EP0859128B1 - Turbinen-Laufradscheibe mit Kühlluftkanälen - Google Patents

Turbinen-Laufradscheibe mit Kühlluftkanälen Download PDF

Info

Publication number
EP0859128B1
EP0859128B1 EP98101046A EP98101046A EP0859128B1 EP 0859128 B1 EP0859128 B1 EP 0859128B1 EP 98101046 A EP98101046 A EP 98101046A EP 98101046 A EP98101046 A EP 98101046A EP 0859128 B1 EP0859128 B1 EP 0859128B1
Authority
EP
European Patent Office
Prior art keywords
cooling air
disc
disk
turbine
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98101046A
Other languages
English (en)
French (fr)
Other versions
EP0859128A1 (de
Inventor
Thomas Schillinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
BMW Rolls Royce GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BMW Rolls Royce GmbH filed Critical BMW Rolls Royce GmbH
Publication of EP0859128A1 publication Critical patent/EP0859128A1/de
Application granted granted Critical
Publication of EP0859128B1 publication Critical patent/EP0859128B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • F01D5/087Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor in the radial passages of the rotor disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3007Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type
    • F01D5/3015Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type with side plates

Definitions

  • the invention relates to a turbine impeller disk with cooling air channels extending from the disk end face, which open into the disk grooves in which air-cooled turbine blades are inserted.
  • reference is made, for example, to DE 29 47 521 A1 and DE 34 44 586 A1.
  • cooling air can also be supplied to a second turbine impeller disk, which is arranged downstream of a first impeller disk, in that part of the cooling air flow entering the disk grooves of the first impeller disk is discharged via these disk grooves virtually backwards into the space between the first and second impeller disks becomes.
  • appropriate passage openings can be provided in the so-called closing plates, which secure the blades inserted into the disk grooves.
  • a cooling air duct opening into the groove bottom of the disk groove cannot be made arbitrarily large with regard to its cross-sectional area, since the spatial fields of the individual stress concentrations for the circumferential stresses overlap in this opening area and can cause greatly increased stress amplitudes locally, which is undesirable with regard to the operational fatigue strength is.
  • the object of the present invention is to provide a remedial measure for the problems described.
  • the solution to this problem is characterized in that in each disk groove two cooling air ducts each emanating from the same disk face end, which are arranged essentially mirror-inverted to and inclined relative to a plane of symmetry leading in the radial direction from the disk axis to the center of the disk groove.
  • cooling air ducts instead of a single cooling air duct, two such cooling air ducts are now provided for each disk groove, through which a larger cooling air flow can of course then be guided.
  • a single duct with the same total flow cross-section instead of these two cooling air ducts, but then inadmissibly high voltage peaks would occur in the region of its mouth opening in the bottom of the disc groove, as will be explained in more detail later.
  • the impeller disk is only as small as possible Dimensions weakened.
  • the cooling air ducts causing a material weakening are in the best possible way and are evenly distributed over the entire pane structure.
  • FIG. 1 a partial longitudinal section being shown in FIG. 1 and a partial view of a preferred exemplary embodiment of a turbine impeller disk according to the invention in FIG. 2.
  • FIG. 3 is used to explain the physical relationships and shows in a diagram the stress concentration (plotted on the ordinate) as a function of the dimensionless hole spacing P / D plotted on the abscissa for a row arrangement of holes with the diameter D, by the dimension P from each other are spaced.
  • the reference numeral 1 denotes an impeller disk, in particular a gas turbine, which, as usual, has on its outer circumference a plurality of disk grooves 2 each having a fir tree profile, in each of which a turbine blade 3 is inserted. Every turbine blade 3 is air-cooled, ie cooling turbine ducts (not shown) are provided in each turbine blade 3, into which cooling air flow can enter from the disk groove 2.
  • this cooling air flow passes through at least two cooling air channels 4, which start from the face of the disk 1a - the corresponding opening is designated by reference number 7b - and are guided inside the disk to the respective disk groove 2, where they open into the groove base 2a (mouth opening 7a).
  • at least two cooling air ducts 4, which start from the same front face 1a and each have a certain cross-sectional area Q, can be used to bring about a larger amount of cooling air flow than a single cooling air duct 4 with the same cross-sectional area Q, as is known and common in the prior art.
  • FIG. 3 First of all, the view of a component 10 is shown, in which a row of holes 11, each having a diameter D, is provided. The individual holes 11 are spaced apart by a dimension P. The main direction of stress along the row of holes 11 is shown by the arrow 12. 3, the stress concentration factor is now plotted on the ordinate and on the abscissa the dimensionless hole spacing P / D.
  • the stress concentration factor also decreases as the dimensionless hole spacing P / D decreases.
  • the parameter P / D according to FIG. 3 is reduced to 0.707 times its original value, so that the stress concentration factor also decreases accordingly.
  • the absolute peak stress resulting from the (potential theoretical) superposition of the individual stress fields around the bore and groove can be reduced to a considerable extent, which is desirable in view of the fatigue strength of a turbine disk.
  • cooling air duct arrangement which is favorable with regard to the size of the achievable cooling air flow and with regard to the weakening of the impeller disk 1 by the cooling air ducts 4, if the orifice openings 7a of the two cooling air ducts 4 are essentially in one in each disc groove 2 common cutting plane perpendicular to the disc axis lie next to each other. It is advantageous if, as the partial view of the front face 1a of FIG. 2 shows, the two cooling air ducts 4 for each disk groove 2 are essentially mirror images and inclined relative to one in the radial direction from the disk axis (not shown) to the center of the disk groove 2 leading plane of symmetry 5 are provided.
  • the longitudinal axes of all cooling air ducts 4 can be linear or bent in any way, and the cross section of these cooling air ducts can be circular, elliptical or otherwise suitably shaped.
  • part of the cooling air flow introduced into the disc grooves 2 of this impeller disc can be used to supply cooling air to a second impeller disc (not shown) connected downstream of this first impeller disc 1.
  • Corresponding passage openings 9 can be provided in the area of the disk grooves 2 for a partial cooling air flow in the closing plates 6 which fix the turbine blades 3 in the impeller disk 1, each of which has a channel 9 ′ provided in the foot of the turbine blade and having a channel which adjoins the cooling air channel 4, provided in the blade root cooling air duct 4 '.
  • the doubling or multiplication of the cooling air ducts 4 opening into a disk groove 2 shown here means that a significantly larger cooling air flow can be conducted to the foot of each turbine blade 3 compared to the known prior art.
  • the plurality of orifices 7a of the plurality of cooling air channels 4 lead to significantly lower mechanical loads on the impeller disk 1 than would a single cooling air channel with a correspondingly large cross-sectional area and thus a correspondingly enlarged orifice opening 7a.

Description

  • Die Erfindung betrifft eine Turbinen-Laufradscheibe mit von der Scheibenstirnseite ausgehenden Kühlluftkanälen, die in den Scheibennuten, in welche luftgekühlte Turbinenschaufeln eingesetzt sind, münden. Zum technischen Umfeld wird beispielshalber auf die DE 29 47 521 A1 und die DE 34 44 586 A1 verwiesen.
  • Bei Verwendung gekühlter Turbinenschaufeln, insbesondere in Gasturbinen, hat sich die Kühlluftzufuhr über Kanäle in den Turbinen-Laufradscheiben grundsätzlich bewährt. Auch kann auf diese Weise einer zweiten Turbinen-Laufradscheibe, die einer ersten Laufradscheibe nachgeordnet ist, Kühlluft zugeführt werden, indem ein Teil des in die Scheibennuten der ersten Laufradscheibe gelangenden Kühlluftstromes über diese Scheibennuten quasi nach hinten in den Zwischenraum zwischen der ersten und zweiten Laufradscheibe abgeführt wird. Hierzu können in den sog. Schließplatten, welche die in die Scheibennuten eingesetzten Schaufeln sichern, entsprechende Durchtrittsöffnungen vorgesehen sein.
  • Es kann problematisch sein, einen ausreichend großen Kühlluftstrom in die jeweilige Scheibennut zu fördern, insbesondere wenn ein Teil dieses Kühlluftstromes auch noch für die Kühlung einer nachfolgenden Turbinen-Laufradscheibe verwendet werden soll. Ein im Nutengrund der Scheibennut mündender Kühlluftkanal kann nämlich hinsichtlich seiner Querschnittsfläche nicht beliebig groß gestaltet werden, da sich in diesem Mündungsbereich die räumlichen Felder der einzelnen Spannungskonzentrationen für die Umfangsspannungen überlagern und örtlich stark überhöhte Spannungsamplituden hervorrufen können, was im Hinblick auf die Betriebs-Dauerfestigkeit unerwünscht ist.
  • Eine Abhilfemaßnahme für diese geschilderte Problematik aufzuzeigen, ist Aufgabe der vorliegenden Erfindung. Die Lösung dieser Aufgabe ist dadurch gekennzeichnet, daß in jeder Scheibennut zwei jeweils von der gleichen Scheibenstirnseite ausgehende Kühlluftkanäle münden, die im wesentlichen spiegelbildlich zu sowie geneigt gegenüber einer in radialer Richtung von der Scheibenachse zur Mitte der Scheibennut führenden Symmetrieebene angeordnet sind.
  • Erfindungsgemäß sind anstelle eines einzigen Kühlluftkanales für jede Scheibennut nun zwei derartige Kühlluftkanäle vorgesehen, durch welche dann selbstverständlich ein betragsmäßig größerer Kühlluftstrom geführt werden kann. Alternativ wäre es grundsätzlich zwar auch möglich, anstelle dieser beiden Kühlluftkanäle einen einzigen Kanal mit gleichem Gesamt-Strömungsquerschnitt vorzusehen, jedoch würden dann insbesondere im Bereich von dessen Mündungsöffnung im Boden der Scheibennut unzulässig hohe Spannungsspitzen auftreten, wie später noch näher erläutert wird. Mit der ebenfalls in Anspruch 1 angegebenen Anordnung der beiden Kühlluftkanäle je Scheibennut wird dabei die Laufradscheibe lediglich im geringstmöglichen Maße geschwächt. Hierdurch sind nämlich die eine Materialschwächung verursachenden Kühlluftkanäle bestmöglichst und dabei gleichmäßig über der gesamten Scheibenstruktur verteilt.
  • Zur näheren Erläuterung der Erfindung wird auf die beigefügten Prinzipskizzen verwiesen, wobei in Fig. 1 ein Teil-Längsschnitt und in Fig. 2 eine Teil-Ansicht eines bevorzugten Ausführungsbeispiels einer erfindungsgemäßen Turbinen-Laufradscheibe gezeigt ist.
    Fig. 3 dient der Erläuterung der physikalischen Zusammenhänge und zeigt in einem Diagramm die Spannungskonzentration (aufgetragen auf der Ordinate) als Funktion des auf der Abszisse aufgetragenen dimensionslosen Lochabstandes P/D bei einer Reihenanordnung von Löchern mit dem Durchmesser D, die um das Maß P voneinander beabstandet sind.
  • In den Fig. 1, 2 ist mit der Bezugsziffer 1 eine Laufradscheibe insbesondere einer Gasturbine bezeichnet, die an ihrem Außenumfang wie üblich eine Vielzahl von jeweils ein Tannenbaumprofil aufweisenden Scheibennuten 2 besitzt, in welche jeweils eine Turbinenschaufel 3 eingesetzt ist. Jede Turbinenschaufel 3 ist luftgekühlt, d. h. in jeder Turbinenschaufel 3 sind nicht dargestellte Kühlluftkanäle vorgesehen, in welche von der Scheibennut 2 aus ein Kühlluftstrom eintreten kann.
  • In jede Scheibennut 2 gelangt dieser Kühlluftstrom über zumindest zwei Kühlluftkanäle 4, die von der Scheibenstirnseite 1a ausgehen - die entsprechende Mündungsöffnung ist mit der Bezugsziffer 7b bezeichnet - und im Inneren der Scheibe zur jeweiligen Scheibennut 2 geführt sind, wo sie im Nutengrund 2a münden ( Mündungsöffnung 7a ). Es liegt auf der Hand, daß über zumindest zwei Kühlluftkanäle 4, die von der gleichen Scheibenstirnseite 1a ausgehen, und die jeweils eine gewisse Querschnittsfläche Q besitzen, ein betragsmäßig größerer Kühlluftstrom herangeführt werden kann, als über einen einzigen Kühlluftkanal 4 mit der gleichen Querschnittsfläche Q, wie dies im Stand der Technik bekannt und üblich ist. Zwar wäre es grundsätzlich auch möglich, einen einzigen Kühlluftkanal 4 mit einer dementsprechend größeren Querschnittsfläche (beispielsweise 2 x Q) vorzusehen, jedoch würde die dementsprechend größere Mündungsöffnung 7a eines derart großen Kühlluftkanales im Nutengrund 2a erhebliche Spannungsspitzen hervorrufen, die größer sind als die von den Mündungsöffnungen 7a zweier dementsprechend kleinerer Kühlluftkanäle 4 hervorgerufenen Spannungsspitzen.
  • Die entsprechenden physikalisch-theoretischen Zusammenhänge seien kurz anahnd von Fig. 3 erläutert:
    Gezeigt ist zunächst die Aufsicht auf ein Bauteil 10, in welchem eine Reihe von Löchern 11, die jeweils den Durchmesser D besitzen, vorgesehen ist. Die einzelnen Löcher 11 sind dabei um daß Maß P voneinander beabstandet. Die Hauptspannungsrichtung längs der Reihe von Löchern 11 ist durch den Pfeil 12 dargestellt. Im Diagramm nach Fig. 3 ist nun der Spannungskonzentrationsfaktor auf der Ordinate und auf der Abszisse der dimensionslose Lochabstand P/D aufgetragen.
  • Man erkennt, daß der Spannungskonzentrationsfaktor mit abnehmendem dimensionslosem Lochabstand P/D ebenfalls geringer wird.
    Durch die erfindungsgemäße Aufteilung der Querschnittsfläche Q auf die doppelte Anzahl von Bohrungen 7a in den Fig. 1,2 reduziert sich der Parameter P/D gemäß Fig. 3 auf das 0,707-fache seine ursprünglichen Wertes, so daß hierdurch auch der Spannungskonzentrationsfaktor entsprechend abnimmt.
    Zusätzlich kann aus der örtlichen Verlagerung der Spannungsspitzen Nutzen gezogen werden, da die Orte der relativen Spannungsmaxima der Luftlöcher und der Scheibennuten in Umfangsrichtung nun nicht mehr zusammenfallen.
    Somit kann die sich aus der (potentialtheoretischen) Superpositionierung der einzelnen Spannungsfelder um Bohrung und Nut ergebende absolute Spitzenspannung in erheblichem Umfang reduziert werden, was im Hinblick auf die Dauerfestigkeit einer Turbinenlaufscheibe anzustreben ist.
  • Zurückkommend auf die konstruktive Ausführung der Erfindung ergibt sich eine hinsichtlich der Größe des erzielbaren Kühlluftstromes sowie im Hinblick auf die Schwächung der Laufradscheibe 1 durch die Kühlluftkanäle 4 günstige Kühlluftkanal-Anordnung, wenn in jeder Scheibennut 2 die Mündungsöffnungen 7a der beiden Kühlluftkanäle 4 im wesentlichen in einer gemeinsamen zur Scheibenachse senkrechten Schnittebene nebeneinander liegen. Dabei ist es vorteilhaft, wenn - wie die Teil-Ansicht auf die Scheibenstirnseite 1a in Fig. 2 zeigt - für jede Scheibennut 2 die beiden Kühlluftkanäle 4 im wesentlichen spiegelbildlich zu sowie geneigt gegenüber einer in radialer Richtung von der nicht gezeigten Scheibenachse zur Mitte der Scheibennut 2 führenden Symmetrieebene 5 vorgesehen sind. Dabei können die Längsachsen sämtlicher Kühlluftkanäle 4 linear oder beliebig gebogen verlaufen, ebenso kann der Querschnitt dieser Kühlluftkanäle kreisförmig oder elliptisch oder sonstwie geeignet geformt sein.
  • Wie bereits eingangs erwähnt, kann ein Teil des in die Scheibennuten 2 dieser Laufradscheibe eingebrachten Kühlluftstromes dazu genutzt werden, eine dieser ersten Laufradscheibe 1 nachgeschaltete zweite Laufradscheibe (nicht gezeigt) mit Kühlluft zu versorgen. In den die Turbinenschaufeln 3 in der Laufradscheibe 1 fixierenden Schließplatten 6 können im Bereich der Scheibennuten 2 dementsprechende Durchtrittsöffnungen 9 für einen Teil-Kühlluftstrom vorgesehen sein, die jeweils über einen im Fuß der Turbinenschaufel vorgesehenen Kanal 9' mit einem sich an den Kühlluftkanal 4 anschließenden, im Schaufelfuß vorgesehenen Kühlluftkanal 4' verbunden sind.
  • Allgemein kann somit durch die hier gezeigte Verdopplung bzw. Vervielfachung der in einer Scheibennut 2 mündenden Kühlluftkanäle 4 gegenüber dem bekannten Stand der Technik ein deutlich größerer Kühlluftstrom zum Fuß jeder Turbinenschaufel 3 geführt werden. Dabei führen die mehreren Mündungsöffnungen 7a der mehreren Kühlluftkanäle 4 zu deutlich geringeren mechanischen Belastungen der Laufradscheibe 1, als dies ein einziger Kühlluftkanal mit einer dementsprechend großen Querschnittsfläche und somit einer dementsprechend vergrößerten Mündungsöffnung 7a verursachen würde. Selbstverständlich sind dabei eine Vielzahl von Abwandlungen insbesondere konstruktiver Art vom gezeigten Ausführungsbeispiel möglich, ohne den Inhalt der Patentansprüche zu verlassen.

Claims (2)

  1. Turbinen-Laufradscheibe mit von der Scheibenstirnseite (1a) ausgehenden Kühlluftkanälen (4), die in den Scheibennuten (2), in welche luftgekühlte Turbinenschaufeln (3) eingesetzt sind, münden,
    dadurch gekennzeichnet, daß in jeder Scheibennut (2) zwei jeweils von der gleichen Scheibenstirnseite (1a) ausgehende Kühlluftkanäle (4) münden, die im wesentlichen spiegelbildlich zu sowie geneigt gegenüber einer in radialer Richtung von der Scheibenachse (8) zur Mitte der Scheibennut (2) führenden Symmetrieebene (5) angeordnet sind.
  2. Turbinen-Laufradscheibe nach Anspruch 1
    dadurch gekennzeichnet, daß die Mündungsöffnungen (7a) der beiden Kühlluftkanäle (4) in jeder Scheibennut (2) im wesentlichen in einer gemeinsamen zur Scheibenachse (8) senkrechten Schnittebene nebeneinander liegen.
EP98101046A 1997-02-13 1998-01-22 Turbinen-Laufradscheibe mit Kühlluftkanälen Expired - Lifetime EP0859128B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19705442 1997-02-13
DE19705442A DE19705442A1 (de) 1997-02-13 1997-02-13 Turbinen-Laufradscheibe mit Kühlluftkanälen

Publications (2)

Publication Number Publication Date
EP0859128A1 EP0859128A1 (de) 1998-08-19
EP0859128B1 true EP0859128B1 (de) 2000-04-05

Family

ID=7820090

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98101046A Expired - Lifetime EP0859128B1 (de) 1997-02-13 1998-01-22 Turbinen-Laufradscheibe mit Kühlluftkanälen

Country Status (3)

Country Link
US (1) US6022190A (de)
EP (1) EP0859128B1 (de)
DE (2) DE19705442A1 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19854908A1 (de) 1998-11-27 2000-05-31 Rolls Royce Deutschland Schaufel und Laufscheibe einer Strömungsmaschine
US6428270B1 (en) * 2000-09-15 2002-08-06 General Electric Company Stage 3 bucket shank bypass holes and related method
US7465149B2 (en) * 2006-03-14 2008-12-16 Rolls-Royce Plc Turbine engine cooling
EP1892375A1 (de) * 2006-08-23 2008-02-27 Siemens Aktiengesellschaft Rotorscheibe eines Turbinentriebwerks mit Kühlungskanal
US20090110561A1 (en) * 2007-10-29 2009-04-30 Honeywell International, Inc. Turbine engine components, turbine engine assemblies, and methods of manufacturing turbine engine components
JP4939461B2 (ja) * 2008-02-27 2012-05-23 三菱重工業株式会社 タービンディスク及びガスタービン
JP4981709B2 (ja) * 2008-02-28 2012-07-25 三菱重工業株式会社 ガスタービン及びディスク並びにディスクの径方向通路形成方法
DE102009007468A1 (de) * 2009-02-04 2010-08-19 Mtu Aero Engines Gmbh Integral beschaufelte Rotorscheibe für eine Turbine
US8087871B2 (en) * 2009-05-28 2012-01-03 General Electric Company Turbomachine compressor wheel member
GB201000982D0 (en) 2010-01-22 2010-03-10 Rolls Royce Plc A rotor disc
US8591180B2 (en) * 2010-10-12 2013-11-26 General Electric Company Steam turbine nozzle assembly having flush apertures
FR2969209B1 (fr) * 2010-12-21 2019-06-21 Safran Aircraft Engines Etage de turbine pour turbomachine d'aeronef, presentant une etancheite amelioree entre le flasque aval et les aubes de la turbine
FR2987864B1 (fr) * 2012-03-12 2017-06-16 Snecma Turbomachine a disques de rotor et moyen de guidage radial d’air, et compresseur et/ou turbine avec de tels disques et moyen de guidage.
US10683756B2 (en) 2016-02-03 2020-06-16 Dresser-Rand Company System and method for cooling a fluidized catalytic cracking expander
US10519857B2 (en) 2016-10-24 2019-12-31 Rolls-Royce Corporation Disk with lattice features adapted for use in gas turbine engines
US10458242B2 (en) * 2016-10-25 2019-10-29 Pratt & Whitney Canada Corp. Rotor disc with passages
DE102016124806A1 (de) * 2016-12-19 2018-06-21 Rolls-Royce Deutschland Ltd & Co Kg Turbinen-Laufschaufelanordnung für eine Gasturbine und Verfahren zum Bereitstellen von Dichtluft in einer Turbinen-Laufschaufelanordnung
US10415403B2 (en) 2017-01-13 2019-09-17 Rolls-Royce North American Technologies Inc. Cooled blisk for gas turbine engine
US10247015B2 (en) 2017-01-13 2019-04-02 Rolls-Royce Corporation Cooled blisk with dual wall blades for gas turbine engine
US10934865B2 (en) 2017-01-13 2021-03-02 Rolls-Royce Corporation Cooled single walled blisk for gas turbine engine
DE102017109952A1 (de) * 2017-05-09 2018-11-15 Rolls-Royce Deutschland Ltd & Co Kg Rotorvorrichtung einer Strömungsmaschine
CA3000376A1 (en) * 2017-05-23 2018-11-23 Rolls-Royce Corporation Turbine shroud assembly having ceramic matrix composite track segments with metallic attachment features
KR102028804B1 (ko) * 2017-10-19 2019-10-04 두산중공업 주식회사 가스 터빈 디스크
US10718218B2 (en) 2018-03-05 2020-07-21 Rolls-Royce North American Technologies Inc. Turbine blisk with airfoil and rim cooling
CN109236378A (zh) * 2018-09-11 2019-01-18 上海发电设备成套设计研究院有限责任公司 一种内部蒸汽冷却的高参数汽轮机的单流高温转子
KR102141626B1 (ko) * 2018-10-01 2020-08-05 두산중공업 주식회사 터빈장치
JP7328794B2 (ja) * 2019-05-24 2023-08-17 三菱重工業株式会社 ロータディスク、ロータ軸、タービンロータ、及びガスタービン
US11506060B1 (en) 2021-07-15 2022-11-22 Honeywell International Inc. Radial turbine rotor for gas turbine engine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849025A (en) * 1973-03-28 1974-11-19 Gen Electric Serpentine cooling channel construction for open-circuit liquid cooled turbine buckets
US4275990A (en) * 1977-12-17 1981-06-30 Rolls-Royce Limited Disc channel for cooling rotor blade roots
US4212587A (en) * 1978-05-30 1980-07-15 General Electric Company Cooling system for a gas turbine using V-shaped notch weirs
FR2552817B1 (fr) * 1978-11-27 1988-02-12 Snecma Perfectionnements au refroidissement des rotors de turbines
US4344738A (en) * 1979-12-17 1982-08-17 United Technologies Corporation Rotor disk structure
US4626169A (en) * 1983-12-13 1986-12-02 United Technologies Corporation Seal means for a blade attachment slot of a rotor assembly
CA1209482A (en) 1983-12-22 1986-08-12 Douglas L. Kisling Two stage rotor assembly with improved coolant flow
GB2251897B (en) * 1991-01-15 1994-11-30 Rolls Royce Plc A rotor
US5816777A (en) * 1991-11-29 1998-10-06 United Technologies Corporation Turbine blade cooling
US5318404A (en) * 1992-12-30 1994-06-07 General Electric Company Steam transfer arrangement for turbine bucket cooling
DE4428207A1 (de) * 1994-08-09 1996-02-15 Bmw Rolls Royce Gmbh Turbinen-Laufradscheibe mit gekrümmtem Kühlluftkanal sowie Herstellverfahren hierfür
US5593274A (en) * 1995-03-31 1997-01-14 General Electric Co. Closed or open circuit cooling of turbine rotor components
JP3448145B2 (ja) * 1995-11-24 2003-09-16 三菱重工業株式会社 熱回収式ガスタービンロータ
US5800124A (en) * 1996-04-12 1998-09-01 United Technologies Corporation Cooled rotor assembly for a turbine engine
US5755556A (en) * 1996-05-17 1998-05-26 Westinghouse Electric Corporation Turbomachine rotor with improved cooling

Also Published As

Publication number Publication date
US6022190A (en) 2000-02-08
DE19705442A1 (de) 1998-08-20
DE59800115D1 (de) 2000-05-11
EP0859128A1 (de) 1998-08-19

Similar Documents

Publication Publication Date Title
EP0859128B1 (de) Turbinen-Laufradscheibe mit Kühlluftkanälen
EP1223308B1 (de) Komponente einer Strömungsmaschine
DE69819290T2 (de) Luftabscheider für gasturbinen
EP1113145B1 (de) Schaufel für Gasturbinen mit Drosselquerschnitt an Hinterkante
DE10059997B4 (de) Kühlbare Schaufel für eine Gasturbinenkomponente
EP0621920B1 (de) Kühlung des deckbandes einer turbinenschaufel
DE3537643C2 (de) Kühleinrichtung für eine dynamoelektrische Maschine
DE1928184A1 (de) Befestigungs- und Kuehlanordnung fuer Laufschaufelkraenze von Turbomaschine,vorzugsweise Gasturbinen
DE3940607A1 (de) Labyrinth-dichtungssystem
DE3040129A1 (de) Als einheit aufgebaute schaufen/naben-baugruppe
DE102009040758A1 (de) Umlenkvorrichtung für einen Leckagestrom in einer Gasturbine und Gasturbine
DE2241194A1 (de) Stroemungsmaschinenschaufel mit tragfluegelfoermigem querschnittsprofil und mit einer vielzahl von in schaufellaengsrichtung verlaufenden kuehlkanaelen
DE102008024146A1 (de) Kombinierter Wirbelgleichrichter
DE602004000301T2 (de) Vorrichtung für die Belüftung eines Rotor einer Hochdruckturbine
DE10064264B4 (de) Anordnung zur Kühlung eines Bauteils
DE60307100T2 (de) Dichtungsanordnung für den rotor einer turbomaschine
EP1201879A2 (de) Gekühltes Bauteil, Gusskern für die Herstellung eines solchen Bauteils, sowie Verfahren zum Herstellen eines solchen Bauteils
EP0859127A1 (de) Kühlluftführung in einer Turbinen-Laufradscheibe
DE4210449C2 (de) Aus Guß bestehende Bremsscheibe für ein Kraftfahrzeug, insbesondere für einen LKW
EP1292760B1 (de) Konfiguration einer kühlbaren turbinenschaufel
EP1806168A1 (de) Dampfsieb
DE4332693C2 (de) Innenbelüftete Bremsscheibe
DE2739431B2 (de) Luftlenkender Kamm für eine Düsenwebmaschine
EP3401503A1 (de) Rotorvorrichtung einer strömungsmaschine
EP2907977A1 (de) Heißgasbeaufschlagbares Bauteil für eine Gasturbine sowie Dichtungsanordnung mit einem derartigen Bauteil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19980915

AKX Designation fees paid

Free format text: DE FR GB

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19990521

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROLLS-ROYCE DEUTSCHLAND GMBH

REF Corresponds to:

Ref document number: 59800115

Country of ref document: DE

Date of ref document: 20000511

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROLLS-ROYCE DEUTSCHLAND GMBH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000504

ET Fr: translation filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090302

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090129

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090119

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100122

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100122