EP0885980B1 - Verfahren zur Herstellung einer Oberflächenschicht von grosser Härte durch thermochemische plasmafreie Behandlung - Google Patents

Verfahren zur Herstellung einer Oberflächenschicht von grosser Härte durch thermochemische plasmafreie Behandlung Download PDF

Info

Publication number
EP0885980B1
EP0885980B1 EP19980401235 EP98401235A EP0885980B1 EP 0885980 B1 EP0885980 B1 EP 0885980B1 EP 19980401235 EP19980401235 EP 19980401235 EP 98401235 A EP98401235 A EP 98401235A EP 0885980 B1 EP0885980 B1 EP 0885980B1
Authority
EP
European Patent Office
Prior art keywords
treatment
parts
temperature
nitrogen
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19980401235
Other languages
English (en)
French (fr)
Other versions
EP0885980A3 (de
EP0885980A2 (de
Inventor
Patrick Jacquot
Sylvain Foissey
Gérard Veyssiere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bodycote SAS
Original Assignee
Bodycote SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bodycote SAS filed Critical Bodycote SAS
Publication of EP0885980A2 publication Critical patent/EP0885980A2/de
Publication of EP0885980A3 publication Critical patent/EP0885980A3/de
Application granted granted Critical
Publication of EP0885980B1 publication Critical patent/EP0885980B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding

Definitions

  • the present invention relates to a process for the formation, by a treatment Thermochemical without plasma, a superficial layer with hardness high and possessing tribological properties, on parts made of alloys sensitive or reactive towards nitrogen, carbon and / or oxygen.
  • a titanium-based alloy or zirconium in an atmosphere that may include ammonia, a hydrocarbon and / or an oxidizing gas or even a gaseous composition including one or more of these compounds.
  • thermochemical treatments In general, we know that there are at present various techniques such thermochemical treatments.
  • the oldest, namely the salt bath tends to disappear because it is particularly polluting and dangerous because of the release of toxic gases and rinsing water it generates.
  • ion bombardment treatments involve relative vacuum heat treatment plant specially equipped with to generate on the parts to be treated a glow discharge in a treatment gas atmosphere.
  • This technique has the disadvantage of being relatively expensive and not suitable for complex shaped parts and, in particular, of tubular shape and this, because of hollow cathode.
  • thermochemical treatments carried out under a gaseous atmosphere atmospheric pressure consist in wearing the parts at a temperature of the order of 500 ° C to 600 ° C and to sweep them with a gas nitriding such as ammonia. It is the same with regard to treatments carried out under high pressure, “Hochdrucknitrieren von Titantechnikstoffen “HTM Harterei - Technische Mitteilungen, 46 (1991) Nov./Dez, No. 6 and in patent JP 0709541. This treatment presents the disadvantage of being long, consuming large quantities of gas from treatment and therefore to be relatively polluting.
  • This process makes it possible to obtain excellent results for the treatment of steel and steel alloys, however, has the disadvantage of using a relatively expensive treatment gas composition and an installation Sophisticated to ensure a homogeneous sweep of the parts to be treated by the gases treatment.
  • Another disadvantage of this method lies in the fact that in temperature and pressure conditions suitable for the treatment of steel it is inoperative on titanium or zirconium alloys.
  • the catalyst used is incompatible with the processing of titanium and zirconium alloys because it would form a diffusion barrier to nitrogen (Ti oxide layer or Zr).
  • the aim of the invention is to provide a treatment method of this type alloys.
  • this process does not use as a gas only ammonia, that is to say a relatively common gas and cheap.
  • the treatment facility is also located greatly simplified.
  • the substrate treated with titanium alloy or zirconium acts as a catalyst for dissociation of molecules of ammonia which adds to the thermal dissociation effect.
  • This treatment makes it possible at the same time to improve the mechanical characteristics of the treated parts, in particular as regards resistance to friction and surface hardness, and to give them a pale yellow appearance that is more or less shiny and particularly aesthetic.
  • This aspect is a function of the initial surface state and the stoichiometry of the Ti x N y layer.
  • this treatment is a diffusion treatment: it does not generate significant change in the initial roughness of the parts and it eliminates all risk detachment of the titanium nitride layer.
  • Another advantage of this process is that because it operates at low pressure (always lower than the atmospheric pressure) it only consumes very little treatment gas and is therefore not polluting with respect to the processes high pressure which require the use of specific furnaces and safety due to high pressure.
  • the method according to the invention may further comprise a post-processing phase intended to dehydrogenate the treated alloy.
  • the atomic nitrogen supply at the surface of a room by means of the thermal and catalitic dissociation of ammonia molecules can lead, at the nitriding temperatures used, to a hydrogen enrichment and to the formation of hydrides, for example titanium hydrides of TiH type up to TiH 2 .
  • This dehydrogenation treatment can be carried out by bringing the pieces to a temperature of the order of 700 to 900 ° C for a period ranging from 1 to 5 hours, in a vacuum of 10 -3 to 10 -4 mbar.
  • a TH6V-type titanium alloy dehydrogenated at 790 ° C. for 2 hours, under a vacuum of 10 -4 mbar, will have its hydrogen content drop from 256 to 11 ppm.
  • the treatment plant used involved a furnace of vacuum heat treatment of conventional structure equipped with a turbine of flow of process gases.
  • This oven includes a sealed enclosure containing a muffle made of a material (metal or graphite) that can not be retain pollutants (especially oxygen or water vapor) likely to affect the quality of the treatment.
  • pollutants especially oxygen or water vapor
  • Inside the mitt are installed electrical heating resistors (essentially by radiation and convection) able to bring the temperature of the parts to more than 1000 ° C.
  • This chamber is connected on the one hand to pumping equipment suitable for realize a primary vacuum P ⁇ 0.1 mbar and, on the other hand, two gas sources (one source of nitrogen and a source of ammonia) via a distribution.
  • the parts to be treated (here alloy titanium TA6V) have been arranged in the muffle, on a mounting preferably in titanium alloy having previously undergone the same treatment.
  • the parts were arranged so as to be distant from each other a few millimeters so that the diffusion is the most homogeneous possible on their surface.
  • Temperature maintenance at this level was continued for a period of time sufficient to ensure the homogeneity of the room temperature.
  • This diffusion phase was continued for approximately 7 hours in order to obtain a diffusion layer of approximately 0.040 mm average thickness.
  • the treated parts had, at the extreme surface, a compact and homogeneous yellow layer of titanium nitride Ti x N y with a thickness of about 4 ⁇ m and a very high hardness (> 1000 HV), and consequently a very good resistance to friction. and excellent wear resistance.
  • the diffusion layer (a few hundredths of a millimeter thick and with a hardness of> 400 HV) was then likely to improve the fatigue resistance (the core hardness being 339 HV).
  • An important advantage of this method is that it makes it possible to obtain a very good homogenous treatment even in the case of pieces of shapes and complex geometries including hollow shapes.
  • the treatment extends to the contact areas of the parts on their support.
  • the treatment gas could be other than ammonia and could for example consist of a hydrocarbon-based atmosphere (C 2 H 2 , C 3 H 8 , CH 4 .7) with a view to cementer superficially these alloys. In this case we obtain a surface layer of metallic gray color, of great hardness and having increased tribological properties.
  • a hydrocarbon-based atmosphere C 2 H 2 , C 3 H 8 , CH 4 .
  • the treatment atmosphere could comprise an oxidizing gas such as oxygen so as to obtain a surface layer (Ti0, Ti0 2 , Ti 2 O 3 , Zr0 2 ..) with various colors (blue, green, violet). ) and a great hardness.
  • an oxidizing gas such as oxygen so as to obtain a surface layer (Ti0, Ti0 2 , Ti 2 O 3 , Zr0 2 ..) with various colors (blue, green, violet). ) and a great hardness.
  • This Ti x O y oxide layer of a thickness of a few microns and a hardness greater than 1000 HV is compact and homogeneous over the entire surface of the workpiece.
  • the colors that we obtain are brilliant and very varied. It considerably improves the friction resistance of the parts.
  • the appearance of the parts is a function of the initial surface condition and the stoichiometry of the Ti x O y layer.
  • the treatment atmosphere could also consist of a combination of NH 3 + CH 4 so as to obtain a surface layer of carbonitrides TiC x N y or Zr CN pinkish color or butter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Carbon And Carbon Compounds (AREA)

Claims (6)

  1. Verfahren zur Bildung einer Oberflächenschicht durch eine thermochemische Behandlung ohne Plasma, die eine erhöhte Härte aufweist und tribologische Eigenschaften besitzt, auf Teilen aus Metall-Legierungen, die empfindlich gegen Stickstoff reagieren, wie z.B. Titan oder Zirkonium, dadurch gekennzeichnet, dass es folgende Phasen umfasst:
    eine Vorentfettung der zu behandelnden Teile,
    das Beschicken eines Ofeninnenraumes mit Teilen,
    ein erstes Vakuumsetzen des Bereichs, um die verschmutzenden Elemente zu beseitigen,
    ein Temperaturanstieg des Ofens durch Konvektion mit Stickstoff und/oder durch Strahlung bis zum Erreichen einer Temperatur von 650° C bis 900° C, wobei der Druck bei einem niedrigeren Druck oder gleich 0,1 mbar beibehalten wird,
    die Beibehaltung dieser Temperatur während einer bestimmten Dauer, um eine einheitliche Temperatur der Teile zu erreichen,
    eine eventuelle zweite Vakuumsetzung des Bereichs, um die Beseitigung des eingespritzten Stickstoffs bei einem Temperaturanstieg des Ofens zu sichern,
    das Einspritzen eines Behandlungsgases mit Ammoniak in die zu behandelnden Teile bei einer Temperatur von über 500° C, und die Beibehaltung des Druckes im Innern des Ofens zu einem Wert von zwischen 100 und 600 mbar, vorzugsweise von 300 mbar, während einer Dauer von zwischen einigen Minuten und 24 Stunden oder mehr in Abhängigkeit vom gewünschten Behandlungsumfang, um folgendes zu erhalten:
    in einer extremen Oberfläche, eine Schicht von einer Kombination von Tix Ny, die eine Dicke von einigen Mikronen aufweist
    eine Schutzschicht zur Verbreitung einer höheren Härte als die des Substrats,
    eine dritte Vakuumsetzung des Bereichs, um das Behandlungsgas und die Abkühlung des Ofens zu beseitigen,
    die Entnahme der Teile aus dem Ofen.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die besagte Atmosphäre eine neutrale und sauerstoff- und wasserdampffreie Atmosphäre ist.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die besagte Atmosphäre aus Stickstoff zusammengesetzt ist.
  4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es eine Spülgasbehandlung umfasst.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die besagte Behandlung eine Karbonitrierbehandlung ist, und dadurch, dass in diesem Fall das Behandlungsgas eine Kombination von NH3 + CH4 ist.
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die besagte Behandlung eine Oxynitrierbehandlung ist, und dadurch, dass in diesem Fall das Behandlungsgas aus einer Sauerstoff- und Stickstoffmischung besteht.
EP19980401235 1997-05-23 1998-05-22 Verfahren zur Herstellung einer Oberflächenschicht von grosser Härte durch thermochemische plasmafreie Behandlung Expired - Lifetime EP0885980B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9706518 1997-05-23
FR9706518A FR2763604B1 (fr) 1997-05-23 1997-05-23 Procede pour la formation, par un traitement thermochimique sans plasma, d'une couche superficielle presentant une durete elevee

Publications (3)

Publication Number Publication Date
EP0885980A2 EP0885980A2 (de) 1998-12-23
EP0885980A3 EP0885980A3 (de) 2000-10-11
EP0885980B1 true EP0885980B1 (de) 2005-09-14

Family

ID=9507313

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19980401235 Expired - Lifetime EP0885980B1 (de) 1997-05-23 1998-05-22 Verfahren zur Herstellung einer Oberflächenschicht von grosser Härte durch thermochemische plasmafreie Behandlung

Country Status (4)

Country Link
EP (1) EP0885980B1 (de)
DE (1) DE69831530T2 (de)
ES (1) ES2247665T3 (de)
FR (1) FR2763604B1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19909694A1 (de) * 1999-03-05 2000-09-14 Stiftung Inst Fuer Werkstoffte Verfahren zum Varbonitrieren bei Unterdruckverfahren ohne Plasmaunterstützung
IT1316270B1 (it) * 2000-12-28 2003-04-03 Ct Sviluppo Materiali Spa Procedimento per il trattamento superficiale di titanio, prodottie manufatti realizzati o rivestiti in titanio e trattati secondo tale
DE10221605A1 (de) * 2002-05-15 2003-12-04 Linde Ag Verfahren und Vorrichtung zur Wärmebehandlung metallischer Werkstücke
DE102010028165A1 (de) * 2010-04-23 2011-10-27 Robert Bosch Gmbh Verfahren zur Carbonitrierung von metallischen Bauteilen
JP2024508152A (ja) 2021-03-03 2024-02-22 エロス・メドテック・パイノール・エー/エス Iv族金属の表面硬化

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2136037A5 (de) * 1971-04-05 1972-12-22 Metaux Precieux Sa
JPH0630696B2 (ja) * 1985-08-23 1994-04-27 松下電工株式会社 電気カミソリ刃
JPH0723527B2 (ja) * 1986-12-22 1995-03-15 三菱重工業株式会社 Ti−6Al−4V合金の浸炭処理法
SE9001009L (sv) * 1990-03-21 1991-09-22 Ytbolaget I Uppsala Ab Foerfarande foer att bilda ett haart och slitagebestaendigt skikt med god vidhaeftning paa titan eller titanregleringar och produkter, framstaellda enligt foerfarandet
FR2663953B1 (fr) * 1990-07-02 1993-07-09 Aubert & Duval Acieries Procede et installation de cementation de pieces en alliage metallique a basse pression.
DE4239392A1 (en) * 1991-11-29 1993-06-03 Volkswagen Ag Surface hardness increase of titanium material components - by deoxidising thermal treatment, and application of nitrogen diffusion coating
JPH0790541A (ja) * 1993-09-13 1995-04-04 Demutetsuku Kk ガス複合浸透改質方法及び装置

Also Published As

Publication number Publication date
ES2247665T3 (es) 2006-03-01
DE69831530T2 (de) 2006-06-14
FR2763604A1 (fr) 1998-11-27
EP0885980A3 (de) 2000-10-11
DE69831530D1 (de) 2005-10-20
FR2763604B1 (fr) 1999-07-02
EP0885980A2 (de) 1998-12-23

Similar Documents

Publication Publication Date Title
EP2459765B1 (de) Verfahren zur behandlung von servierbestecken
FR2493348A1 (fr) Procede et dispositif de depot physique par vapeur de produits de revetement durs, notamment pour outils
CH660028A5 (fr) Procede de preparation par diffusion d'une couche protectrice sur des alliages a base de nickel, cobalt et fer.
WO2007109865A1 (fr) Procede de recuit et de preparation en continu d'une bande d'acier a haute resistance en vue de sa galvanisation au trempe
EP0370838B1 (de) Verfahren zum Schutz der Oberflächen von Metallteilen gegen Hochtemperaturkorrosion sowie dadurch behandeltes Teil
EP0089885B1 (de) Verfahren zur Oberflächenhärtung von Metallteilen
EP0010484B1 (de) Verbesserung der Inchromierung von Stahl in der Gasphase
EP0885980B1 (de) Verfahren zur Herstellung einer Oberflächenschicht von grosser Härte durch thermochemische plasmafreie Behandlung
WO2018172859A1 (fr) Procede de traitement de surface et produit d' un tel procede
EP1280943B1 (de) Verfahren zur niederdruck-aufkohlung
EP0018263B1 (de) Verfahren zum Verchromen von Stahlgegenständen und mit einem Chromdiffusionsüberzug versehene Stahlgegenstände
CH668084A5 (fr) Procede de traitement thermique pour la realisation de pieces en acier resistant a la corrosion.
EP0801142B1 (de) Oberflächenbehandlung eines Metallsubstrates, so hergestelltes Metallsubstrat und seine Anwendungen
EP3287857B1 (de) Herstellungsverfahren eines artikels auf zirkonbasis, der ein metallisches aussehen hat
JP2007254856A (ja) チタンまたはチタン合金装飾部材の製造方法
EP0707661B1 (de) Verfahren und ofen zum nitrieren von metallischen formteilen bei niedrigen druck
WO2015092205A1 (fr) Procédé de fabrication d'une pièce revêtue d'un revêtement protecteur
EP3109339B1 (de) Behandlungsverfahren eines werkstücks aus tantal oder einer tantallegierung
EP0067098B1 (de) Verfahren zur Ionisierung eines Werkstückes aus Stahl, das zuvor plastisch verformt wurde
Xu et al. Plasma surface alloying
EP1743952B1 (de) Verfahren zur Behandlung von Teilen aus Titan oder Titanlegierungen
JP3637255B2 (ja) アルミニウム窒化材およびその製造方法
WO1999020808A1 (fr) Procede pour la mise a composition d'un produit metallique
JPH11124683A (ja) 無電解複合めっきの無酸化被膜形成方法
FR2725015A1 (fr) Four utilisable pour la nitruration a basse pression d'une piece metallique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE ES FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990126

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7C 23C 8/24 A, 7C 23C 8/20 B, 7C 23C 8/06 B

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BODYCOTE HIT

AKX Designation fees paid

Free format text: BE DE ES FR GB IT NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BODYCOTE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69831530

Country of ref document: DE

Date of ref document: 20051020

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2247665

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060615

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170412

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170511

Year of fee payment: 20

Ref country code: GB

Payment date: 20170517

Year of fee payment: 20

Ref country code: FR

Payment date: 20170410

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170517

Year of fee payment: 20

Ref country code: BE

Payment date: 20170410

Year of fee payment: 20

Ref country code: ES

Payment date: 20170608

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69831530

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20180521

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180521

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20180522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180521

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180523