EP0874188B1 - Procédé pour le traitement d'un gaz liquéfié cryogénique - Google Patents

Procédé pour le traitement d'un gaz liquéfié cryogénique Download PDF

Info

Publication number
EP0874188B1
EP0874188B1 EP98810177A EP98810177A EP0874188B1 EP 0874188 B1 EP0874188 B1 EP 0874188B1 EP 98810177 A EP98810177 A EP 98810177A EP 98810177 A EP98810177 A EP 98810177A EP 0874188 B1 EP0874188 B1 EP 0874188B1
Authority
EP
European Patent Office
Prior art keywords
heat
gas
exchange medium
water
cryogenic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98810177A
Other languages
German (de)
English (en)
Other versions
EP0874188B2 (fr
EP0874188A3 (fr
EP0874188A2 (fr
Inventor
Mircea Fetescu
Lutz Löwel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7827582&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0874188(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP0874188A2 publication Critical patent/EP0874188A2/fr
Publication of EP0874188A3 publication Critical patent/EP0874188A3/fr
Application granted granted Critical
Publication of EP0874188B1 publication Critical patent/EP0874188B1/fr
Publication of EP0874188B2 publication Critical patent/EP0874188B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/915Combustion

Definitions

  • the invention relates to a method for the preparation of deep-frozen liquid gas, such as liquid natural gas (LNG) or liquid propane gas (LPG) or technical gases, for a downstream, process engineering process, according to the preamble of claim 1.
  • LNG liquid natural gas
  • LPG liquid propane gas
  • gaseous energy carriers such as Natural gas and propane gas, used as fuel for power plants or in processes of the steel and chemical industries. Since gases generally have a relatively large volume, they must be sufficiently compressed to realize effective transport and storage. However, since much more energy is required for the compression of gases than for the compression of liquids, the natural gas or propane gas are first liquefied. This produces so-called liquid natural gas (LNG) or liquid propane gas (LPG). Both the transport and the storage of these liquefied gases are carried out under atmospheric pressure and at temperatures of about minus 160 ° C. Thus, the particular, refrigerated liquefied gas must be vaporized prior to its use as fuel, i. be re-gasified. Such a system is known from document US-A-3,726,085.
  • the invention seeks to avoid all these disadvantages. It is the object of the invention to provide a method for the preparation of deep-frozen liquefied gas for the purpose of obtaining process energy for a downstream process engineering process, with which the cooling capacity of the deep-frozen liquefied gas can also be utilized in the downstream process.
  • the cooling capacity of the deep-frozen liquid gas is supplied as heat sink, at least via one heat exchange medium, to at least one of the substeps of the downstream process process.
  • the transferred to the heat exchange medium Refrigeration capacity of the frozen liquid liquor used in the downstream process and therefore the use of external heat exchange media, including the associated disadvantages significantly reduced. If this heat exchange medium is unavailable, the frozen liquid gas is re-gasified with an additional heat exchange medium.
  • This process step is mainly used to start the downstream, process engineering process and is also activated in case of otherwise unavailability of the first heat exchange medium, such as during repair work. By itself, it is similar to the conventional process in which the heat exchange medium is discharged from the process unused after the gasification of the liquefied liquefied gas.
  • the frozen liquid gas is first divided into two partial streams, the first partial stream is heated with an external heat exchange medium, regasified, subsequently ignited and burned to form the additional heat exchange medium. Finally, the second partial stream of the branched, frozen liquid gas is back-gasified in heat exchange with the additionally formed heat exchange medium, so that the supply of the downstream, process engineering process with the required gaseous medium is ensured at all times.
  • this solution can be used for power supply processes (power plants, power distribution) in the steel or chemical industry, where flash liquefied gases such as LNG or LPG or industrial gases (eg N 2 , O 2 , NH 3 , etc.) evaporate and at the same time the requirement of process cooling exists.
  • flash liquefied gases such as LNG or LPG or industrial gases (eg N 2 , O 2 , NH 3 , etc.) evaporate and at the same time the requirement of process cooling exists.
  • a working medium of the process downstream of the regasification is used as the first heat exchange medium and this working medium is cooled in direct heat exchange with the deep-frozen liquefied gas.
  • a working medium of the process downstream of the regasification is used as the first heat exchange medium and this working medium is cooled in direct heat exchange with the deep-frozen liquefied gas.
  • a working medium of the process downstream of the regasification is used as the first heat exchange medium and this working medium is cooled in direct heat exchange with the deep-frozen liquefied gas.
  • a working medium of the process downstream of the regasification is used as the first heat exchange medium and this working medium is cooled in direct heat exchange with the deep-frozen liquefied gas.
  • each heat exchange medium is fed to a separate sub-step of the downstream process.
  • back-gasified, gaseous fuel is introduced into a gas turbine process, burned there to a flue gas and the latter relaxed for the purpose of labor.
  • the first heat exchange medium is also used in the gas turbine process to be compressed ambient air.
  • the second heat exchange medium is used as a heat sink of a steam turbine process connected to the gas turbine process.
  • This solution is particularly suitable for cases in which the cryogenic liquefied gas has a cooling potential, which is not fully usable by the cooling capacity of the first heat exchange medium.
  • the second heat exchange medium as a heat sink of the steam turbine process, the cooling effort provided for this partial process can be significantly reduced. Due to the greater number of circuit options, both the variability increases the total process as well as the number of possible users of the refrigeration potential of the frozen liquefied gas. Due to the division of the evaporation process in two process steps and thus at least partial, spatial separation of the evaporation process of the cryogenic liquefied gas from the cooling process of the sucked ambient air, the explosion protection of the gas turbine plant is improved.
  • a heat exchange medium is formed with the ice water, which advantageously ensures a high heat transfer during heat exchange with the ambient air to be compressed in the gas turbine process.
  • the turbulent flow of ice water ensures that the ice in the pipes of the intermediate cooling circuit does not settle.
  • coolants such as ammonia, freons, glycol, etc. can be dispensed with, which both increases the safety of the entire process and protects the environment.
  • the temperature of this water in heat exchange with the frozen liquid gas can be further lowered without risk of icing of the corresponding piping.
  • a much larger part of the refrigeration potential of the deep-frozen liquefied gas can be used for the cooling of the downstream process.
  • At least one of the sub-steps of the process downstream of the back-gasification of the deep-frozen liquefied gas is a working medium downstream thereof Process used.
  • This working fluid is previously cooled in heat exchange with a first heat exchange medium and the latter recirculated after this heat exchange for heat exchange with the cryogenic liquefied gas.
  • a gas turbine process Through the regasification of the liquid converted into the gaseous state of aggregate fuel is fed to a gas turbine process, there burned to a flue gas and the latter relaxed for the purpose of labor.
  • ambient air to be compressed is used as the working medium to be cooled in the gas turbine process. Due to the complete separation of the evaporation of the cryogenic liquefied gas from the cooling process of the sucked ambient air, the explosion protection of the gas turbine plant can be significantly improved in the event of leaks.
  • water is used as the first heat exchange medium.
  • the temperature of this water is lowered in heat exchange with the deep-frozen liquid gas to almost 0 ° C and the water is converted into ice water.
  • a turbulent flow is generated in the ice water.
  • the temperature of this water can be further lowered in heat exchange with the deep-frozen liquid gas without the risk of icing of the corresponding pipelines.
  • a much larger part of the refrigeration potential of the deep-frozen liquefied gas can likewise be used for the cooling of the downstream process.
  • the plant for processing a frozen liquefied gas 1 consists mainly of a main evaporator / air cooler 4 connected to a storage tank 3 via a main liquefied gas line 2.
  • a main gas line 5 connects downstream, which connects the treatment plant to a downstream facility 6 (FIG ).
  • This subordinate plant 6 has a process engineering process in which the deep-frozen liquefied gas 1 is used as fuel or otherwise in a physical and / or chemical process and at the same time there is the requirement of process cooling.
  • a gas turbine plant (FIG. 2) or a plant of the steel or chemical industry (not shown) may be connected to the treatment plant.
  • several storage tanks 3 can be connected via a common treatment plant with the system 6.
  • a first and a second partial line 13, 14 from.
  • a shut-off valve 15 a connected to a cooling circuit 16 auxiliary evaporator 17, a pressure control valve 18 and a burner 19 are successively formed.
  • the burner 19 is part of a arranged in the second sub-line 14 flooding evaporator 20, which a check valve 21 upstream and a check valve 22 are connected downstream.
  • the latter is formed in an auxiliary gas line 23, which connects downstream to the flooding evaporator 20 and opens with its other end in the main gas line 5.
  • A likewise connected to the system 6 suction line 27 for a first heat exchange medium 28, the main liquid gas line 2 in the main evaporator / air cooler 4 arranged crossing. In this case, 28 ambient air is used as the first heat exchange medium.
  • the heat exchange instead of the cross-flow principle by means of another heat exchange principle, for example in the countercurrent or DC principle or in wound heat exchangers can be realized (not shown).
  • the storage tank 3 is as a frozen liquid 1 using finding, for example, delivered with cooling tanker liquid natural gas (LNG) stored.
  • LNG cooling tanker liquid natural gas
  • liquid natural gas (LNG) 1 is conveyed by means of the feed pump 7 in the main LPG line 2.
  • the arranged there high pressure feed pump 8 increases the pressure to the required operating pressure and passes the liquid natural gas 1 with this operating pressure to the main evaporator / air cooler 4 on.
  • the check valve 9 arranged between the two pumps 7, 8 prevents backflow of the liquid natural gas 1 via the main liquid gas line 2 into the storage tank 3.
  • the unused amount of liquid natural gas 1 is returned to the storage tank 3 via the return line 10.
  • the orifice 11 arranged there causes a pressure reduction of the constantly flowing back minimum amount of cryogenic liquid natural gas 1, starting from the pressure level downstream of the high-pressure feed pump 8, to the required for safe return flow into the storage tank 3 pressure level.
  • the non-return valve 12 prevents a backflow of the deep-frozen liquid natural gas 1 from the reflux line 10 into the main LPG line 2.
  • the main evaporator / air cooler 4 there is a direct exchange of heat between the liquid natural gas 1 and ambient air 28 located in the suction line 27.
  • the evaporation energy required for regasification of the liquid natural gas 1 is obtained by heat exchange between the sucked-in ambient air 28 and the liquid natural gas 1 .
  • a gaseous fuel 29, in this case natural gas, which is burned in the plant 6 is formed.
  • a gas pressure corresponding to the requirements of Appendix 6 is set by means of the pressure reducing valve 26.
  • the serving as the working medium of the downstream system 6 and sucked by this ambient air 28 is thus simultaneously the first heat exchange medium of the treatment plant and the air cooler 4 is the main evaporator.
  • shut-off valves 24, 25 are closed, whereby the main evaporator / air cooler 4 is taken out of the treatment plant.
  • the plant 6 downstream of the treatment plant is designed as a gas turbine plant, with a compressor 35, a combustion chamber 36 and a gas turbine 37. Accordingly, the main gas line 5 adjoining the main evaporator / air cooler 4 is connected downstream to the combustion chamber 36, while the intake line 27 for the ambient air 28 opens into the compressor 35.
  • the gas turbine 37 and the compressor 35 are mounted on a common shaft 38, which at the same time also receives a generator 39 (FIG. 2).
  • the treatment plant has a second, parallel to the main evaporator / air cooler 4 arranged in the main gas line 5 evaporator 40.
  • the main liquid-gas line 2 branches off at a branch point 41 formed upstream of the second evaporator 40 into two liquid-gas sub-lines 42, 43.
  • the main evaporator / air cooler 4 is arranged essentially as already described above. Deviating from this, it has on the outlet side an intermediate line 44 to a junction 45 in the outlet side of the second evaporator 40 attacking main gas line 5.
  • the shut-off valve 24 of the main evaporator / air cooler 4 is in the first liquid-gas sub-line 42 and the shut-off valve 25 in the intermediate line 44 formed.
  • the second liquid part of the gas line 43 receives the second evaporator 40, wherein between this and the branching point 41, a shut-off valve 46 is arranged.
  • Another shut-off valve 47 is formed in the main gas line 5, between the second evaporator 40 and the confluence point 45 of the intermediate line 44.
  • the main gas line 5 has a check valve 48 in the region between the second evaporator 40 and the shut-off valve 47.
  • the second evaporator 40 is arranged in an intermediate cooling circuit 50 consisting of pipelines 49, which accommodates a recirculation pump 51, a high tank 52 and a second cooler 53 for a second heat exchange medium 54.
  • This second cooler 53 is part of a main cooling circuit 55 of a steam turbine 56 connected to the gas turbine plant 6.
  • the main cooling circuit 55 is equipped with a main cooler 57 and with a main cooling water pump 58. It is connected via the main cooler 57 with a cooling source 59, as such, a cooling tower, air cooling or sea or river water can be used.
  • the pipes 49 of the intermediate cooling circuit 50 are provided in their interior with a plurality of spirally formed ribs 60 (Fig. 3).
  • the sitting on a common shaft 61 with a generator 62 steam turbine 56 is connected both the steam inlet side via a main steam line 63 and the steam outlet side via an exhaust steam line 64 with a water-steam cycle, not shown, and the latter with the gas turbine 37.
  • a condenser 65 is arranged, to which a water line 66 with an integrated condensate pump 67 connects downstream.
  • the condenser 65 has a cooling circuit 68 opening into the main cooling circuit 55 and branching off from it (FIG. 2).
  • liquid natural gas (LNG) 1 in the processing plant to a gaseous fuel 29, ie, gasified to natural gas.
  • the natural gas 29 is burned in the combustion chamber 36 of the gas turbine plant 6.
  • flue gases 69 which are expanded in the gas turbine 37 and serve both their drive and, via the shaft 38, the drive of the compressor 35 and the generator 39.
  • the turbine exhaust gases are converted into live steam in a water-steam cycle, not shown, by means of known methods.
  • the on the main steam line 63 to the steam turbine 56 passed live steam is relaxed in this and thus drives the generator 62 at.
  • the condenser 65 the exhaust steam of the steam turbine 56 is condensed and the resulting water is recirculated into the water-steam cycle.
  • the regasification of the liquid natural gas 1 is carried out by a direct heat exchange with the sucked in by the compressor 35 ambient air 28 in the main evaporator / air cooler 4 of the treatment plant.
  • the energy required for evaporation is obtained by cooling the sucked ambient air 28 with the liquid natural gas 1.
  • the use of the clearly cooled ambient air 28 as the working medium of the compressor 35 improves its effectiveness and that of the entire gas turbine plant 6.
  • the ambient air 28 is thus simultaneously the first heat exchange medium of the treatment plant and the air cooler 2 becomes its main evaporator.
  • the available for the evaporation of the liquid natural gas 1 from the intake ambient air 28 energy varies depending on the season.
  • the required evaporation energy is taken from the main cooling circuit 55 under appropriate operating conditions.
  • the evaporation of the liquid natural gas 1 can take place both in the main evaporator / air cooler 4 and in the second evaporator 40, or even in one of the two.
  • both evaporation processes are used simultaneously.
  • a second heat exchange of the liquid natural gas 1 with a second heat exchange medium 54 takes place in the evaporator 40, parallel to the first heat exchange taking place in the main evaporator / air cooler 4.
  • the recirculation pump 51 in the high tank 52 conveys water as the second heat exchange medium 54 to the main cooling circuit 55 and subsequently back to the evaporator 40.
  • the high tank 52 is used in addition to the storage of the water 54 and for controlling the suction pressure of the recirculation pump 51 and also as Nivauaustechnischmaschines apparenter.
  • the temperature of the water 54 is lowered to almost 0 ° C, thereby converting part of the water 54 into ice, so that ice water 54 'is located in the intermediate cooling circuit 50 downstream of the evaporator 40.
  • the spiral ribs 60 create a turbulent flow of the ice water 54 'in the conduits 49 of the intermediate cooling circuit 50 so that no ice can settle inside the conduits 49 (FIG. 3).
  • this effect may also be mitigated by other passive means, such as appropriate inserts or anti-stick coatings, or by active agents, e.g. rotating vortex generators are supported (not shown).
  • active agents e.g. rotating vortex generators are supported (not shown).
  • the main cooler 57 and the cooling source 59 have the same function as the second cooler 53. They are used when the cooling potential of the liquid natural gas 1 is insufficient for the required cooling purposes or when the processing plant for the liquid natural gas 1 is not in operation and there is still a need for cooling.
  • the second evaporator 40 via the intermediate cooling circuit 50 with other users, for example, with the not shown water-steam cycle of the steam turbine 56 are connected.
  • the refrigeration potential of the liquid natural gas 1 can be used even better.
  • the plant 6 downstream of the treatment plant is likewise designed as a gas turbine plant cooperating with a steam turbine 56.
  • the compressor 35 is connected via the suction line 27 with an air cooler 71.
  • a main evaporator 72 for the LPG 1 is arranged in the main LPG line 2, a main evaporator 72 for the LPG 1 is arranged.
  • the main evaporator 72 is part of a cooling circuit 73, in which in addition to the high tank 52 and the recirculation pump 51 and the air cooler 71 of the compressor 35 of the gas turbine plant 6 is arranged in series.
  • a shut-off valve 74 is formed in the cooling circuit 73 and a control valve 75 is formed upstream of the air cooler 71 (FIG. 4).
  • an intermediate cooling circuit 76 is arranged, which connects the cooling circuit 73 with the main cooling circuit 55 designed analogously to the first exemplary embodiment.
  • the intermediate cooling circuit 76 has two shut-off valves 77, 78, with which the treatment plant can be separated from or connected to the main cooling circuit 55 depending on the specific operating situation.
  • a working medium of the process following the regasification of the liquid natural gas 1 is used as the heat sink of this downstream process.
  • the ambient air 28 ' is previously in heat exchange with cooled a first heat exchange medium 79 and the latter recirculated after this heat exchange for heat exchange with the frozen liquid natural gas 1.
  • the first heat exchange medium 79 water is used, which is converted in the heat exchange with the deep-frozen liquid natural gas 1 analogous to the first embodiment, partly in ice. According to this, ice water 79 'is located in the cooling circuit 73 downstream of the main evaporator 72.
  • the recovered in the regasification, gaseous fuel 29 is also fed to the combustion chamber 36 where it is burned to a flue gas 69 and the latter relaxed for the purpose of working in the gas turbine 37. All further method steps are analogous to the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (12)

  1. Procédé pour traiter un gaz liquéfié cryogénique destiné à un processus de la technique des procédés, se déroulant en plusieurs étapes partielles, disposé en aval, dans lequel le gaz liquéfié cryogénique (1) est re-gazéifié avant son exploitation dans le processus disposé en aval, dans l'échange de chaleur avec au moins un milieu échangeur de chaleur (28, 32, 54, 79), caractérisé en ce que la capacité frigorifique du gaz liquéfié cryogénique (1) en tant que puits thermique, est introduite au moins par l'intermédiaire d'un milieu échangeur de chaleur (28, 54, 79) dans au moins l'une des étapes partielles du processus disposé en aval et le gaz liquéfié cryogénique (1) est re-gazéifié dans le cas d'une indisponibilité du milieu échangeur de chaleur (28, 54, 79) avec un milieu échangeur de chaleur supplémentaire (32).
  2. Procédé selon la revendication 1, caractérisé en ce que le gaz liquéfié cryogénique (1) est d'abord divisé en deux courants partiels (30, 33), le premier courant partiel (30) est re-gazéifié avec un milieu échangeur de chaleur externe (31), puis enflammé et brûlé avec formation du milieu échangeur de chaleur supplémentaire (32), tandis que le deuxième courant partiel (33) du gaz liquéfié cryogénique (1) est re-gazéifié dans l'échange de chaleur avec le milieu échangeur de chaleur supplémentaire (32).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'un premier milieu échangeur de chaleur (28) est refroidi dans l'échange direct de chaleur avec le gaz liquéfié cryogénique (1) et un milieu de travail du processus disposé en aval est employé en tant que premier milieu échangeur de chaleur (28).
  4. Procédé selon la revendication 3, caractérisé en ce que, en outre, un deuxième échange de chaleur du gaz liquéfié cryogénique (1) se réalise en premier lieu, avec un deuxième milieu échangeur de chaleur (54) puis chaque milieu échangeur de chaleur (28, 54) est introduit dans une étape partielle séparée du processus disposé en aval.
  5. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'un milieu de travail (28') du processus disposé en aval est mis en oeuvre en tant que puits thermique de ladite au moins une étape partielle du processus disposé en aval, ce milieu de travail (28') est refroidi au préalable dans l'échange de chaleur avec un autre premier milieu échangeur de chaleur (79) et finalement, après cet échange de chaleur, il est recyclé pour l'échange de chaleur avec le gaz liquéfié cryogénique (1).
  6. Procédé selon la revendication 3, caractérisé en ce que le gaz liquéfié cryogénique (1) est re-gazéifié en donnant un combustible gazeux (29), ce combustible gazeux (29) est introduit dans un processus de turbine à gaz, il y est brûlé en un gaz de fumée (69) et finalement détendu dans le but de fournir du travail, de l'air ambiant à comprimer dans le processus de turbines à gaz étant employé en tant que premier milieu échangeur de chaleur (28).
  7. Procédé selon la revendication 4, caractérisé en ce que le gaz liquéfié cryogénique (1) est re-gazéifié en donnant un combustible gazeux (29), ce combustible gazeux (29) est introduit dans un processus de turbine à gaz, il y est brûlé en un gaz de fumée (69) et finalement détendu dans le but de fournir du travail, de l'air ambiant à comprimer dans le processus de turbines à gaz étant employé en tant que premier milieu échangeur de chaleur (28) et le deuxième milieu échangeur de chaleur (54) étant mis en oeuvre en tant que puits thermique d'un processus de turbine à vapeur relié à un processus de turbine à gaz.
  8. Procédé selon la revendication 5, caractérisé en ce que le gaz liquéfié cryogénique (1) est re-gazéifié en donnant un combustible gazeux (29), ce combustible gazeux (29) est introduit dans un processus de turbine à gaz, il y est brûlé en un gaz de fumée (69) et finalement détendu dans le but de fournir du travail, de l'air ambiant à comprimer dans le processus de turbines à gaz étant mis en oeuvre en tant que premier milieu échangeur de chaleur (28') refroidi par le premier milieu échangeur de chaleur (79).
  9. Procédé selon la revendication 4 ou 7, caractérisé en ce que de l'eau est employée en tant que deuxième milieu échangeur de chaleur (54), la température de cette eau (54) est abaissée à presque 0°C dans l'échange thermique avec le gaz liquéfié cryogénique (1), l'eau (54) est alors transformée en eau glacée (54') et un courant turbulent est produit simultanément dans l'eau glacée (54').
  10. Procédé selon la revendication 9, caractérisé en ce qu'un additif est ajouté à l'eau (54) et la température de cette eau (54) est abaissée davantage dans l'échange thermique avec le gaz liquéfié cryogénique (1).
  11. Procédé selon la revendication 5 ou 8, caractérisé en ce que de l'eau est employée en tant que premier milieu échangeur de chaleur (79), la température de cette eau (79) est abaissée à presque 0°C dans l'échange de chaleur avec le gaz liquéfié cryogénique (1), l'eau (79) est alors transformée en eau glacée (79') et un courant turbulent est produit en même temps dans l'eau glacée (79').
  12. Procédé selon la revendication 11, caractérisé en ce qu'un additif est ajouté à l'eau (79) et la température de cette eau (79) est abaissée davantage dans l'échange de chaleur avec le gaz liquéfié cryogénique (1).
EP98810177A 1997-04-24 1998-03-03 Procédé pour le traitement d'un gaz liquéfié cryogénique Expired - Lifetime EP0874188B2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19717267A DE19717267B4 (de) 1997-04-24 1997-04-24 Verfahren zur Aufbereitung von tiefgekühltem Flüssiggas
DE19717267 1997-04-24

Publications (4)

Publication Number Publication Date
EP0874188A2 EP0874188A2 (fr) 1998-10-28
EP0874188A3 EP0874188A3 (fr) 2001-09-26
EP0874188B1 true EP0874188B1 (fr) 2006-08-02
EP0874188B2 EP0874188B2 (fr) 2009-12-30

Family

ID=7827582

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98810177A Expired - Lifetime EP0874188B2 (fr) 1997-04-24 1998-03-03 Procédé pour le traitement d'un gaz liquéfié cryogénique

Country Status (4)

Country Link
US (1) US6079222A (fr)
EP (1) EP0874188B2 (fr)
JP (1) JPH10332090A (fr)
DE (2) DE19717267B4 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA02000764A (es) 1999-07-22 2002-07-22 Bechtel Corp Un metodo y aparato para vaporizar gas liquido en una planta de energia de ciclo combinado.
ES2331512T3 (es) * 2002-02-27 2010-01-07 Excelerate Energy Limited Partnership Metodo y aparato para la regasificacion de lng a bordo de un buque transportador.
JP4261582B2 (ja) 2003-08-12 2009-04-30 エクセルレイト・エナジー・リミテッド・パートナーシップ Lng搬送体に関する交流推進設備を使用した船上での再ガス化
DE102004004379A1 (de) * 2004-01-29 2005-08-11 Bayerische Motoren Werke Ag Kryotankanlage, insbesondere für ein Kraftfahrzeug
US20060260330A1 (en) * 2005-05-19 2006-11-23 Rosetta Martin J Air vaporizor
CN100402918C (zh) * 2006-07-31 2008-07-16 西安交通大学 加气站中液化天然气提压气化过程综合用能装置
WO2009070379A1 (fr) * 2007-11-30 2009-06-04 Exxonmobil Upstream Research Company Appareil de regazéification de gnl intégré
FR2931213A1 (fr) * 2008-05-16 2009-11-20 Air Liquide Dispositif et procede de pompage d'un fluide cryogenique
DK2419322T3 (en) * 2009-04-17 2015-09-28 Excelerate Energy Ltd Partnership The transfer of LNG between ships at a dock
US20100281864A1 (en) * 2009-05-06 2010-11-11 General Electric Company Organic rankine cycle system and method
KR101239352B1 (ko) * 2010-02-24 2013-03-06 삼성중공업 주식회사 부유식 lng 충전소
AU2011255490B2 (en) 2010-05-20 2015-07-23 Excelerate Energy Limited Partnership Systems and methods for treatment of LNG cargo tanks
US8978769B2 (en) * 2011-05-12 2015-03-17 Richard John Moore Offshore hydrocarbon cooling system
CN104884766B (zh) * 2012-12-28 2017-12-15 通用电气公司 涡轮发动机组件及双燃料飞行器系统
FR3043165B1 (fr) * 2015-10-29 2018-04-13 CRYODIRECT Limited Dispositif de transport d'un gaz liquefie et procede de transfert de ce gaz a partir de ce dispositif
EP4350138A2 (fr) * 2020-09-30 2024-04-10 Rolls-Royce plc Moteur à turbine à gaz à cycle complexe
US11761381B2 (en) * 2021-08-14 2023-09-19 Pratt & Whitney Canada Corp. Gas turbine engine comprising liquid hydrogen evaporators and heaters
CN114838539B (zh) * 2022-04-27 2023-10-10 中电诚达医药工程设计(河北)有限公司 一种用于严寒地区的循环冷冻液切换供应装置及使用方法
GB202211357D0 (en) * 2022-08-04 2022-09-21 Rolls Royce Plc Hydrogen fuel delivery system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1988638U (de) * 1964-10-28 1968-07-04 Max Planck Gesellschaft Nachfuellvorrichtung fuer tiefsiedende fluessigkeiten.
US3720057A (en) * 1971-04-15 1973-03-13 Black Sivalls & Bryson Inc Method of continuously vaporizing and superheating liquefied cryogenic fluid
US3726085A (en) * 1971-06-07 1973-04-10 Back Sivalls & Bryson Inc Preventing thermal pollution of ambient water used as a process cooling medium
DE2207268A1 (de) 1972-02-16 1973-09-06 Friedrich Scharr Ohg Fluessiggasverdampfer
CH584837A5 (fr) 1974-11-22 1977-02-15 Sulzer Ag
DE2716663C2 (de) * 1977-04-15 1983-12-15 Messer Griesheim Gmbh, 6000 Frankfurt Vorrichtung zum Abtrennen des Gases, welches bei der Förderung von tiefsiedenden verflüssigten Gasen verdampft
EP0001392A1 (fr) * 1977-09-24 1979-04-18 Messer Griesheim Gmbh Séparateur des vapeurs émanant des gaz liquéfiés à basse température, lors de leur transfert
GB2052717B (en) * 1979-06-26 1983-08-10 British Gas Corp Storage and transport of liquefiable gases
US4329842A (en) * 1980-07-02 1982-05-18 Hans D. Linhardt Power conversion system utilizing reversible energy of liquefied natural gas
DE3836061A1 (de) * 1987-12-21 1989-06-29 Linde Ag Verfahren zum verdampfen von fluessigem erdgas
SE464529B (sv) * 1988-10-31 1991-05-06 Gunnar Haeggstroem Drivanordning foer motorfordon, saerskilt bussar
CA2103430A1 (fr) 1992-12-30 1994-07-01 Leroy O. Tomlinson Methode d'utilisation du gaz naturel liquefie comme dissipateur de chaleur dans le refroidisseur d'admission d'une turbine a gaz
DE4326138C2 (de) * 1993-08-04 1996-04-11 Messer Griesheim Gmbh Vorrichtung zur Entnahme eines unter Druck stehenden flüssigen Gasstromes aus einem Druckbehälter
WO1995016105A1 (fr) * 1993-12-10 1995-06-15 Cabot Corporation Centrale a cycles combines amelioree, alimentee par gaz naturel liquefie
CN1112505C (zh) * 1995-06-01 2003-06-25 特雷克特贝尔Lng北美公司 液化天然气作燃料的混合循环发电装置及液化天然气作燃料的燃气轮机

Also Published As

Publication number Publication date
US6079222A (en) 2000-06-27
EP0874188B2 (fr) 2009-12-30
JPH10332090A (ja) 1998-12-15
DE19717267A1 (de) 1998-10-29
DE59813668D1 (de) 2006-09-14
EP0874188A3 (fr) 2001-09-26
EP0874188A2 (fr) 1998-10-28
DE19717267B4 (de) 2008-08-14

Similar Documents

Publication Publication Date Title
EP0874188B1 (fr) Procédé pour le traitement d'un gaz liquéfié cryogénique
DE2743918C3 (de) Offene Gasturbinenanlage, mit der ein Dampfkreislauf kombiniert ist
EP1483483B1 (fr) Traitement d'energie thermique
DE10041413B4 (de) Verfahren zum Betrieb einer Kraftwerksanlage
DE2035488C3 (de) Verfahren zum Verdampfen von flüssigem Erdgas
DE3202279A1 (de) Gasuebergabestation
EP2067940B1 (fr) Procédé de fonctionnement d'une centrale à cycle combiné, et centrale à cycle combiné pour la mise en oeuvre dudit procédé
EP0566868A1 (fr) Procédé pour utilisation d'une installation pour turbine à gaz
DE2937025A1 (de) Vorrichtung zur abfuehrung von waerme aus abdampf
WO2007071616A2 (fr) Centrale electrique
EP0331627A1 (fr) Installation et procédé pour le chargement et le déchargement d'un réservois à gaz de façon périodique
EP1892457B1 (fr) Procédé et dispositif destinés à l'enregistrement de gaz combustible, en particulier de gaz naturel
DE3212205A1 (de) Anlage fuer die ausnutzung von abwaerme mit niedrigem temperaturniveau einer gas-pipeline-kompressorstation
DE10155508C2 (de) Verfahren und Vorrichtung zur Erzeugung von elektrischer Energie
WO2019158230A1 (fr) Regazéification de gnl
DE1426907A1 (de) Dampfkraftanlage
DE102007022950A1 (de) Verfahren zum Transport von Wärmeenergie und Vorrichtungen zur Durchführung eines solchen Verfahrens
DE102020000131B4 (de) Verfahren zur CO2-Verflüssigung und -Speicherung in einem CO2-Kraftwerk
EP3775506B1 (fr) Installation de production d'électricité à regazéification de gaz naturel
DE102011075557A1 (de) Leitungskreis und Verfahren zum Betreiben eines Leitungskreises zur Abwärmenutzung einer Brennkraftmaschine
WO2021089204A1 (fr) Régulation de pression pour cycles de brayton fermés
DE2953840A1 (en) Steam-and-gas turbine plant
DE1601654A1 (de) Vorrichtung zum Schutz einer Gasturbinenanlage bei ploetzlicher Lastabschaltung
DE19719376C2 (de) Verfahren und Vorrichtung zum Anwärmen eines aus einem Speicherbehälter abgezogenen verflüssigten Gases oder Gasgemisches
DE2857665A1 (de) A method for running a cooling-heating pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

17P Request for examination filed

Effective date: 20020315

AKX Designation fees paid

Free format text: DE FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060802

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59813668

Country of ref document: DE

Date of ref document: 20060914

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060924

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT ABT. CT IP PG

Effective date: 20070419

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AKTIENGESELLSCHAFT ABT. CT IP PG

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20091230

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB IT NL

NLR2 Nl: decision of opposition

Effective date: 20091230

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100322

Year of fee payment: 13

Ref country code: FR

Payment date: 20100318

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100208

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100308

Year of fee payment: 13

Ref country code: DE

Payment date: 20100331

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20111001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59813668

Country of ref document: DE

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110303

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110303