via a Screw threads occur so that the individual housing parts must be rotated against each other for assembly, or also by a fastening in which the housing parts remain stationary relative to one another, for example a union nut or another known way of fastening a plurality of pipe sections to one another.
  • the device Since the device has to be used frequently for groundwater measurement through level pipes with a diameter of generally 2 ", it is necessary to keep the outside diameter of the measuring device 1 small and to take this into account when connecting the housing parts 2, 3 and 4 .
  • the intermediate housing part 3 has an internal thread 16 which is connected to the external thread 8 'of the housing part 2 provided for receiving the data logger 5.
  • an external thread 17 At the end of the intermediate housing part 3 facing away from the data logger there is an external thread 17 with the same dimensions as the external thread 8 'of the housing part 2.
  • the intermediate housing part 3 has inflow openings 18 which have an elongated shape and whose longitudinal axis is parallel to the longitudinal axis of the cylindrical measuring device 1.
  • the pressure measuring housing part 4 has at its upper end 20 an internal thread 21 which, when mounted on the intermediate housing part 3 with the external thread 17 of the intermediate housing part 3 and when mounting the pressure measuring housing 4 on the housing part 2 receiving the data logger 5, with the external thread winch 8 'of the housing part 2 is connected.
  • the pressure measuring housing part 4 has an opening 22 on the underside through which the medium to be measured can come into contact with the pressure measuring region 7.
  • the pressure measuring area 7 comprises in particular a pressure sensor 23, which is usually designed as a piezo element, which is arranged in a complete component 24 and is connected to a flange 26 in a liquid-tight manner via a joint 25, the flange 26 having two sealing seats 27 and 28 has, which are filled with O-rings.
  • a pressure compensation line can be led to the pressure measuring area 4 together with the electrical lines on the other hand is connected to the air on the earth's surface.
  • FIG. 6 illustrates how the pressure measurement area 7 is mounted in the pressure measurement housing part 4 and this is mounted directly on the housing part 2 surrounding the data logger 5.
  • the internal thread 21 of the pressure measuring housing part 4 is screwed to the external thread 8 'of the housing part 2 receiving the data logger.
  • the pressure measuring area 7 with its flange 26 is pressed into a sealing part 29 designed similarly to the sealing body 14 on the upper side of the measuring device 1, the tightness being ensured by O-rings inserted in sealing seats 27 and 28.
  • the sealing part 29 is, on the one hand, sealed against the wall of the housing part 2 by O-rings also located in sealing seats 30 and 31.
  • a spacer sleeve 32 is mounted on the inside in the housing part 2 and clamped on the one hand with the lower end of the data logger 5 and on the other hand with the sealing part 29, so that both the spacer sleeve 32 and the sealing part 29 and the pressure measuring area 7 have a tight fit in the respective housing part. It is of course also possible to support the sealing part 29 directly at the lower end of the data logger 5 and to reduce the overhang of the housing part 2.
  • Such an arrangement shown in FIG. 6 represents a minimal measuring device, wherein a temperature sensor can additionally be mounted in the pressure measuring housing part 4. In addition, no further sensors can be attached in this arrangement, so that a pure level measuring device is available, with the corresponding price advantages and small housing dimensions.
  • the pressure measuring housing part 4 is first unscrewed, then the pressure measuring area 7 with its flange 26 is pulled out of the press fit, the sealing part 29 and the spacer sleeve 32 are removed, so that an upper part Measuring device part, as shown in Fig. 2, is available for further inclusion of parts.
  • a sensor unit 6 is now inserted on the underside of the housing part 2 and engages with its plug connections 33 in sockets provided on the data logger 5 and thereby ensures contacting of the sensor element 6.
  • the pressure measurement area 4 is inserted into a receptacle 34 formed on the sensor element 6 by means of its flange 26, as shown in FIG. 7.
  • the electrical contacting of the pressure measuring area 4 takes place via cables which are guided in a liquid-tight manner in a tube 35 of the sensor unit 6 and which can be separated for converting the device via an adapter plug (not shown).
  • the sensor unit 6 inserted into the sockets at the lower end of the data logger 5 by means of a plug movement seals the housing part 2 to the data logger by means of two O-rings in the sealing seats 36 and 37.
  • the sensor unit 6 is mounted independently of the intermediate housing part 3.
  • the measuring device being converted in FIG. 7 is completely surrounded by the intermediate housing part 3 and the pressure measuring housing part 4 in FIG. 1.
  • the sensor unit 6 is shown in detail in FIG. 8 and essentially comprises at least one body 38 which holds the sensors 39 in a liquid-tight manner and which in turn is fitted in the housing part 2 in a liquid-tight manner by means of its outer sealing seats 36 and 37.
  • a spacer pin 40 Arranged on the body 38 is a spacer pin 40, which represents the stop when the sensor unit 6 is inserted into the underside of the data logger 5.
  • the sensor unit 6 comprises a plurality of sensors 39 which are mounted side by side in the body 38 of the sensor unit 6, have essentially the same dimensions and are therefore all effective in one measuring plane. Even if two such bodies 38 form a sensor unit, they lie opposite each other, so that the measuring heads 41 of the sensors used are essentially in one measuring plane.
  • the sensors 39 can each be replaced individually, which takes account of their different mounting and facilitates maintenance.
  • the sensors 39 can be plugged in in any arrangement, and it is possible that individual sensor locations are not occupied, so that in each case only the required sensors 39 have to be used and further sensors that are not required for a specific measurement are not be unnecessarily exposed to aging.
  • the individual sensors 39 have an essentially two-part construction, which makes it possible to separate the actual measuring electrode 42 from a sleeve 43 surrounding it in its neck area, so that the measuring electrode 42 can be replaced without, therefore, the must destroy the entire sensor.
  • the sleeve 43 has in its neck area 44 windows 45 which allow access to the electrical connections of the measuring electrode 42 and which also serve to fill a sealing and holding paste into the space between the sleeve 43 and the measuring electrode 42 can, so that the measuring electrode 42 is kept liquid-tight and parallel in the sleeve 43.
  • a lateral filler opening 45 ' can be provided in a supportive manner for better distribution of the sealing and holding paste.
  • the windows 45 serve to be able to remove the sealing compound again and through the windows 45 the space between the measuring electrode 42 and To be able to pressurize sleeve 43 with a medium under pressure, thereby driving out the sealing paste and making sleeve 43 available for receiving a new measuring electrode 42.
  • the sleeve 43 seals the sensor 39 against the body 38 of the sensor unit 6 by means of the O-rings mounted in the sealing seats 46 and 47, so that here too no liquid can reach the plug connections 33.
  • sleeve 43 can be provided in the area of window 45 a memory chip can be arranged, which transmits both the type of sensor 39 and thus the parameter to be measured in each case to the data logger and also carries factory calibration data, which are transmitted to the data logger 5 before the start of a series of measurements and from this each measured value can be assigned as a correction factor. This eliminates the need for on-site calibration, and no changes - not even the software - need to be made on the data logger 5 when the plug 39 is changed or plugged in additionally.
  • the data logger 5 can recognize a mutual influence of state variables of the system and correct incorrect measurements resulting therefrom. For example, a high nitrate content in the groundwater can change the density and thus the measured pressure. Since the data from the pressure measurement alone would indicate an incorrect water level, these are provided with a correction factor which is adapted to the high nitrate content.
  • a data carrier 5 emits a carrier wave Modulation is evaluated as a measurement signal by the signals transmitted by the sensors 39.
  • Both ion-selective electrodes 42 are available for the sensors 39, in particular for measuring the content of nitrations, oxygen ions, chloride ions, ammonium ions, calcium ions and further alkaline earth metal ions, which are provided at any time with additional electrodes 42. for measuring other ions can be added, as well as measuring cells for determining the redox potential, the electrical conductivity and the turbidity of the medium. There is also the possibility of arranging a light guide in the cable supplying the measuring device 1 and thus stimulating molecular vibrations or rotations by means of excitation light of defined energy and thus detecting the corresponding molecules.
  • This method is intended in particular for the detection of hydrocarbons, especially polycyclic aromatic hydrocarbons (PAHs), which include, for example, benzenes, toluenes and xylenes, which occur, for example, in the area of the leachate of landfills and whose detection is of great importance .
  • PAHs polycyclic aromatic hydrocarbons
  • the measuring device 1 Since the measuring device 1 is to be used not only in groundwater, spring water or flowing water, but also in leachate areas of landfills, that is to say in very aggressive media, it is necessary to very completely stable against corrosion.
  • the variability of the measuring device 1 is not limited solely to a different number and arrangement of sensors 39, but that the measuring programs can also be selected as desired, e.g. the query times and gaps between the measurements. These can be set individually for each sensor 39 by external programming of the data logger 5 as required.

Abstract

Ein in ein flüssiges Medium eintauchbares und über elektrische Leitungen mit einer Energieversorgung und einer Datenverarbeitungseinrichtung verbindbares Meßgerät zur Ermittlung von chemischen und/oder physikalischen Zustandsgrößen des flüssigen Mediums, beispielsweise des Grundwassers, umfaßt in einem im wesentlichen zylindrischen Gehäuse integrierte Sensoren und einen Datenlogger (5), wobei das Gehäuse in Axialrichtung (3) voneinander lösbar verbindbare Teile, nämlich ein den Datenlogger (5) aufnehmendes Gehäuseteil (2) an seinem einen Ende, ein Druckmeßgehäuseteil (4) und eine Sensoreinheit umschließendes und mit Anströmöffnungen (18) versehenes Zwischengehäuseteil (3) aufweist, wobei wahlweise das Druckmeßgehäuseteil (4) oder das Zwischengehäuseteil (3) unmittelbar an das den Datenlogger aufnehmende Gehäuseteil (2) flüssigkeitsdicht montierbar ist.

Description

Meßgerät zur Ermittlung von Zustandsgrößen eines flüssigen Mediums
Die Erfindung bezieht sich auf ein komplett in ein flüssi¬ ges Medium eintauchbares und über elektrische Leitungen mit einer Energieversorgung und einer Datenverarbeitungs- einrichtung verbindbares Meßgerät zur Ermittlung von che¬ mischen und/oder physikalischen Zustandsgrößen des flüssi¬ gen Mediums.
Bei einem Meßgerät (DE-94 04 359.0 Ul) weist eine Meßsonde einen zylindrischen Sondenkörper auf, in dessen unteres Ende ein Adapter eingeführt wird, der zur Halterung von Meßsensoren derart ausgebildet ist, daß ebenfalls zylin¬ drische Meßsensoren mit ihrem rückwärtigen Ende in den Adapter eingesteckt werden, wohingegen ihr vorderes Ende - und damit der Meßkopf - über das Adapterstück und den Ge¬ häuserand nach unten vorsteht und von einem Schutzgitter übergriffen wird.
BESTATIGUNGSKOPIE Diese Anordnung hat jedoch den Nachteil, daß einerseits geringe Meßanforderungen, etwa nur des Wasserdruckes und damit der Pegelhöhe, nicht soweit Rechnung getragen werden kann, daß dadurch die Kosten der Meßsonde verringert wür¬ den. Andererseits bietet diese Meßsonde keine Anpassungs¬ fähigkeit an hohe Meßanforderungen, etwa wenn fünf oder mehr Systemparameter gemessen werden sollen.
Aus der DE-25 31 784 C2 ist eine Meßanordnung zur Tempera¬ tur- und Druckmessung eines Mediums in Bohrlöchern be¬ kannt, bei der zur Temperaturmessung ein mit der Tempera¬ tur seinen elektrischen Widerstandswert ändernder Wider¬ stand und zur Druckmessung ein Druckfühler vorgesehen sind, die über Meßsignalleitungen an eine außerhalb des Bohrloches befindliche Auswerteeinheit angeschlossen sind. Diese Anordnung ist nur zur Erfassung von Temperaturen und Druckmeßwerten geeignet. Eine Anpassungfähigkeit an hohe Meßanforderungen, etwa wenn fünf oder mehr Systemparameter gemessen werden sollen, sind mit dieser Meßanordnung nicht zu erfüllen.
Aus DE 80 26 460 Ul ist eine Kombinationssonde für Abgas¬ messungen an Gas- und Ölheizungen bekannt, bei der ein Doppelmantelrohr mit einem inneren Mantel und einen äuße¬ ren Mantel sowie ein Thermoelement vorgesehen sind. Zur Ermittlung irgendwelcher Meßwerte in flüssigen Medien ist diese Sonde nicht geeignet.
Der Erfindung liegt das Problem zugrunde, ein Gerät zur Messung der Beschaffenheit flüssiger Medien zu schaffen, das von einer möglichst preiswerten Sonde zur Erfassung des Wasserdruckes zu einem möglichst komplexen Meßgerät zur Erfassung verschiedener Parameter erweitert werden kann.
Die Erfindung löst dieses Problem mit den Merkmalen des Anspruches 1. Hinsichtlich weiterer Ausgestaltungen wird auf die Ansprüche 2 bis 18 verwiesen.
Durch die wahlweise Montage eines die Druckmessung aufneh¬ menden Druckmeßgehäuseteils entweder direkt an das den Da¬ tenlogger aufnehmende Gehäuseteil oder unter Zwischen¬ schaltung eines eine Sensoreinheit umschließenden Zwi¬ schengehäuseteiles wird eine hohe Variabilität des Meßge¬ rätes erreicht.
Dadurch, daS das Druckmeßgehäuseteil direkt an das den Da¬ tenlogger aufnehmende Gehäuseteil montiert werden kann, wird bei ausschließlicher Nachfrage nach einer Druckmes¬ sung - möglicherweise sogar verbunden mit einer Tempera¬ turmessung - ein sehr billiges Grundmeßgerät zur Verfügung gestellt, das jederzeit erweitert werden kann. Besonders vorteilhaft ist die Sensoreinheit mit mehreren Sensoren bestückbar, die alle in einer Meßebene ihren Sen¬ sorkopf aufweisen, wobei sowohl die Anzahl der montierten Sensoren als auch ihre Anordnung in der Sensoreinheit va¬ riabel ist.
Dadurch wird das Meßgerät nicht allein von einem Druckmeß- zu einem Vielfachmeßgerät erweiterbar, sondern die Art der Messungen kann jederzeit den Bedürfnissen der Benutzer an¬ gepaßt werden.
Diese einfache Erweiterbarkeit und Variabilität des Meßge¬ rätes wird zusätzlich unterstützt, wenn die Sensoren mit Speicherchips ausgestattet sind, die eine werkseitige Ka¬ librierung und eine Selbsterkennung des jeweiligen Meßsen¬ sors an den Datenlogger übermitteln. Dadurch kann auf eine Kalibrierung der Sensoren vor Ort verzichtet werden.
Um die Kosten für den Anwender zu senken, können die Sen¬ soren nach Austausch zerlegt werden, so daß die ver¬ brauchte Meßelektrode von ihrer mechanischen Halterung und elektrischen Kontaktierung gelöst werden kann und letztge¬ nannte mit einer neuen Meßelektrode versehen werden kön¬ nen. Weitere Vorteile ergeben sich aus der nachfolgenden Be¬ schreibung und der Zeichnung. In der Zeichnung zeigen:
Fig. 1 einen Querschnitt durch ein erfindungsgemäßes Me߬ gerät mit aneinander montierten Gehäuseteilen und mit montiertem Druckmeßbereich und montierter Sen¬ soreinheit,
Fig. 2 einen Querschnitt durch das den Datenlogger auf¬ nehmende Gehäuseteil,
Fig. 3 einen Querschnitt durch das Zwischengehäuseteil,
Fig. 4 einen Querschnitt durch das Druckmeßgehäuseteil,
Fig. 5 einen Querschnitt des Druckmeßbereiches,
Fig. 6 einen Querschnitt eines Meßgerätes zur Druck- und Temperaturmessung ohne montiertes Zwischengehäuse¬ teil und ohne Sensoreinheit,
Fig. 7 einen Querschnitt des den Datenlogger aufnehmenden Gehäuseteils mit eingeschobener Sensoreinheit und montiertem Druckmeßbereich, jedoch ohne Zwischen¬ gehäuseteil und Druckmeßgehäuseteil, Fig. 8 eine querschnittliche Detaildarstellung des oberen Endes der Sensoreinheit.
Im einzelnen umfaßt das Meßgerät 1 ein Gehäuseteil 2 zur Aufnahme des Datenloggers 5, ein Zwischengehäuseteil 3 zur Aufnahme der Sensoreinheit 6 und ein Druckmeßgehäuseteil 4 zur Aufnahme des Druckmeßbereiches 7. Das Gehäuseteil 2 weist dabei an seiner unteren Kante 8 einen analogen Ab¬ schluß auf wie das Zwischengehäuseteil 3 an seiner unteren Kante 9, so daß das Druckmeßgehäuseteil 4 sowohl an der Unterkante 8 des den Datenlogger 5 aufnehmenden Gehäuse- teils 2 als auch an der Unterkante 9 des die Sensoreinheit 6 aufnehmenden Zwischengehäuseteils 3 montiert werden kann.
Das Datenloggergehäuse 2 ist an seinem oberen, d.h. mit den nach außen führenden Leitungen verbundenen Ende mit einer Abschlußkappe 11 versehen, die auf die Oberkante 10 des den Datenlogger 5 aufnehmenden Gehäuseteils 2 aufge¬ setzt wird und durch einen Dichtkörper 14 einen zuverläs¬ sigen Schutz gegen eindringende Flüssigkeiten bietet. Der Dichtkörper 14 weist dabei zwei Dichtsitze 12 und 13 auf, die mit O-Ringen ausgefüllt werden und hierdurch die er¬ forderliche Dichtigkeit bewirken. In der Mitte des Dicht¬ körpers 14 befindet sich der Steckansatz 15 zur Montage des nach außen hin führenden und hier nicht eingezeichne- ten Kabels, das einerseits als Datenleitung und anderer¬ seits als Versorgungsleitung des Meßgerätes 1 dient.
Das Kabel kann entweder angegossen sein, um somit eine ko¬ stengünstige und dichte Lösung darzustellen, oder es kann, wie im hier gezeigten Fall, aufgesteckt werden, so daß ge¬ gebenenfalls Kabel verschiedener Länge montiert werden und gegeneinander ausgetauscht werden können. Die Energiever¬ sorgung befindet sich zweckmäßigerweise außerhalb des Me߬ gerätes und kann - beispielsweise bei zur Grundwassermes¬ sung in einem Pegelrohr abgesenkten Meßgerät - als Batte¬ riepack mit unter die Erdoberfläche abgesenkt werden.
Der Datenlogger 5 stellt an sich ein zylindrisches Bauteil dar, in dessen Innern sich im wesentlichen ein Analog-Di- gital-Wandler befindet, der die ankommenden und als ana¬ loge Spannungen eingehenden Daten in digitale Meßsignale umwandelt, sowie ein Zwischenspeicher, in dem die digita¬ lisierten Daten aufbewahrt werden, sowie eine Weiterlei- tungsmöglichkeit der gespeicherten Daten an einen extern anzuschließenden Rechner. Die zur Durchführung von Meßpro¬ grammen und Weiterleitung von Meßdaten erforderlichen Adressierungs- und Steuerungskomponenten sind dabei entwe¬ der hardware- oder softwaremäßig in dem Datenlogger 5 im¬ plementiert. Weiter kann in dem Datenlogger 5 eine Einheit zur Berechnung einer noch zur Verfügung stehenden - einer Batterie oder einem Akkumulator entnehmbaren - Restenergie angeordnet sein.
An dem dem Stecker 15 abgewandten Bereich des den Daten¬ logger 5 aufnehmenden Gehäuseteils 2 befindet sich an der Unterkante 8 ein Ansatz zur Anmontage des Zwischengehäuse¬ teils 3 bzw. des Druckmeßgehäuseteils 4. Die Verbindung zwischen den einzelnen Gehäuseteilen kann dabei beispiels¬ weise über ein Schraubgewinde erfolgen, so daß die einzel¬ nen Gehäuseteile zur Montage gegeneinander verdreht werden müssen, oder auch durch eine Befestigung, bei der die Ge¬ häuseteile ortsfest zueinander bleiben, beispielsweise eine Überwurfmutter oder eine andere bekannte Art, mehrere Rohrabschnitte aneinander zu befestigen.
Da das Gerät einen häufigen Einsatz zur Grundwassermessung durch Pegelrohre mit einem Durchmesser von in der Regel 2" erfüllen muß, ist es notwendig, den Außendurchmesser des Meßgerätes 1 gering zu halten und dieses bei der Art der Verbindung der Gehäuseteile 2,3 und 4 zu berücksichtigen.
Das Zwischengehäuseteil 3 weist an seinem dem Datenlogger zugewandten Ende ein Innengewinde 16 auf, das mit dem Außengewinde 8' des zur Aufnahme des Datenloggers 5 vorge¬ sehenen Gehäuseteils 2 verbunden wird. An dem dem Daten¬ logger abgewandten Ende des Zwischengehäuseteils 3 befin¬ det sich ein Außengewinde 17 mit gleichen Abmessungen wie das Außengewinde 8' des Gehäuseteils 2. Weiter weist das Zwischengehäuseteil 3 Anströmöffnungen 18 auf, die eine längliche Gestalt haben und deren Längsachse parallel zur Längsachse des zylindrischen Meßgerätes 1 liegt. Außerdem befinden sich an dem Zwischengehäuseteil 3 runde, über seinen Umfang verteilte Öffnungen 19.
Das Druckmeßgehäuseteil 4 weist an seinem oberen Ende 20 ein Innengewinde 21 auf, das bei Montage an das Zwischen¬ gehäuseteil 3 mit dem Außengewinde 17 des Zwischengehäuse¬ teil 3 und bei Montage des Druckmeßgehäuses 4 an dem den Datenlogger 5 aufnehmenden Gehäuseteil 2 mit dem Außenge¬ winde 8' des Gehäuseteils 2 verbunden wird.
Ferner weist das Druckmeßgehäuseteil 4 unterseitig eine Öffnung 22 auf, durch die hindurch das zu messende Medium mit dem Druckmeßbereich 7 in Kontakt treten kann.
Der Druckmeßbereich 7 umfaßt insbesondere einen Druckfüh¬ ler 23, der üblicherweise als Piezo-Element ausgebildet ist, das in einem Komplettbauteil 24 angeordnet und über eine Fuge 25 mit einem Flansch 26 flüssigkeitsdicht ver¬ bunden ist, wobei der Flansch 26 zwei Dichtsitze 27 und 28 aufweist, die mit O-Ringen ausgefüllt sind. Um eine Druck¬ messung mit Bezug zum äußeren Luftdruck zu ermöglichen, kann zusammen mit den elektrischen Leitungen eine Druck¬ ausgleichsleitung zum Druckmeßbereich 4 geführt sein, die anderenends mit der Luft an der Erdoberfläche in Verbin¬ dung steht .
In der Fig. 6 ist veranschaulicht, wie der Druckmeßbereich 7 in dem Druckmeßgehäuseteil 4 montiert ist und dieses di¬ rekt an das den Datenlogger 5 umgebende Gehäuseteil 2 an¬ montiert ist. Gehäuseseitig ist dabei das Innengewinde 21 des Druckmeßgehäuseteils 4 mit dem Außengewinde 8 ' des den Datenlogger aufnehmenden Gehäuseteils 2 verschraubt . Im Gehäuse ist der Druckmeßbereich 7 mit seinem Flansch 26 in ein ähnlich zu dem Dichtkörper 14 an der Oberseite des Meßgerätes 1 gestalteten Dichtungsteil 29 eingepreßt, wo¬ bei die Dichtigkeit durch in Dichtsitzen 27 und 28 einge¬ legte O-Ringe gesichert ist. Das Dichtungsteil 29 ist sei¬ nerseits gegen die Wand des Gehäuseteils 2 durch ebenfalls in Dichtungssitzen 30 und 31 befindliche O-Ringe abgedich¬ tet. Um ein Längsverschieben des Dichtungsteils 29 zu un¬ terbinden, ist eine Distanzhülse 32 innenseitig in dem Ge¬ häuseteil 2 montiert und einerseits mit dem unteren Ende des Datenloggers 5 und andererseits mit dem Dichtungsteil 29 verspannt, so daß sowohl die Distanzhülse 32 als auch das Dichtungsteil 29 als auch der Druckmeßbereich 7 einen festen Sitz im jeweiligen Gehäuseteil haben. Es ist natür¬ lich auch möglich, das Dichtungsteil 29 direkt am unteren Ende des Datenloggers 5 abzustützen und den Überhang des Gehäuseteils 2 zu verringern. Eine solche in Fig. 6 dargestellte Anordnung stellt ein Minimalmeßgerät dar, wobei in dem Druckmeßgehäuseteil 4 zusätzlich noch ein Temperaturfühler montiert sein kann. Darüber hinaus können in dieser Anordnung keine weiteren Sensoren angebracht werden, so daß ein reines Pegelmeßge¬ rät zur Verfügung steht, mit den entsprechenden Preisvor¬ teilen und geringen Gehäuseabmessungen.
Um ein solches Pegelmeßgerät in ein Vielfachmeßgerät umzu¬ wandeln, wird zunächst das Druckmeßgehäuseteil 4 abge¬ schraubt, anschließend der Druckmeßbereich 7 mit seinem Flansch 26 aus dem Preßsitz herausgezogen, das Dichtungs¬ teil 29 und die Distanzhülse 32 entfernt, so daß ein obe¬ rer Meßgerätteil, wie er in Fig. 2 dargestellt ist, zur weiteren Aufnahme von Teilen zur Verfügung steht. In das Gehäuseteil 2 wird nun unterseitig eine Sensoreinheit 6 eingeschoben, die mit ihren Steckverbindungen 33 in am Da¬ tenlogger 5 vorgesehene Buchsen eingreift und dadurch eine Kontaktierung des Sensorelementes 6 gewährleistet. Unter¬ seitig wird in eine am Sensorelement 6 angeformte Aufnahme 34 der Druckmeßbereich 4 vermittels seines Flansches 26 eingeschoben, wie in der Fig. 7 dargestellt. Die elektri¬ sche Kontaktierung des Druckmeßbereiches 4 erfolgt dabei über Kabel, die in einem Rδhrchen 35 der Sensoreinheit 6 flüssigkeitsdicht geführt sind und die für den Umbau des Gerätes über einen nicht eingezeichneten Zwischenstecker trennbar sind. Die durch eine Steckbewegung in die Buchsen am unteren Ende des Datenloggers 5 eingeschobene Sensoreinheit 6 dichtet dabei vermittels zweier O-Ringe in den Dichtsitzen 36 und 37 das Gehäuseteil 2 zum Datenlogger hin ab. Die Sensoreinheit 6 wird dabei unabhängig vom Zwischengehäuse¬ teil 3 montiert. Das in Fig. 7 im Umbau befindliche Meßge¬ rät ist in der Fig. 1 komplett vom Zwischengehäuseteil 3 und Druckmeßgehäuseteil 4 umgeben.
Die Sensoreinheit 6 ist im einzelnen in der Fig. 8 darge¬ stellt und umfaßt im wesentlichen zumindest einen Körper 38, der die Sensoren 39 flüssigkeitsgedichtet hält und der seinerseits durch seine äußeren Dichtsitze 36 und 37 flüs¬ sigkeitsdicht in das Gehäuseteil 2 eingepaßt ist. Am Kör¬ per 38 angeordnet ist ein Distanzstift 40, der den An¬ schlag bei Einstecken der Sensoreinheit 6 in die Unter¬ seite des Datenloggers 5 darstellt.
Die Sensoreinheit 6 umfaßt dabei mehrere Sensoren 39, die nebeneinander in dem Körper 38 der Sensoreinheit 6 mon¬ tiert sind, im wesentlichen gleiche Abmessungen haben und daher alle in einer Meßebene wirksam sind. Auch wenn zwei solcher Körper 38 eine Sensoreinheit bilden, liegen diese gegenüber, so daß die Meßköpfe 41 der eingesetzten Senso¬ ren im wesentlichen in einer Meßebene liegen. Die Sensoren 39 sind jeweils einzeln auswechselbar, was ihrer unterschiedlichen Halterung Rechnung trägt und die Wartung erleichtert. Zudem können die Sensoren 39 in jeder beliebigen Anordnung eingesteckt werden, und es ist mög¬ lich, daß einzelne Sensorenplätze nicht belegt sind, so daß jeweils nur die benötigten Sensoren 39 eingesetzt wer¬ den müssen und weitere, für eine konkrete Messung nicht benötigte Sensoren nicht unnötig einer Alterung ausgesetzt werden.
Die einzelnen Sensoren 39 zeigen dabei einen im wesentli¬ chen zweiteiligen Aufbau, der es ermöglicht, die eigentli¬ che Meßelektrode 42 von einer sie in ihrem Halsbereich um¬ gebenden Hülse 43 zu trennen, so daß die Meßelektrode 42 ausgewechselt werden kann, ohne deswegen den ganzen Sensor vernichten zu müsssen. Die Hülse 43 weist dabei in ihrem Halsbereich 44 Fenster 45 auf, die einen Zugang zu den elektrischen Anschlüssen der Meßelektrode 42 ermöglichen und die zudem dazu dienen, eine Dichtungs- und Haltepaste in den Zwischenraum zwischen der Hülse 43 und der Meßelek¬ trode 42 einfüllen zu können, so daß die Meßelektrode 42 in der Hülse 43 flüssigkeitsdicht und parallel gehalten wird. Eine seitliche Einfüllöffnung 45' kann zur besseren Verteilung der Dichtungs- und Haltepaste unterstützend an¬ gebracht sein. Weiterhin dienen die Fenster 45 dazu, die Dichtungsmasse wieder entfernen zu können und durch die Fenster 45 den Zwischenraum zwischen Meßelektrode 42 und Hülse 43 mit einem unter Druck stehenden Medium beauf¬ schlagen zu können, um dadurch die Dichtungspaste auszu¬ treiben und die Hülse 43 zur Aufnahme einer neuen Meßelek¬ trode 42 verfügbar zu machen.
Nach Einsetzen einer neuen Meßelektrode 42 in die Hülse 43 werden zunächst durch die Fenster 45 die elektrischen An¬ schlüsse der Hülse 42 an die Fortsätze 33' der Stecker 33 gelötet, ehe dann durch diese Fenster 45 die Dichtungs¬ masse eingefüllt wird. Durch dieses Verfahren wird es er¬ möglicht, nicht den ganzen Sensor 39 nach Gebrauch, der z.B. bei der pH-Messung nur wenige Wochen betragen kann, vernichten zu müssen, sondern die teure - zumeist metalli¬ sche - Hülse unmittelbar wieder einzusetzen.
Die Hülse 43 dichtet dabei durch die in Dichtsitzen 46 und 47 angebrachten O-Ringe den Sensor 39 gegen den Körper 38 der Sensoreinheit 6 ab, so daß auch hier keine Flüssigkeit zu den Steckverbindungen 33 gelangen kann.
Es ist möglich, einzelne Sensoren 39 zusätzlich mit einer Temperaturmessung auszustatten, was wenig Zusatzaufwand verursacht und bei speziellen Anforderungen wünschenswert sein kann.
Für eine möglichst große Flexibilität des Einsatzes von Sensoren 39 kann im Bereich des Fensters 45 der Hülse 43 ein Speicherchip angeordnet sein, der sowohl die Art des Sensors 39 und damit den jeweils zu messenden Parameter an den Datenlogger übermittelt als auch werkseitige Kalibrie¬ rungsdaten trägt, die vor Beginn einer Meßreihe an den Da¬ tenlogger 5 übermittelt werden und von diesem einem jeden Meßwert als Korrekturfaktor zugeordnet werden. Damit ent¬ fällt die Notwendigkeit einer Kalibrierung vor Ort, außer¬ dem müssen am Datenlogger 5 bei Umstecken oder zusätzli¬ chem Einstecken von Sensoren 39 keine Veränderungen - auch nicht der Software - vorgenommen werden.
Für besonders genaue Messungen kann der Datenlogger 5 eine gegenseitige Beeinflussung von Zustandsgrößen des Systems erkennen und sich daraus ergebende Fehlmessungen korrigie¬ ren. So kann beispielsweise ein hoher Nitratgehalt im Grundwasser die Dichte verändern, und damit den gemessenen Druck. Da die Daten aus der Druckmessung allein auf einen falschen Wasserstand hindeuten würden, werden diese mit einem entsprechend dem hohen Nitratgehalt angepaßten Kor¬ rekturfaktor versehen.
Es kann dabei besonders vorteilhaft sein, die einzelnen Sensoren 39 nicht über Stecker 33 an den Datenlogger 5 an¬ zuschließen, sondern die Meßdaten über eine induktive Kopplung und damit berührungsfrei zu übermitteln. Dazu wird vom Datenlogger 5 eine Trägerwelle ausgesandt, deren Modulation durch die von den Sensoren 39 übermittelten Si¬ gnale als Meßsignal ausgewertet wird.
Für die Sensoren 39 stehen sowohl ionenselektive Elektro¬ den 42, insbesondere zur Messung des Gehaltes an Nitratio¬ nen, Sauerstoffionen, Chloridionen, Ammoniumionen, Kal¬ ziumionen sowie weiterer Erdalkalimetallionen zur Verfü¬ gung, die jederzeit nach Bedarf um weitere Elektroden 42 . zur Messung anderer Ionen ergänzt werden können, als auch Meßzellen zur Bestimmung des Redoxpotentiales, der elek¬ trischen Leitfähigkeit und der Trübung des Mediums zur Verfügung. Ferner besteht die Möglichkeit, einen Lichtlei¬ ter in dem das Meßgerät 1 versorgenden Kabel anzuordnen und damit über Anregungslicht definierter Energie Molekül¬ schwingungen oder -rotationen anzuregen und somit die ent¬ sprechenden Moleküle nachzuweisen. Dieses Verfahren ist insbesondere zum Nachweis von Kohlenwasserstoffen, vor al¬ lem polyzyklischen aromatischen Kohlenwasserstoffen (PAK) , vorgesehen, zu denen beispielsweise Benzole, Toluole und Xylole gehören, die etwa im Bereich des Sickerwassers von Mülldeponien auftreten und deren Nachweis von hoher Wich¬ tigkeit ist.
Da das Meßgerät 1 nicht nur in Grund-, Quell- oder Flie߬ wasser, sondern auch in Sickerwasserbereichen von Müllde¬ ponien eingesetzt werden soll, also in sehr aggressiven Medien, ist es nötig, das gesamte Meßgerät 1 sehr wider- standsfähig gegen Korrosion auszuführen. Dazu bietet sich die Verwendung eines hochlegierten Stahles mit hohem Chrom- und Nickelanteil sowie Titan- und Molybdänbeimi¬ schungen an, wie er etwa mit den X 6 CrNiMoTi 17 12 2 (Werkstoff-Nummer 1.4571) zur Verfügung steht. Wichtig ist, daß alle Teile, die mit dem Medium in Kontakt stehen - außer den Sensoren 39 - aus einem solchen korrosionsfe¬ sten Material hergestellt sind. Da das Gehäuse zudem hohe mechanische Beanspruchungen erfüllen muß, ist es möglichst kompakt auszuführen, was durch die Anordnung der Sensoren 39 in einer Ebene unterstützt wird. Ferner muß das gesamte Meßgerät 1 explosionsgeschützt (eigensicher) sein.
Es versteht sich, daß die Variabilität des Meßgerätes 1 sich nich allein auf eine unterschiedliche Anzahl und An¬ ordnung von Sensoren 39 beschränkt, sondern daß auch die Meßprogramme beliebig wählbar sind, so z.B. die Abfrage¬ zeiten und Zwischenräume zwischen den Messungen. Diese können für jeden Sensor 39 einzeln durch externe Program¬ mierung des Datenloggers 5 nach Bedarf eingestellt werden.

Claims

Ansprüche:
1. Komplett in ein flüssiges Medium eintauchbares und über elektrische Leitungen mit einer Energieversorgung und ei¬ ner Datenverarbeitungseinrichtung verbindbares Meßgerät zur Ermittlung von chemischen und/oder physikalischen Zu¬ standsgrößen des flüssigen Mediums, beispielsweise des Grundwassers, mit in einem im wesentlichen zylindrischen Gehäuse integrier¬ ten Sensoren und einem Datenlogger (5) , wobei das Gehäuse in Axialrichtung drei voneinander lösbar ver¬ bindbare Teile, nämlich ein den Datenlogger (5) aufnehmen¬ des Gehäuseteil (2) an seinem einen Ende, ein Druckmeßge¬ häuseteil (4) und ein eine Sensoreinheit umschließendes und mit Anströmöffnungen (18) versehenes Zwischengehäuse¬ teil (3) aufweist, wobei wahlweise das Druckmeßgehäuseteil (4) oder das Zwischengehäuseteil (3) unmittelbar an das den Datenlogger aufnehmende Gehäuseteil (2) flüssigkeits¬ dicht montierbar ist.
2. Meßgerät nach Anspruch 1, dadurch gekennzeichnet, daß die Sensoreinheit in das Zwischengehäuseteil einschiebbar ist und dieses mittels in Dichtsitzen angeordneter O-Ringe zum Datenlogger hin abdichtet.
3. Meßgerät nach einem der Ansprüche 1 und 2, dadurch ge¬ kennzeichnet, daß das Druckmeßgehäuseteil sowohl an das den Datenlogger aufnehmende Gehäuseteil als auch an das Zwi¬ schengehäuseteil flüssigkeitsdicht montierbar ist und seine elektrische Kontaktierung über Kabel erfolgt, die im Zwischengehäuseteil flüssigkeitsdicht führbar sind.
4. Meßgerät nach einem der Ansprüche 1 bis 3, dadurch ge¬ kennzeichnet, daß das Druckmeßgehäuseteil zusätzlich einen Temperaturfühler umfaßt, der analog zur Druckmessung kon¬ taktiert ist.
5. Meßgerät nach einem der Ansprüche 1 bis 4, dadurch ge¬ kennzeichnet, daß das Zwischengehäuseteil unabhängig von der Sensoreinheit montierbar ist und über ein angeformtes Gewinde mit einem an dem den Datenlogger aufnehmenden Ge¬ häuseteil angeformten Gewinde verbindbar ist.
6. Meßgerät nach einem der Ansprüche 1 bis 5, dadurch ge¬ kennzeichnet, daß es flüssigkeitsdicht zum Datenlogger füh¬ rende Steckverbindungen aufweist, und daß die Sensorein- heit mehrere in einer Meßebene wirksame einsteckbare Sen¬ soren umfaßt .
7. Meßgerät nach Anspruch 6, dadurch gekennzeichnet, daß die einsteckbaren Sensoren jeweils mit einem Speicherchip versehen sind, der zumindest einen durch eine werkseitige Kalibrierung ermittelten Korrekturfaktor der Meßdaten trägt und als Initialisierung einer Meßreihe an den Daten¬ logger übermittelt.
8. Meßgerät nach einem der Ansprüche 6 und 7, dadurch ge¬ kennzeichnet, daß die Speicherchips der Sensoreinheit einen die Art des Sensors und die jweils aufzunehmende Meßwert¬ art kenntlich machenden Datensatz tragen.
9. Meßgerät nach einem der Ansprüche 6 bis 8, dadurch ge¬ kennzeichnet, daß die Anordnung der Sensoren in der Sen¬ soreinheit variabel ist .
10. Meßgerät nach einem der Ansprüche 6 bis 9, dadurch ge¬ kennzeichnet, daß eine unterschiedliche Anzahl von Sensoren in die Sensoreinheit einsetzbar ist.
11. Meßgerät nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß die Sensoren jeweils einzeln auswech¬ selbar sind.
12. Meßgerät nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Sensoren jeweils eine mit ihrem elektrischen Anschlußelement fest verbundene zylindrische Hülse aufweisen, die eine Meßelektrode bereichsweise um¬ gibt und in denen die Meßelektrode flüssigkeitsdicht, aber lösbar gehalten ist.
13. Meßgerät nach Anspruch 12, dadurch gekennzeichnet, daß die Meßelektrode in der Hülse in einer Dichtungsmasse ge¬ halten ist und die Hülse außenseitig zumindest einen in einem Dichtsitz angeordneten O-Ring aufweist.
14. Meßgerät nach einem der Ansprüche 6 bis 13, dadurch gekennzeichnet, daß die Hülse einen mit Fenstern versehenen Hals aufweist, wobei die Fenster einen Zugang zum Verlöten der Meßelektrodenanschlüsse, zum Einfüllen und Entfernen von Dichtungsmasse und eine Öffnung zur Beaufschlagung eingefüllter Dichtungsmasse mit einem Druckmittel darstel¬ len.
15. Meßgerät nach einem der Ansprüche 6 bis 14, dadurch gekennzeichnet, daß die Sensoreinheit in ihren abgewandten Endbereichen zwei einander gegenüberliegende Einsteckebe¬ nen für Sensoren aufweist, wobei die Meßelektroden der ge¬ genüber angeordneten Sensoren im wesentlichen in einer ge¬ meinsamen Meßebene liegen.
16. Meßgerät nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß der Datenlogger eine gegenseitige Be¬ einflussung verschiedener Zustandsgrößen des Mediums be¬ rücksichtigt und Meßwerte mit einer Korrektur versehen kann.
17. Meßgerät nach einem der Ansprüche 6 bis 16, dadurch gekennzeichnet, daß Sensoren mit ionenselektiven Elektroden zur Messung des pH-Wertes, des Nitrat-Gehaltes, des Sauer¬ stoff-Gehaltes, des Cloridionen-Gehaltes, des Ammoniumio¬ nen-Gehaltes und des Gehaltes von positiven Kalziumionen und der Wasserhärte sowie des Gehaltes weiterer ionisier¬ ter Teilchen, außerdem Sensoren mit Meßzellen zur Bestim¬ mung des Redoxpotentiales, der elektrischen Leitfähigkeit und der Trübung vorgesehen sind und Messungen unter Ver¬ wendung von Molekülanregung durch Anregungslicht definier¬ ter Energie durchführbar sind.
18. Meßgerät nach einem der Ansprüche 6 bis 17, dadurch gekennzeichnet, daß die elektrische Kontaktierung der Sen¬ soren berührungsfrei über induktive Kopplung erfolgt.
EP97914247A 1996-03-15 1997-03-14 Messgerät zur ermittlung von zustandsgrössen eines flüssigen mediums Ceased EP0886777A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19610167A DE19610167C1 (de) 1996-03-15 1996-03-15 Meßgerät zur Ermittlung von Zustandsgrößen eines flüssigen Mediums
DE19610167 1996-03-15
PCT/EP1997/001307 WO1997035190A1 (de) 1996-03-15 1997-03-14 Messgerät zur ermittlung von zustandsgrössen eines flüssigen mediums

Publications (1)

Publication Number Publication Date
EP0886777A1 true EP0886777A1 (de) 1998-12-30

Family

ID=7788357

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97914247A Ceased EP0886777A1 (de) 1996-03-15 1997-03-14 Messgerät zur ermittlung von zustandsgrössen eines flüssigen mediums

Country Status (4)

Country Link
EP (1) EP0886777A1 (de)
CN (1) CN1144043C (de)
DE (1) DE19610167C1 (de)
WO (1) WO1997035190A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19747059A1 (de) * 1997-10-24 1999-05-12 Weber Erika Meßvorrichtung für Abwasser
GR1003394B (el) * 1999-05-21 2000-06-15 Αυτοματοποιημενο συστημα ελεγχου υπογειων υδατων για την ορθολογικη διαχειριση υδατινων πορων
US6393925B1 (en) 1999-05-26 2002-05-28 University Of Waterloo Groundwater velocity probe
DE10055090A1 (de) 2000-11-07 2002-05-08 Conducta Endress & Hauser Steckverbinder zum Anschluss einer Übertragungsleitung an mindestens einen Sensor
GB2375398A (en) * 2001-05-11 2002-11-13 Local Link Internat Ltd Piezometric pressure sensor
DE10163165A1 (de) * 2001-12-20 2003-07-03 Endress & Hauser Gmbh & Co Kg Feldgerät und Verfahren zum Betrieb des Feldgerätes
DE10212903B4 (de) 2002-03-22 2007-02-01 Vega Grieshaber Kg Messwertaufnehmer
DE10221303A1 (de) * 2002-05-14 2003-11-27 Valeo Schalter & Sensoren Gmbh Sensor, insbesondere Ultraschallsensor, und Verfahren zur Herstellung
US7104116B2 (en) * 2003-09-25 2006-09-12 Rockwell Automation Technologies, Inc. Fluid sensor fixture for dynamic fluid testing
DE202005003264U1 (de) * 2005-02-25 2005-06-23 Gneuß Kunststofftechnik GmbH Messsystem mit einem Sensor und einem diesem zugeordneten Messverstärker
DE102006062184A1 (de) * 2006-12-22 2008-06-26 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Steckverbinderkupplung für ein Sensormodul und Sensormodul mit einer solchen Steckverbinderkupplung
DE102008029956A1 (de) 2008-06-26 2009-12-31 Endress + Hauser Flowtec Ag Meßsystem mit einem Sensormodul und einem Transmittermodul
DE102008043169A1 (de) * 2008-10-24 2010-04-29 Endress + Hauser Gmbh + Co. Kg Messvorrichtung und Verfahren zur Herstellung der Messvorrichtung
DE102008053920A1 (de) 2008-10-30 2010-05-06 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Verteilermodul bzw. damit gebildetes Messsystem
DE102012012527B4 (de) 2012-06-26 2015-05-21 Krohne Analytics Gmbh Messvorrichtung zum Bestimmen einer Prozessgröße
DE102014202354A1 (de) * 2014-02-10 2015-08-13 Zf Friedrichshafen Ag Dichtvorrichtung für ein Sensorgehäuse
DE102015011974A1 (de) 2015-09-12 2017-03-16 Hydac Electronic Gmbh Sensoreinrichtung, insbesondere für maritime Anwendungen
DK3391038T3 (da) 2015-12-18 2022-04-19 Radiometer Medical Aps Fremgangsmåde til drift af en ionselektiv elektrode med blandede ionoforer til forbedret detektering af urinstof i blod
DE102016210519B4 (de) 2016-06-14 2020-09-10 Robert Bosch Gmbh Sensoranordnung und Verfahren zur Herstellung einer Sensoranordnung
DE102016008518A1 (de) * 2016-07-15 2018-01-18 Testo SE & Co. KGaA Datenlogger und Verwendung von zwei metallischen Wandbereichen eines Gehäuses eines Datenloggers
DE102018111790A1 (de) * 2018-05-16 2019-11-21 Anton Paar Provetec Gmbh Stopfen für Automatische Destillationsmessungen

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2015851A (en) * 1933-03-06 1935-10-01 Standard Oil Co California Pressure and temperature recorder
AT353505B (de) * 1974-10-10 1979-11-26 Oemv Ag Messanordnung fuer bohrloecher
IT1121122B (it) * 1979-01-08 1986-03-26 Cise Spa Circuito elettrico e struttura per sonde di pressione e temperatura dotato di accorgimenti adatti per la correzione dell errore di temperatura sul segnale di pressione e per eliminare l influenza della resistenza elettrica dei conduttori del cavo
DE8026460U1 (de) * 1980-10-03 1981-01-22 Hans Woehlermaschinen- U. Apparatebau, 4791 Wuennenberg Kombinationssonde fuer abgasmessungen an gas- und oelheizungen
US4854728A (en) * 1987-05-18 1989-08-08 Sippican Ocean Systems, Inc. Seawater probe
DE4121397C2 (de) * 1991-06-28 1997-03-20 Bosch Gmbh Robert Einrichtung zur Erfassung von Wasserzustandsdaten
US5283767A (en) * 1992-02-27 1994-02-01 Mccoy Kim Autonomous oceanographic profiler
DE4337402A1 (de) * 1993-10-26 1995-04-27 Mannesmann Ag Sonde zur Messung von Druck- und Temperaturprofilen
DE9404359U1 (de) * 1994-03-15 1994-05-19 Sum Mestechnik Gmbh Meßvorrichtung mit absenkbarer Meßsonde
DE9404367U1 (de) * 1994-03-15 1994-05-19 Sum Mestechnik Gmbh Meßsonde
DE4438523C1 (de) * 1994-10-31 1995-12-07 Schott Geraete Multifunktions-Sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9735190A1 *

Also Published As

Publication number Publication date
DE19610167C1 (de) 1997-02-13
WO1997035190A1 (de) 1997-09-25
CN1216111A (zh) 1999-05-05
CN1144043C (zh) 2004-03-31

Similar Documents

Publication Publication Date Title
EP0886777A1 (de) Messgerät zur ermittlung von zustandsgrössen eines flüssigen mediums
DE69816267T2 (de) Modulare sonde
DE19917312B4 (de) Einrichtung zur Positionserfassung
DE102007004827B4 (de) Kompaktes magnetisch induktives Durchflussmessgerät
EP2569604A2 (de) Ultraschallwandleranordnung sowie ultraschall-durchflussmesser
DE102010020338A1 (de) Gehäuseanordnung für Ultraschall-Durchflussmesser sowie Ultaschall-Durchflussmesser
DE3843243A1 (de) Vorrichtung zur feststellung des alkoholgehaltes und/oder des heizwertes von kraftstoffen
DE102009004936A1 (de) Apparat zur Bestimmung eines Tankfüllstandes
DE102007056544A1 (de) Sensoranordnung zur Bestimmung eines Tankfüllstands und Verfahren zur Herstellung hierzu
DE102016114565A1 (de) Messanordnung
DE102006033467A1 (de) Druckerfassungsvorrichtung
EP1866634B1 (de) Abwasseranalyse-sensorkartusche
CH658720A5 (de) Messsonde fuer lagerbehaelter.
EP0952448B1 (de) Aufnahmeeinrichtung für einen Sensor zur Messung fluider Medien in der Prozesstechnik
DE102010012823A1 (de) Druckmittler mit Temperatursensor
DE10256649A1 (de) Sensorsteckkopf insbesondere für einen potentiometrischen Sensor und potentiometrischer Sensor mit Sensorsteckkopf
DE102009028044A1 (de) Feldgerät der Prozessautomatisierung
DE102016122049A1 (de) Detektor-Einheit für ein radiometrisches Dichte- oder Füllstandsmessgerät
DE102012112917A1 (de) Vorrichtung der Prozessautomatisierungstechnik
DE20300901U1 (de) Befestigungssystem für ein Messgerät zur Überwachung und/oder Bestimmung eines Füllstands
DE10359946A1 (de) Gassensor mit verbessertem Aufbau für Einbau von Schutzabdeckung
DE19719010A1 (de) Wärmeübergangskontroll- und/oder -meßgerät
DE19749111A1 (de) Elektrochemische Untersuchungsanordnung und miniaterisierte Meßzelle zur Untersuchung eines metallischen Bauteils
DE102013113635A1 (de) Steckverbindungseinheit zur Verbindung eines Kabelschaltungsmoduls mit einem Sensormodul
DE102015212655A1 (de) Messsonde zum Erfassen mindestens einer Messgröße eines Fluids

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980930

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB LI NL

17Q First examination report despatched

Effective date: 20000524

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HEFEI MEI AN DA SUGANG MECHAUNG YOUXIANGONGSI

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE FR GB LI NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20010831