EP1201879A2 - Gekühltes Bauteil, Gusskern für die Herstellung eines solchen Bauteils, sowie Verfahren zum Herstellen eines solchen Bauteils - Google Patents

Gekühltes Bauteil, Gusskern für die Herstellung eines solchen Bauteils, sowie Verfahren zum Herstellen eines solchen Bauteils Download PDF

Info

Publication number
EP1201879A2
EP1201879A2 EP01123193A EP01123193A EP1201879A2 EP 1201879 A2 EP1201879 A2 EP 1201879A2 EP 01123193 A EP01123193 A EP 01123193A EP 01123193 A EP01123193 A EP 01123193A EP 1201879 A2 EP1201879 A2 EP 1201879A2
Authority
EP
European Patent Office
Prior art keywords
channel
cooling
cooling channel
diameter
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01123193A
Other languages
English (en)
French (fr)
Other versions
EP1201879A3 (de
EP1201879B1 (de
Inventor
Hartmut Haehnle
Ibrahim Dr. El-Nashar
Rudolf Dr. Kellerer
Beat Von Arx
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG, Alstom Schweiz AG filed Critical Alstom Technology AG
Publication of EP1201879A2 publication Critical patent/EP1201879A2/de
Publication of EP1201879A3 publication Critical patent/EP1201879A3/de
Application granted granted Critical
Publication of EP1201879B1 publication Critical patent/EP1201879B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • B22C9/24Moulds for peculiarly-shaped castings for hollow articles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49339Hollow blade
    • Y10T29/49341Hollow blade with cooling passage

Definitions

  • the present invention relates to the field of gas turbine technology. It relates to a cooled component for gas turbines according to the preamble of Claim 1.
  • Such a component is in the form of a turbine blade, e.g. from the publication GB-A-2 202 907.
  • the invention further relates to a cast core for the production of such Component and a method for producing such a component.
  • the efficiency of gas turbines which is closely related to the level of the inlet temperature for the hot combustion gases and for reasons of efficient Fuel efficiency and economy should be as high as possible material-related reasons to a particular extent depending on an efficient Use of the cooling air, which as a coolant is usually the compressor stage is removed.
  • the operational safety and service life of the gas turbine are essential adequate cooling of the thermally highly stressed turbine components or components, in particular the inlet-side guide vanes and blades of the first turbine stages.
  • the cooling can be effected in different ways, e.g. by means of internal cooling (cooling the component by cooling air circulating inside) and / or by means of Film cooling (generating a cooling air film through suitably arranged outlet openings on the loaded outside of the component).
  • a known method for efficient internal cooling is a so-called “cyclone” (or “vortex chamber” in GB-A-2 202 907).
  • a "cyclone” will an elongated cooling duct with a mostly circular or elliptical cross section through a series of tangentially opening feed bores with cooling air applied.
  • the incoming cooling air forms a vortex in the cooling channel the longitudinal axis of the channel rotates and due to the high speed and Turbulence in the edge area a particularly effective cooling of the channel wall and so that the cooled component causes.
  • Fig. 1 is a turbine blade in a simplified perspective view 10 reproduced with such a known cyclone cooling.
  • the turbine blade 10 is shown "transparently" so that the inner ones Cavities and channels are recognizable as solid lines.
  • the Turbine blade 10 has a leading edge 13 and a trailing edge ("trailing edge") 14, each between the longitudinal direction of the blade extend the blade root 11 and the blade tip 12.
  • the special one Formation of the blade root 11 for fastening the blade to the rotor and Supply of the blade with cooling air, as described, for example, in US-A-4,293,275 or US-A-5,002,460 is disclosed in Figure 1 for the sake of Simplification not reproduced.
  • Coolant channel 15 For internal cooling of the turbine blade 10 is from the blade root 11 through a connecting channel, not shown, cooling air in a longitudinal direction extending coolant channel 15 fed (vertical arrows in Fig. 1). Parallel to the coolant channel 15 and parallel to the one to be cooled, particularly thermally loaded front edge 13 of the turbine blade 10 runs a cylindrical cooling channel 16, which forms the cyclone. From the coolant channel 15 a number of transverse feed bores 17 to the cooling channel 16 and opens out there approximately tangential one. The tangential through the feed holes 17 in the cooling channel 16 Incoming cooling air (horizontal arrows in Fig. 1) forms one over the Channel-extending vortex, the heat from the surrounding channel wall receives.
  • the heated cooling air either emerges from the cooling channel 16 at the end from, or - as shown in GB-A-2 202 907 - through tangential outlets in Form of holes or slots.
  • Other internal cooling facilities, the simultaneously serve for film cooling and / or with the rear edge 14 in connection are omitted in Fig. 1 for the sake of simplicity.
  • cyclone cooling depends to a large extent on the feed (Boundary conditions, position and cross sections of the feed bores, etc.).
  • feed bores 17 with a bore diameter that is smaller than half the hydraulic diameter of the cooling channel (cyclone) 16. Since a turbine blade 10 of the type shown in FIG. 1 is usually by a Metal casting process is required for the formation of the coolant channel 15, the cooling channel 16 and the two connecting feed bores 17 a corresponding multi-connected cast core can be used. Weaknesses of such a core are those due to the above Diameter condition comparatively thin connecting webs, which the the form later feed bores. At this point it can easily become one Core breakage come, which questions the success of the casting.
  • the object is achieved by the entirety of the features of claim 1.
  • the essence of the invention is through a suitable formation of the whole the feed bores increase the rigidity of the associated cast core improve without adhering to the specified diameter conditions for having to give up the feed holes. This happens because the Feed bores predominantly have a bore diameter that is smaller than half the hydraulic diameter of the cooling channel, and that for Improvement of the output rate when casting the component selected feed bores have a bore diameter that is larger than that half hydraulic diameter of the cooling channel.
  • the selected feed holes at the ends of the cooling channel arranged, in particular the bottom and the top feed hole are used as the selected feed hole. This can the desired swirl of cooling air over the entire interior of the cooling duct train practically unhindered and develop its maximum cooling effect.
  • the component e.g. a turbine blade, particularly long, can, however, in the Be advantageous in terms of core stability if according to another Embodiment additionally selected feed bores in the central area of the cooling channel are provided.
  • the cast core according to the invention for the production of such a component which Cast core a first channel part to form the coolant channel and one includes second channel part to form the cooling channel, and a plurality of Connecting webs, which run transversely between the two channel parts and serve to form the feed holes, is characterized in that the Connecting webs predominantly have an outer diameter that is smaller is selected as half the hydraulic diameter of the cooling channel, and that Connecting webs have an outer diameter that is larger than half the hydraulic diameter of the cooling channel.
  • the selected connecting webs are preferably at the ends of the arranged second channel part, in particular the bottom and the top Connection bridge are used as the selected connection bridge.
  • the method according to the invention for producing a component according to the invention by means of a metal casting process is characterized in that a cast core according to the invention is used.
  • FIG. 3 is an exemplary embodiment of an internally cooled gas turbine component
  • a turbine blade 10 'comparable to FIG. 1 is reproduced.
  • the same parts of the turbine blade 10 ' are given the same reference numerals provided, as with the turbine blade 10 from FIG. 1.
  • the majority of the feed holes, namely the feed holes 17, meet the criterion characteristic of a cyclone in diameter, that their bore diameter is smaller than half the hydraulic one Diameter of the cooling channel 16.
  • Only a few selected feed holes, namely the feed bores 25, 26 and 27 have a bore diameter which is larger than half the hydraulic diameter of the cooling duct 16. Through these selected feed bores 25, .., 27 can - as will be explained below - the production output rate the blades are increased significantly.
  • the cast core 18 comprises a first channel part 19, which is required to form the coolant channel 15 and a second channel part 20, which is used for the formation of the cooling channel 16 responsible is.
  • Both channel parts 19 and 20 are one above the other by a series arranged connecting webs 21 and 22, .., 24 connected, each one have a round cross-section.
  • the majority of the connecting webs, namely the "Thin” connecting webs 21 serve to form the feed bores the above "Cyclone criterion" with regard to the diameter are sufficient.
  • Only a few selected connecting webs, namely connecting webs 22, 23 and 24, are “thicker” and thus strengthen the connection between the core parts 19 and 20 and thus the mechanical rigidity of the cast core 18 as a whole.
  • cooling channel 16 or the second channel part 20 is not very long, it is sufficient off, the two outer connecting webs 22 and 24 as selected Form connecting webs with an enlarged cross section. In this way can be practically on the entire length of the cooling channel 16 of the cooling air vortex train undisturbed because the "cyclone criterion" is met there. With longer cooling channels 16 or channel parts 20, however, it can be expedient and advantageous to also provide individual selected connecting webs 26 in the middle area, to make the casting core 18 stiffer there.
  • the diameter of the selected feed holes 25, .., 27 or the selected one Connecting webs 22, .., 24 is chosen larger than that in any case half hydraulic diameter. How big the diameter actually is depends largely on the geometry of the casting core and the casting process and must be determined in individual cases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

Ein gekühltes Bauteil, insbesondere Turbinenschaufel (10, 10'), für Gasturbinen, weist zur effizienten Innenkühlung einen innenliegenden Kühlkanal (16) mit rundem Kanalquerschnitt auf, in welchen Kühlkanal (16) zur Ausbildung eines Kühlmittelwirbels eine Reihe von in Richtung der Längsachse des Kühlkanals (16) übereinander angeordneten, von einem gemeinsamen Kühlmittelkanal (15) ausgehenden Anspeisebohrungen (17) für das Kühlmittel im wesentlichen tangential einmünden. Bei einem solchen Bauteil wird die Herstellbarkeit dadurch verbessert, dass die Anspeisebohrungen (17) überwiegend einen Bohrungsdurchmesser aufweisen, der kleiner ist als der halbe hydraulische Durchmesser des Kühlkanals (16), und dass zur Verbesserung der Ausbringungsrate beim Giessen des Bauteils (10') ausgewählte Anspeisebohrungen (25,..,27) einen Bohrungsdurchmesser aufweisen, der grösser ist als der halbe hydraulische Durchmesser des Kühlkanals (16). <IMAGE>

Description

TECHNISCHES GEBIET
Die vorliegende Erfindung bezieht sich auf das Gebiet der Technik von Gasturbinen. Sie betrifft ein gekühltes Bauteil für Gasturbinen gemäss dem Oberbegriff des Anspruchs 1.
Eins solches Bauteil ist in Gestalt einer Turbinenschaufel z.B. aus der Druckschrift GB-A-2 202 907 bekannt.
Die Erfindung betrifft weiterhin einen Gusskern für die Herstellung eines solchen Bauteils sowie ein Verfahren zur Herstellung eines solchen Bauteils.
STAND DER TECHNIK
Der Wirkungsgrad von Gasturbinen, der eng mit der Höhe der Eintrittstemperatur für die heissen Verbrennungsgase zusammenhängt und aus Gründen der effizienten Brennstoffausnutzung und Wirtschaftlichkeit möglichst hoch sein soll, ist aus werkstofftechnischen Gründen in besonderem Masse abhängig von einer effizienten Nutzung der Kühlluft, die als Kühlmittel üblicherweise der Kompressorstufe entnommen wird. Die Betriebssicherheit und Lebensdauer der Gasturbine bedingen eine ausreichende Kühlung der thermisch hoch belasteten Turbinenkomponenten bzw. -bauteile, zu denen insbesondere die eingangsseitigen Leitschaufeln und Laufschaufeln der ersten Turbinenstufen gehören. Die Kühlung kann dabei auf unterschiedliche Weise bewirkt werden, also z.B. mittels Innenkühlung (Kühlung der Komponente durch im Inneren zirkulierende Kühlluft) und/oder mittels Filmkühlung (Erzeugen eines Kühlluftfilms durch geeignet angeordnete Austrittsöffnungen auf der belasteten Aussenseite der Komponente).
Eine bekannte Methode zur effizienten Innenkühlung ist ein sogenannter "Zyklon" (oder "vortex chamber" in der GB-A-2 202 907). Bei einem solchen "Zyklon" wird eine länglicher Kühlkanal mit meist kreisrundem oder elliptischem Querschnitt durch eine Reihe von tangential einmündenden Anspeisebohrungen mit Kühlluft beaufschlagt. Die einströmende Kühlluft bildet einen Wirbel im Kühlkanal, der um die Längsachse des Kanals rotiert und aufgrund der hohen Geschwindigkeit und Turbulenz im Randbereich eine besonders wirksame Kühlung der Kanalwand und damit des gekühlten Bauteils bewirkt.
In Fig. 1 ist in einer vereinfachten perspektivischen Darstellung eine Turbinenschaufel 10 mit einer solchen an sich bekannten Zyklon-Kühlung wiedergegeben. Die Turbinenschaufel 10 ist dabei "durchsichtig" dargestellt, so dass die innenliegenden Hohlräume und Kanäle als durchgezogene Linien erkennbar sind. Die Turbinenschaufel 10 weist eine Vorderkante ("leading edge") 13 und eine Hinterkante ("trailing edge") 14 aus, die sich jeweils in Längsrichtung der Schaufel zwischen dem Schaufelfuss 11 und der Schaufelspitze 12 erstrecken. Die spezielle Ausbildung des Schaufelfusses 11 zur Befestigung der Schaufel am Rotor und zur Versorgung der Schaufel mit Kühlluft , wie sie beispielsweise in der US-A-4,293,275 oder der US-A-5,002,460 offenbart ist, ist in Fig. 1 aus Gründen der Vereinfachung nicht wiedergegeben.
Zur Innenkühlung der Turbinenschaufel 10 wird vom Schaufelfuss 11 her durch einen nicht gezeigten Verbindungskanal Kühlluft in einen sich in Längsrichtung erstreckenden Kühlmittelkanal 15 eingespeist (vertikale Pfeile in Fig. 1). Parallel zum Kühlmittelkanal 15 und parallel zu der zu kühlenden, thermisch besonders belasteten Vorderkante 13 der Turbinenschaufel 10 verläuft ein zylindrischer Kühlkanal 16, der den Zyklon bildet. Vom Kühlmittelkanal 15 aus geht eine Reihe von querliegenden Anspeisebohrungen 17 zum Kühlkanal 16 und mündet dort in etwa tangential ein. Die durch die Anspeisebohrungen 17 in den Kühlkanal 16 tangential einströmende Kühlluft (horizontale Pfeile in Fig. 1) bildet einen sich über den Kanal erstreckenden Wirbel aus, der von der umgebenden Kanalwand Wärme aufnimmt. Die erwärmte Kühlluft tritt entweder stirnseitig aus dem Kühlkanal 16 aus, oder - wie in der GB-A-2 202 907 gezeigt - durch tangentiale Auslässe in Form von Bohrungen oder Schlitzen. Weitere Einrichtungen zur Innenkühlung, die gleichzeitig zur Filmkühlung dienen und/oder mit der Hinterkante 14 in Verbindung stehen, sind in Fig. 1 der Einfachheit halber weggelassen.
Die Wirkung der Zyklon-Kühlung hängt in starkem Masse von der Anspeisung (Randbedingungen, Lage und Querschnitte der Anspeisebohrungen, etc.) ab. Erforderlich sind dabei Anspeisebohrungen 17 mit einem Bohrungsdurchmesser, der kleiner ist als der halbe hydraulische Durchmesser des Kühlkanals (Zyklons) 16. Da eine Turbinenschaufel 10 der in Fig. 1 gezeigten Art üblicherweise durch ein Metallgussverfahren hergestellt wird, muss für die Ausbildung des Kühlmittelkanals 15, des Kühlkanals 16 und der beide verbindenden Anspeisebohrungen 17 ein entsprechender mehrfach zusammenhängender Gusskern eingesetzt werden. Schwachstellen eines solchen Gusskerns sind die wegen der o.g. Durchmesserbedingung vergleichsweise dünnen Verbindungsstege, welche beim Guss die späteren Anspeisebohrungen bilden. An dieser Stelle kann es daher leicht zu einem Kernbruch kommen, der den Erfolg des Gusses in Frage stellt.
DARSTELLUNG DER ERFINDUNG
Es ist daher Aufgabe der Erfindung, ein Gasturbinen-Bauteil der eingangs genannten Art so zu gestalten, dass das Auftreten von Kernbrüchen beim Giessen wirksam eingeschränkt und die beim Giessen erreichte Ausbringungsrate deutlich verbessert wird.
Die Aufgabe wird durch die Gesamtheit der Merkmale des Anspruchs 1 gelöst. Der Kern der Erfindung besteht darin, durch eine geeignete Ausbildung der Gesamtheit der Anspeisebohrungen die Steifigkeit des zugehörigen Gusskerns zu verbessern, ohne die Einhaltung der vorgegebenen Durchmesserbedingungen für die Anspeisebohrungen aufgeben zu müssen. Dies geschieht dadurch, dass die Anspeisebohrungen überwiegend einen Bohrungsdurchmesser aufweisen, der kleiner ist als der halbe hydraulische Durchmesser des Kühlkanals, und dass zur Verbesserung der Ausbringungsrate beim Giessen des Bauteils ausgewählte Anspeisebohrungen einen Bohrungsdurchmesser aufweisen, der grösser ist als der halbe hydraulische Durchmesser des Kühlkanals.
Gemäss einer ersten bevorzugten Ausführungsform des Bauteils nach der Erfindung sind die ausgewählten Anspeisebohrungen jeweils an den Enden des Kühlkanals angeordnet , wobei insbesondere die unterste und die oberste Anspeisebohrung als ausgewählte Anspeisebohrung eingesetzt sind. Hierdurch kann sich über den gesamten Innenbereich des Kühlkanals der gewünschte Kühlluftwirbel praktisch ungehindert ausbilden und seine maximale Kühlwirkung entfalten.
Ist das Bauteil, z.B. eine Turbinenschaufel, besonders lang, kann es jedoch im Hinblick auf die Stabilität des Kerns vorteilhaft sein, wenn gemäss einer anderen Ausführungsform zusätzlich im mittleren Bereich des Kühlkanals ausgewählte Anspeisebohrungen vorgesehen sind.
Der erfindungsgemässe Gusskern für die Herstellung eines solchen Bauteils, welcher Gusskern einen ersten Kanalteil zur Bildung des Kühlmittelkanals und einen zweiten Kanalteil zur Bildung des Kühlkanals umfasst, sowie eine Mehrzahl von Verbindungsstegen, welche zwischen den beiden Kanalteilen quer verlaufen und der Bildung der Anspeisebohrungen dienen, ist dadurch gekennzeichnet, dass die Verbindungsstege überwiegend einen Aussendurchmesser aufweisen, der kleiner ist als der halbe hydraulische Durchmesser des Kühlkanals, und dass ausgewählte Verbindungsstege einen Aussendurchmesser aufweisen, der grösser ist als der halbe hydraulische Durchmesser des Kühlkanals.
Bevorzugt sind die ausgewählten Verbindungsstege jeweils an den Enden des zweiten Kanalteils angeordnet, wobei insbesondere der unterste und der oberste Verbindungssteg als ausgewählter Verbindungssteg eingesetzt sind.
Das erfindungsgemässe Verfahren zum Herstellen eines Bauteils nach der Erfindung mittels eines Metallgussverfahrens ist dadurch gekennzeichnet, dass ein erfindungsgemässer Gusskern verwendet wird.
Weitere Ausführungsformen ergeben sich aus den abhängigen Ansprüchen.
KURZE ERLÄUTERUNG DER FIGUREN
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Es zeigen
Fig. 1
in einer vereinfachten perspektivischen Seitenansicht eine Turbinenschaufel mit an sich bekannter Innenkühlung der Vorderkante durch einen sogenannten Zyklon;
Fig. 2
in perspektivischer Seitenansicht einen versteiften Gusskern zur Herstellung einer zu Fig. 1 vergleichbaren Turbinenschaufel gemäss einem bevorzugten Ausführungsbeispiel der Erfindung; und
Fig. 3
in einer zu Fig. 1 vergleichbaren Darstellung die mit dem Gusskern aus Fig. 2 hergestellte Turbinenschaufel.
WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
In Fig. 3 ist als Ausführungsbeispiel eines innengekühlten Gasturbinen-Bauteils nach der Erfindung eine zu Fig. 1 vergleichbare Turbinenschaufel 10' wiedergegeben. Gleiche Teile der Turbinenschaufel 10' sind dabei mit denselben Bezugszeichen versehen, wie bei der Turbinenschaufel 10 aus Fig. 1. Auch bei der Turbinenschaufel 10' sind der Kühlmittelkanal 15 und der Kühlkanal 16 durch eine übereinander angeordnete Reihe von Anspeisebohrungen 17 bzw. 25,..,27 verbunden. Die Mehrzahl der Anspeisebohrungen, nämlich die Anspeisebohrungen 17, erfüllen vom Durchmesser her das für einen Zyklon charakteristische Kriterium, dass nämlich ihr Bohrungsdurchmesser kleiner ist als der halbe hydraulische Durchmesser des Kühlkanals 16. Nur wenige ausgewählte Anspeisebohrungen, nämlich die Anspeisebohrungen 25, 26 und 27, weisen einen Bohrungsdurchmesser auf, der abweichend davon grösser ist als der halbe hydraulische Durchmesser des Kühlkanals 16. Durch diese ausgewählten Anspeisebohrungen 25,..,27 kann - wie nachfolgend erläutert wird - die Ausbringungsrate bei der Herstellung der Schaufeln deutlich erhöht werden.
Für die Herstellung der Turbinenschaufel 10' mittels eines Metallgussverfahrens wird ein Gusskern 18 der in Fig. 2 dargestellten Art benötigt. Der Gusskern 18 umfasst einen ersten Kanalteil 19, der zur Ausbildung des Kühlmittelkanals 15 benötigt wird, und einen zweiten Kanalteil 20, der für die Bildung des Kühlkanals 16 zuständig ist. Beide Kanalteile 19 und 20 sind durch eine Reihe von übereinander angeordneten Verbindungsstegen 21 und 22,..,24 verbunden, die jeweils einen runden Querschnitt aufweisen. Die Mehrzahl der Verbindungsstege, nämlich die "dünnen" Verbindungsstege 21, dienen zur Bildung der Anspeisebohrungen, die dem o.g. "Zyklon-Kriterium" hinsichtlich der Durchmesser genügen. Nur wenige ausgewählte Verbindungsstege, nämlich die Verbindungsstege 22, 23 und 24, sind "dicker" ausgebildet und verstärken so die Verbindung zwischen den Kernteilen 19 und 20 und damit die mechanische Steifigkeit des Gusskerns 18 insgesamt.
Ist der Kühlkanal 16 bzw. der zweite Kanalteil 20 nicht sehr lang, reicht es vollkommen aus, die beiden äusseren Verbindungsstege 22 und 24 als ausgewählte Verbindungsstege mit vergrössertem Querschnitt auszubilden. Auf diese Weise kann sich praktisch auf der gesamten Länge des Kühlkanals 16 der Kühlluftwirbel ungestört ausbilden, weil dort das "Zyklon-Kriterium" erfüllt ist. Bei längeren Kühlkanälen 16 bzw. Kanalteilen 20 kann es jedoch zweckmässig und vorteilhaft sein, auch einzelne ausgewählte Verbindungsstege 26 im mittleren Bereich vorzusehen, um den Gusskern 18 dort steifer zu machen.
Der Durchmesser der ausgewählten Anspeisebohrungen 25,..,27 bzw. der ausgewählten Verbindungsstege 22,..,24 wird in jedem Fall grösser gewählt als der halbe hydraulische Durchmesser. Wie gross der Durchmesser tatsächlich sein wird, hängt massgeblich von der Geometrie des Gusskerns und dem Giessverfahren ab und muss im Einzelfall bestimmt werden.
BEZUGSZEICHENLISTE
10,10'
Turbinenschaufel
11
Schaufelfuss
12
Schaufelspitze
13
Vorderkante
14
Hinterkante
15
Kühlmittelkanal
16
Kühlkanal (Zyklon)
17
Anspeisebohrung
18
Gusskern
19,20
Kanalteil (Gusskern)
21
Verbindungssteg
22,..,24
ausgewählter Verbindungssteg
25,..,27
ausgewählte Anspeisebohrung

Claims (9)

  1. Gekühltes Bauteil, insbesondere Turbinenschaufel (10, 10'), für Gasturbinen, welches Bauteil (10, 10') zur effizienten Innenkühlung einen innenliegenden Kühlkanal (16) mit rundem Kanalquerschnitt aufweist, in welchen Kühlkanal (16) zur Ausbildung eines Kühlmittelwirbels eine Reihe von in Richtung der Längsachse des Kühlkanals (16) übereinander angeordneten, von einem gemeinsamen Kühlmittelkanal (15) ausgehenden Anspeisebohrungen (17) für das Kühlmittel im wesentlichen tangential einmünden, dadurch gekennzeichnet, dass die Anspeisebohrungen (17) überwiegend einen Bohrungsdurchmesser aufweisen, der kleiner ist als der halbe hydraulische Durchmesser des Kühlkanals (16), und dass zur Verbesserung der Ausbringungsrate beim Giessen des Bauteils (10') ausgewählte Anspeisebohrungen (25,..,27) einen Bohrungsdurchmesser aufweisen, der grösser ist als der halbe hydraulische Durchmesser des Kühlkanals (16).
  2. Bauteil nach Anspruch 1, dadurch gekennzeichnet, dass die ausgewählten Anspeisebohrungen (25, 27) jeweils an den Enden des Kühlkanals (16) angeordnet sind.
  3. Bauteil nach Anspruch 2, dadurch gekennzeichnet, dass die unterste und die oberste Anspeisebohrung (25 bzw. 27) als ausgewählte Anspeisebohrung eingesetzt sind.
  4. Bauteil nach einem der Ansprüche 2 und 3, dadurch gekennzeichnet, dass zusätzlich im mittleren Bereich des Kühlkanals (16) ausgewählte Anspeisebohrungen (26) vorgesehen sind.
  5. Gusskern (18) für die Herstellung eines Bauteils nach Anspruch 1, welcher Gusskern (18) einen ersten Kanalteil (19) zur Bildung des Kühlmittelkanals (15) und einen zweiten Kanalteil (20) zur Bildung des Kühlkanals (16) umfasst, sowie eine Mehrzahl von Verbindungsstegen (21; 22,..,24), welche zwischen den beiden Kanalteilen (19, 20) quer verlaufen und der Bildung der Anspeisebohrungen (17; 25,..,27) dienen, dadurch gekennzeichnet, dass die Verbindungsstege (21) überwiegend einen Aussendurchmesser aufweisen, der kleiner ist als der halbe hydraulische Durchmesser des Kühlkanals (16), und dass ausgewählte Verbindungsstege (22,..,24) einen Aussendurchmesser aufweisen, der grösser ist als der halbe hydraulische Durchmesser des Kühlkanals (16).
  6. Gusskern nach Anspruch 5, dadurch gekennzeichnet, dass die ausgewählten Verbindungsstege (22, 24) jeweils an den Enden des zweiten Kanalteils (20) angeordnet sind.
  7. Gusskern nach Anspruch 6, dadurch gekennzeichnet, dass der unterste und der oberste Verbindungssteg (22 bzw. 24) als ausgewählter Verbindungssteg eingesetzt sind.
  8. Gusskern nach einem der Ansprüche 6 und 7, dadurch gekennzeichnet, dass zusätzlich im mittleren Bereich des zweiten Kanalteils (20) ausgewählte Verbindungsstege (23) vorgesehen sind.
  9. Verfahren zum Herstellen eines Bauteils nach Anspruch 1 mittels eines Metallgussverfahrens, dadurch gekennzeichnet, dass ein Gusskern nach einem der Ansprüche 5 bis 8 verwendet wird.
EP01123193A 2000-10-27 2001-09-28 Gekühltes Bauteil, Gusskern für die Herstellung eines solchen Bauteils, sowie Verfahren zum Herstellen eines solchen Bauteils Expired - Lifetime EP1201879B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10053356 2000-10-27
DE10053356A DE10053356A1 (de) 2000-10-27 2000-10-27 Gekühltes Bauteil, Gusskern für die Herstellung eines solchen Bauteils, sowie Verfahren zum Herstellen eines solchen Bauteils

Publications (3)

Publication Number Publication Date
EP1201879A2 true EP1201879A2 (de) 2002-05-02
EP1201879A3 EP1201879A3 (de) 2003-07-16
EP1201879B1 EP1201879B1 (de) 2004-11-10

Family

ID=7661311

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01123193A Expired - Lifetime EP1201879B1 (de) 2000-10-27 2001-09-28 Gekühltes Bauteil, Gusskern für die Herstellung eines solchen Bauteils, sowie Verfahren zum Herstellen eines solchen Bauteils

Country Status (3)

Country Link
US (1) US6547525B2 (de)
EP (1) EP1201879B1 (de)
DE (2) DE10053356A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2434093A3 (de) * 2010-09-23 2013-08-07 Rolls-Royce Deutschland Ltd & Co KG Gekühlte Turbinenschaufeln für ein Gasturbinentriebwerk
EP3091183A1 (de) * 2015-05-08 2016-11-09 United Technologies Corporation Wärmeregulierungskanäle für komponenten einer turbomaschine
US10328485B2 (en) 2014-09-04 2019-06-25 Safran Aircraft Engines Method for producing a ceramic core

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50311059D1 (de) * 2003-10-29 2009-02-26 Siemens Ag Gussform
US7128533B2 (en) * 2004-09-10 2006-10-31 Siemens Power Generation, Inc. Vortex cooling system for a turbine blade
US7690894B1 (en) 2006-09-25 2010-04-06 Florida Turbine Technologies, Inc. Ceramic core assembly for serpentine flow circuit in a turbine blade
WO2011019672A2 (en) * 2009-08-09 2011-02-17 Rolls-Royce Corporation Support for a fired article
GB0921818D0 (en) * 2009-12-15 2010-01-27 Rolls Royce Plc Casting of internal features within a product (
DE102012017491A1 (de) 2012-09-04 2014-03-06 Rolls-Royce Deutschland Ltd & Co Kg Turbinenschaufel einer Gasturbine mit Drallerzeugungselement
WO2014137470A1 (en) 2013-03-05 2014-09-12 Vandervaart Peter L Gas turbine engine component arrangement
WO2014163698A1 (en) 2013-03-07 2014-10-09 Vandervaart Peter L Cooled gas turbine engine component
US10012090B2 (en) * 2014-07-25 2018-07-03 United Technologies Corporation Airfoil cooling apparatus
US10301946B2 (en) 2016-10-26 2019-05-28 General Electric Company Partially wrapped trailing edge cooling circuits with pressure side impingements
US10598028B2 (en) 2016-10-26 2020-03-24 General Electric Company Edge coupon including cooling circuit for airfoil
US10465521B2 (en) 2016-10-26 2019-11-05 General Electric Company Turbine airfoil coolant passage created in cover
US10450875B2 (en) 2016-10-26 2019-10-22 General Electric Company Varying geometries for cooling circuits of turbine blades
US10352176B2 (en) 2016-10-26 2019-07-16 General Electric Company Cooling circuits for a multi-wall blade
US10273810B2 (en) 2016-10-26 2019-04-30 General Electric Company Partially wrapped trailing edge cooling circuit with pressure side serpentine cavities
US10309227B2 (en) * 2016-10-26 2019-06-04 General Electric Company Multi-turn cooling circuits for turbine blades
US10240465B2 (en) * 2016-10-26 2019-03-26 General Electric Company Cooling circuits for a multi-wall blade
US10450950B2 (en) 2016-10-26 2019-10-22 General Electric Company Turbomachine blade with trailing edge cooling circuit
EP3832069A1 (de) 2019-12-06 2021-06-09 Siemens Aktiengesellschaft Turbinenschaufel für eine stationäre gasturbine
US11814965B2 (en) 2021-11-10 2023-11-14 General Electric Company Turbomachine blade trailing edge cooling circuit with turn passage having set of obstructions
CN114215607A (zh) * 2021-11-29 2022-03-22 西安交通大学 一种涡轮叶片前缘旋流冷却结构
CN114109518A (zh) * 2021-11-29 2022-03-01 西安交通大学 一种涡轮叶片前缘带肋旋流-气膜复合冷却结构
CN114412577B (zh) * 2022-01-24 2024-03-15 杭州汽轮动力集团股份有限公司 涡轮动叶长叶片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4293275A (en) 1978-09-14 1981-10-06 Hitachi, Ltd. Gas turbine blade cooling structure
GB2202907A (en) 1987-03-26 1988-10-05 Secr Defence Cooled aerofoil components
US5002460A (en) 1989-10-02 1991-03-26 General Electric Company Internally cooled airfoil blade

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB893706A (en) * 1960-01-05 1962-04-11 Rolls Royce Blades for fluid flow machines
US3542486A (en) * 1968-09-27 1970-11-24 Gen Electric Film cooling of structural members in gas turbine engines
FR2516165B1 (fr) * 1981-11-10 1986-07-04 Snecma Aube de turbine a gaz a chambre de refroidissement par circulation de fluide et son procede de realisation
US4669957A (en) * 1985-12-23 1987-06-02 United Technologies Corporation Film coolant passage with swirl diffuser
US5603606A (en) * 1994-11-14 1997-02-18 Solar Turbines Incorporated Turbine cooling system
US5498133A (en) * 1995-06-06 1996-03-12 General Electric Company Pressure regulated film cooling
EP0892151A1 (de) * 1997-07-15 1999-01-20 Asea Brown Boveri AG Kühlsystem für den Vorderkantenbereich einer hohlen Gasturbinenschaufel
DE19738065A1 (de) * 1997-09-01 1999-03-04 Asea Brown Boveri Turbinenschaufel einer Gasturbine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4293275A (en) 1978-09-14 1981-10-06 Hitachi, Ltd. Gas turbine blade cooling structure
GB2202907A (en) 1987-03-26 1988-10-05 Secr Defence Cooled aerofoil components
US5002460A (en) 1989-10-02 1991-03-26 General Electric Company Internally cooled airfoil blade

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2434093A3 (de) * 2010-09-23 2013-08-07 Rolls-Royce Deutschland Ltd & Co KG Gekühlte Turbinenschaufeln für ein Gasturbinentriebwerk
US9051841B2 (en) 2010-09-23 2015-06-09 Rolls-Royce Deutschland Ltd & Co Kg Cooled turbine blades for a gas-turbine engine
US10328485B2 (en) 2014-09-04 2019-06-25 Safran Aircraft Engines Method for producing a ceramic core
EP3091183A1 (de) * 2015-05-08 2016-11-09 United Technologies Corporation Wärmeregulierungskanäle für komponenten einer turbomaschine
US9988912B2 (en) 2015-05-08 2018-06-05 United Technologies Corporation Thermal regulation channels for turbomachine components

Also Published As

Publication number Publication date
EP1201879A3 (de) 2003-07-16
DE10053356A1 (de) 2002-05-08
DE50104476D1 (de) 2004-12-16
US20020051706A1 (en) 2002-05-02
US6547525B2 (en) 2003-04-15
EP1201879B1 (de) 2004-11-10

Similar Documents

Publication Publication Date Title
EP1201879B1 (de) Gekühltes Bauteil, Gusskern für die Herstellung eines solchen Bauteils, sowie Verfahren zum Herstellen eines solchen Bauteils
EP1113145B1 (de) Schaufel für Gasturbinen mit Drosselquerschnitt an Hinterkante
DE1946535C3 (de) Bauteil für ein Gasturbinentriebwerk
DE60018817T2 (de) Gekühlte Gasturbinenschaufel
DE10001109B4 (de) Gekühlte Schaufel für eine Gasturbine
DE1476796C3 (de) Aus einem hochfesten Material integral hergestelltes Bauteil einer Gasturbinenanlage
DE69210862T2 (de) Turbinenschaufel mit Luftfilmkühlungsbohrungen mit mehreren Auslässen
DE69515502T2 (de) Gasturbinenschaufel mit einer gekühlten plattform
DE60119273T2 (de) Gekühlte Turbinenleitschaufel
EP1709298B1 (de) Gekühlte schaufel für eine gasturbine
DE60015233T2 (de) Turbinenschaufel mit interner Kühlung
DE60122050T2 (de) Turbinenleitschaufel mit Einsatz mit Bereichen zur Prallkühlung und Konvektionskühlung
DE69105837T2 (de) Gekühlte Turbinenschaufel.
DE2031917A1 (de) Stromungsmittelgekuhlter Flügel
EP2304185A1 (de) Turbinenschaufel für eine gasturbine und gusskern zum herstellen in einer solchen
CH642428A5 (de) Abdeckanordnung in einer turbine.
DE2241194A1 (de) Stroemungsmaschinenschaufel mit tragfluegelfoermigem querschnittsprofil und mit einer vielzahl von in schaufellaengsrichtung verlaufenden kuehlkanaelen
DE2906365A1 (de) Turbinenschaufel
EP1283326A1 (de) Kühlung einer Turbinenschaufel
DE19617539B4 (de) Rotor für eine thermische Turbomaschine
DE1601563B2 (de) Luftgekühlte Laufschaufel
EP1644614B1 (de) Gekühlte schaufel für eine gasturbine
EP1288435A2 (de) Turbinenschaufel mit zumindest einer Kühlungsöffnung
EP3112593A1 (de) Innengekühlte turbinenschaufel
DE2313047A1 (de) Gekuehlte turbinenlaufschaufeln mit hoher festigkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 01D 5/18 A

Ipc: 7B 22C 9/24 B

Ipc: 7F 02C 7/18 B

Ipc: 7B 22C 9/10 B

Ipc: 7F 01D 5/14 B

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

17P Request for examination filed

Effective date: 20031206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): DE GB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50104476

Country of ref document: DE

Date of ref document: 20041216

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050211

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50104476

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50104476

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50104476

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50104476

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50104476

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170928

Year of fee payment: 17

Ref country code: GB

Payment date: 20170921

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50104476

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180928