EP0848722A1 - Method for the production of polymerisates in an aqueous medium and the use thereof - Google Patents

Method for the production of polymerisates in an aqueous medium and the use thereof

Info

Publication number
EP0848722A1
EP0848722A1 EP96931021A EP96931021A EP0848722A1 EP 0848722 A1 EP0848722 A1 EP 0848722A1 EP 96931021 A EP96931021 A EP 96931021A EP 96931021 A EP96931021 A EP 96931021A EP 0848722 A1 EP0848722 A1 EP 0848722A1
Authority
EP
European Patent Office
Prior art keywords
monomers
water
acid
cyclodextrin
insoluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96931021A
Other languages
German (de)
French (fr)
Inventor
Gunnar Schornick
Axel Kistenmacher
Helmut Ritter
Julia Jeromin
Olaf Noll
Markus Born
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0848722A1 publication Critical patent/EP0848722A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/378(Co)polymerised monomers containing sulfur, e.g. sulfonate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/738Cyclodextrins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8105Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • A61K8/8111Homopolymers or copolymers of aliphatic olefines, e.g. polyethylene, polyisobutene; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8129Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers or esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers, e.g. polyvinylmethylether
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8147Homopolymers or copolymers of acids; Metal or ammonium salts thereof, e.g. crotonic acid, (meth)acrylic acid; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8158Homopolymers or copolymers of amides or imides, e.g. (meth) acrylamide; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8164Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers, e.g. poly (methyl vinyl ether-co-maleic anhydride)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • C08B37/0015Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3784(Co)polymerised monomers containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C3/00Tanning; Compositions for tanning
    • C14C3/02Chemical tanning
    • C14C3/08Chemical tanning by organic agents
    • C14C3/22Chemical tanning by organic agents using polymerisation products
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C9/00Impregnating leather for preserving, waterproofing, making resistant to heat or similar purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/56Compounds, absorbed onto or entrapped into a solid carrier, e.g. encapsulated perfumes, inclusion compounds, sustained release forms

Definitions

  • the invention relates to a process for the production of polymers from water-insoluble monomers and optionally water-soluble monomers by radical polymerization of the monomers in a diluent and the use of the polymers as sizing agents for papermaking, as coating agents, as thickeners for aqueous systems, as a detergent additive and as a thickener in cosmetic creams or lotions.
  • the radical polymerization of monomers in aqueous solutions is of particular technical interest.
  • a prerequisite for solution polymerization of the monomers is that the monomers also dissolve in the solvent used in each case.
  • Water-soluble monomers such as acrylic acid or maleic acid, are produced industrially by the process of solution polymerization in water.
  • the copolymerization of, for example, acrylic acid with water-insoluble monomers is therefore not possible in an aqueous medium.
  • water-soluble monomers are also polymerized by free radicals.
  • this method also fails if larger amounts of water-insoluble comonomers are to be incorporated into the copolymer because the water-soluble monomers polymerize in the aqueous phase and the water-insoluble monomers in the oil phase, so that virtually no copolymerization occurs.
  • cyclodextrins can serve as organic host molecules and are able to form one or two guest molecules with the formation of supramolecular ones
  • cyclodextrins can serve as organic host molecules and are able to form one or two guest molecules with the formation of supramolecular ones
  • structures cf. W. Saenger, Angew. Chem. Int. Ed. Engl. 1980, 19_, 344 and G. Wenz. Appl. Chem. Int. Ed. Engl. 1994, 3_3_, 803-822.
  • crystalline complexes of ethylene and cyclodextrin are known.
  • inclusion compounds of polymers which are produced by radical polymerisation of monomers in a ⁇ -cyclodextrin matrix in dimethylformamide solution.
  • Vinylidene chloride, methyl acrylate, styrene and methacrylonitrile are mentioned as monomers.
  • DE-A-4 009 621 discloses fast-setting adhesive compositions based on ⁇ -cyanoacrylates which contain at least partially soluble derivatives of cyclodextrins in ⁇ -cyanoacrylates.
  • the present invention has for its object to provide a process for the preparation of polymers from water-insoluble monomers and, if appropriate, water-soluble monomers by radical polymerization of the monomers in a diluent.
  • the object is achieved according to the invention if the polymerization is carried out in water as a diluent and the water-insoluble monomers in the form of complexes
  • Suitable cyclodextrins are the ⁇ -, ⁇ -, ⁇ - and ⁇ -cyclodextrins described in the references mentioned above. They are obtained, for example, by enzymatic breakdown of starch and consist of 6 to 9 D-glucose units which are linked to one another via an ⁇ -1,4-glycosidic bond.
  • ⁇ -Cyclodextrin consists of 6 glucose molecules.
  • Compounds containing cyclodextrin structures are to be understood as meaning reaction products of cyclodextrins with reactive compounds, for example reaction products of cyclodextrins with alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide or styrene oxide, reaction products tion products of cyclodextrins with alkylating agents, for example Ci * to C 22 alkyl halides, for example methyl chloride, ethyl chloride, butyl chloride, ethyl bromide, butyl bromide, benzyl chloride, lauryl chloride, stearyl chloride or behenyl chloride and dimethyl sulfate.
  • alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide or styrene oxide
  • reaction products tion products of cyclodextrins with alkylating agents for example Ci * to C 22 alkyl halides, for example methyl
  • cyclodextrin A further modification of cyclodextrin is also possible by reaction with chloroacetic acid.
  • Derivatives of cyclodextrins which contain cyclodextrin structures can also be obtained by enzymatic linkage with maltose oligomers.
  • Examples of reaction products of the type specified above are dimethyl- ⁇ -cyclodextrin, hydroxypropyl- ⁇ -cyclodextrin and sulfonatopropylhydroxypropyl- ⁇ -cyclodextrin.
  • use is preferably made of ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin and / or 2,6-dimethyl- ⁇ -cyclodextrin.
  • the compounds of group (b) include water-insoluble or at most up to 20 g / l of ethylenically unsaturated monomers which are soluble in water at 20 ° C.
  • examples of such compounds are C 2 - to C 4 o-alkyl esters of acrylic acid or Cx * to C 4 o-alkyl esters of methacrylic acid, such as methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, n-butyl acrylate , n-butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate, pentyl acrylate, pentyl methacrylate, n-hexyl acrylate, n-hexyl methacrylate, n-h
  • ⁇ -olefins with 2 to 30 C atoms and polyisobutylenes with 3 to 50, preferably 15 to 35, isobutene units.
  • ⁇ -olefins are ethylene, propylene, n-butene, isobutene, pentene-1, cyclopentene, hexene-1, cyclohexene, octene-1 and diisobutylene (2,4,4-trimethyl-1-pentene, if appropriate in a mixture with 2,4,4-trimethyl-2-pentene), decene-1, dodecene-1, octadecene-1, C 2 / -C 4 -olefins, C 20 / C 24 -olefins, styrene, ⁇ -methylstyrene, polypropylene with terminal vinyl or vinylidene group with 3 to 100 propylene units, oligohexene or
  • Another class of monomers of group (b) are N-alkyl-substituted acrylamides and methacrylamides, such as N-tert. -Butyl acrylate, N-hexyl methacrylamide, N-octyl acrylamide, N-nonyl methacrylamide, N-dodecyl methacrylamide, N-hexadecyl methacrylamide, N-methacrylamide caproic acid, N-methacrylamido decanoic acid, N, N-dibutyla crylamide, N-hydroxyethyl acrylamide and N-hydroxyethyl methacrylamide.
  • N-alkyl-substituted acrylamides and methacrylamides such as N-tert. -Butyl acrylate, N-hexyl methacrylamide, N-octyl acrylamide, N-nonyl methacrylamide, N-dodecyl methacrylamide
  • Other monomers of group (b) are vinyl alkyl ethers having 1 to 40 carbon atoms in the alkyl radical, for example methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, 2-ethylhexyl vinyl ether, decyl vinyl ether, dodecyl vinyl ether, octadecyl vinyl ether, 2- (Diethylamino) ethyl vinyl ether, 2- (di-n-butylamino) ethyl vinyl ether, methyl diglycol vinyl ether and the corresponding allyl ethers such as allyl methyl ether, allyl ethyl ether, allyl n-propyl ether, allyl isobutyl ether and allyl 2-ethylhexyl ether.
  • methyl vinyl ether
  • Derive carbon atoms for example mono-n-butyl maleate, dibutyl maleate, monodecyl maleate, didododecyl maleate, monooctadecyl maleate and dioctadecale maleate.
  • vinyl esters of saturated C 3 to C 4 o-carboxylic acids such as vinyl propionate, vinyl butyrate, vinyl valerate, vinyl 2-ethylhexanoate, vinyl decanoate, vinyl palmitate, vinyl stearate and vinyl laurate.
  • Other group (b) monomers are methacrylonitrile, vinyl chloride, vinylidene chloride, isoprene and butadiene.
  • the above-mentioned monomers of group (b) can be used alone or in a mixture to prepare the complexes or in the polymerization.
  • Preferred monomers (b) there are suitable in consideration Mende compounds are C 2 - to C 3 0-alkyl esters of acrylic acid, Ci to C3 o-alkyl esters of methacrylic acid, C 2 - to C 30 - ⁇ -olefins, Ci to C 2 o-alkyl vinyl ether, styrene, butadiene, isoprene or mixtures thereof.
  • Particularly preferred monomers (b) are methyl methacrylate, butyl acrylate, lauryl acrylate, stearyl acrylate, isobutene, hexene-1, diisobutene, dodecene-1, octadecene-1, polyisobutenes with 15 to 35 isobutene units, styrene, methyl vinyl ether, ethyl vinyl ether, Octadecyl vinyl ether or mixtures thereof.
  • crosslinking monomers which have at least 2 ethylenically unsaturated, non-conjugated double bonds in the molecule. Such compounds are mostly used in a relatively small amount together with water-soluble monomers in order to produce water-swellable polymers. Such copolymers are important, for example, as water-absorbing polymers. The problem here is that you usually had to use water-soluble crosslinking agents in order to produce uniform polymers. According to the method according to the invention, it is also possible to dissolve very poorly in water or water-insoluble crosslinkers to be polymerized homogeneously into the resulting crosslinked copolymer with a predominant proportion of water-soluble monomers.
  • Suitable crosslinkers of component (b) are, for example, divinylbenzene, diallyl phthalate, allyl vinyl ether and / or diallyl fumarate.
  • the water-insoluble crosslinkers can be polymerized alone to give homopolymers or together with water-soluble monomers to give copolymers. If crosslinking agents are used in the copolymerization of water-soluble monomers, the amount of crosslinking agent, based on the amounts of monomers used in the polymerization, is 0.05 to 10, preferably 0.1 to 2,% by weight.
  • Complexes of (a) and (b) are prepared by the methods known from the prior art mentioned above. For example, a compound containing cyclodextrin and / or a cyclodextrin structure and at least one monomer (b) can be dissolved together in a solvent and the solution heated if necessary. After removal of the solvent, a crystalline complex remains. One molecule of the compounds (a) can contain up to two molecules of the monomers (b) bound in complex form. These complexes are referred to in the literature as host / guest complexes. The compounds containing cyclodextrins or cyclodextrin structures contain the water-insoluble monomer of group (b) in their cavities.
  • the complexes from the compounds of groups (a) and (b) can also be prepared, for example, by adding the individual components (a) and (b) to a solvent which, for example, only contains the cyclodextrins and / or cyclodextrin structure.
  • Compounds containing compounds dissolves, but not the water-insoluble monomers.
  • the process of forming the host / guest complexes can be accelerated by heating, stirring, ultrasound treatment or other mechanical or thermal measures.
  • the complexes can also be formed from the compounds (a) and (b) in a solvent which only dissolves the monomers (b) but not the cyclodextrins.
  • the complexes can also be formed in the absence of solvent and diluent if the compounds containing cyclodextrins and / or cyclodextrin structures are present in a sufficiently fine distribution and are brought into contact with the monomers (b). It is also possible to evaporate the monomers (b) and to act on the cyclodextrins via the gas phase. Such a mode of operation is particularly preferred, for example, in the production of complexes from cyclodextrins and low-boiling monomers (b). For example, ethylene, propylene or isobutene can be passed over finely divided cyclodextrins. The formation of the complexes can take place under normal pressure, under reduced pressure or be done under increased pressure.
  • the molar ratio of components (a): (b) is 1: 2 to 10: 1 and is preferably in the range from 1: 1 to 5: 1.
  • the hydrophobic monomers (b) can be radically polymerized alone or in a mixture with one another. It is also possible to subject at least one class of monomers (b) to the copolymerization with water-soluble monomers.
  • Suitable water-soluble monomers which are referred to below as monomers of group (c), are, for example, monoethylenically unsaturated C 3 to C 5 carboxylic acids, their amides and esters with amino alcohols of the formula
  • R C 2 - to Cs-alkylene
  • R 1 , R 2 , R 3 H, CH 3 , C 2 H 5 , C 3 H 7
  • is an anion.
  • Amides derived from amines of the formula are also suitable
  • These compounds are, for example, acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, acrylamide, methacrylamide, crotonic acid amide, dimethylaminoethyl acrylate, diethylaminoethylacrylate, dimethylaminoneopentyl acrylate and dimethylaminoethyl methacrylate and dimethylamino methyl amine methyl dimethyl amine methacrylate.
  • the basic acrylates and methacrylates or basic amides derived from the compounds of the formula II are used in the form of the salts with strong mineral acids, sulfonic acids or carboxylic acids or in quaternized form.
  • the anion X ⁇ for the compounds of formula I is the acid residue of the mineral acids or the carboxylic acids or methosulfate, ethosulfate or halide from a quaternizing agent.
  • Further water-soluble monomers of group (c) are N-vinylpyrrolidone, N-vinylformamide, acrylamidopropanesulfonic acid, vinylphosphonic acid and / or alkali metal or ammonium salts of the vinyl sulfonic acid.
  • the other acids can also be used in the polymerization either in non-neutralized form or in partially or up to 100% neutralized form.
  • dialylammonium compounds such as dimethyldiallylammonium chloride, diethyldiallylammonium chloride or diallylpiperidinium bromide
  • N-vinylimidazolium compounds such as salts or quaternization products of N-vinylimidazole and l-vinyl-2-methylimidazole, such as N-vinylimidazoline, l-vinyl-2-methylimidazoline, l-vinyl-2-ethylimidazoline or l-vinyl-2-n-propylimidazoline, which are also used in quaternized form or as a salt in the polymerization.
  • Preferred monomers of group (c) are monoethylenically unsaturated C 3 to C 5 carboxylic acids, vinyl sulfonic acid, acrylamido methyl propane sulfonic acid, vinyl phosphonic acid, N-vinyl formamide, dimethylaminoethyl (meth) acrylates, alkali metal or ammonium salts of the monomers or mixtures mentioned mentioned of the monomers with each other.
  • the use of acrylic acid or mixtures of acrylic acid and maleic acid or their alkali metal salts in the production of hydrophobically modified water-soluble copolymers is of particular economic importance.
  • At least one monomer from group (c), for example acrylic acid is polymerized with at least one complex of compounds containing cyclodextrins and / or cyclodextrin structures and at least one Class of crosslinking monomers which have at least two ethylenically unsaturated, non-conjugated double bonds in the molecule and are insoluble in water.
  • the crosslinked polymers can optionally also be prepared in the presence of crosslinkers which are soluble in water and likewise have at least two ethylenically unsaturated, non-conjugated double bonds in the molecule.
  • Such monomers are, for example, N, N '-methylene-bisacrylamide, polyethylene glycol diacrylates and polyethylene glycol dimethacrylates, which are each derived from polyethylene glycols with a molecular weight of 126 to 8500, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, ethylene glycol diacrylate, hexylene glycol diacrylate diacrylate diacrylate diacrylate diacrylate diacrylate, Diacrylates and dimethacrylates of block copolymers of ethylene oxide and propylene oxide, polyhydric alcohols esterified twice or three times with acrylic acid or methacrylic acid, such as glycerol or pentaerythritol, triallylamine, tetraallylethylenediamine, trimethylolpropane diallyl ether, pentaerythritol triallyl ether and / or N, N '-divinylethylene urea.
  • aqueous medium preferably in water.
  • aqueous medium should be understood to mean mixtures of water and thus miscible organic liquids.
  • Water-miscible organic liquids are, for example, glycols such as Ethylen ⁇ glycol, propylene glycol, block copolymers of ethylene oxide and propylene oxide, alkoxylated C -.- to C 2 o-alcohols, Essigklareester of glycols and polyglycols, alcohols such as methanol, ethanol, isopropanol and butanol, acetone , Tetrahydrofuran, dimethylformamide, N-methylpyrrolidone or also mixtures of the solvents mentioned. If the polymerization takes place in mixtures of water and water-miscible solvents, the proportion of water-miscible solvents in the mixture is up to
  • the polymerization is preferably carried out in water.
  • the solution or precipitation polymerization of the monomers is usually carried out with the exclusion of oxygen at temperatures of, for example, 20 to 200, preferably 35 to 140 ° C.
  • the polymerization can be carried out batchwise or continuously.
  • at least some of the monomers, initiators and optionally regulators are metered uniformly into the reaction vessel during the polymerization.
  • the monomers and the polymerization initiator can also be initially introduced and polymerized in the reactor, where appropriate cooling must be used to ensure that the heat of polymerization is sufficiently rapidly removed.
  • Possible polymerization initiators are the compounds which are customarily used in free-radical polymerizations and which give free radicals under the polymerization conditions, for example peroxides, hydroperoxides, peroxodisulfates, percarbonates, peroxiesters, hydrogen peroxide and azo compounds.
  • initiators are hydrogen peroxide, dibenzoyl peroxide, dicyclohexyl peroxide dicarbonate, dilauryl peroxide, methyl ethyl ketone peroxide, acetylacetone peroxide, tert. -Butyl hydroperoxide, cumene hydroperoxide, tert. Butyl perneodecanoate, tert.
  • the initiators are usually used in amounts of up to 15, preferably 0.02 to 10,% by weight, based on the monomers to be polymerized.
  • the initiators can be used alone or as a mixture with one another.
  • the use of the known redox catalysts, in which the reducing component is used in molar deficiency, are also suitable.
  • Known redox catalysts are, for example, salts of transition metals such as iron (II) sulfate, cobalt (II) chloride, nickel (II) sulfate, copper (I) chloride, manganese (II) acetate, vanadium (III) acetate.
  • Redox catalysts also include reducing sulfur compounds, such as sulfites, bisulfites, thiosulfates, dithionites and tetrathionates of alkali metals and ammonium compounds, or reducing phosphorus compounds in which phosphorus has an oxidation number of 1 to 4, such as sodium hypophosphite and phosphorous acid and phosphites.
  • reducing sulfur compounds such as sulfites, bisulfites, thiosulfates, dithionites and tetrathionates of alkali metals and ammonium compounds
  • reducing phosphorus compounds in which phosphorus has an oxidation number of 1 to 4, such as sodium hypophosphite and phosphorous acid and phosphites.
  • the polymerization can optionally be carried out in the presence of regulators.
  • Suitable regulators are, for example, aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde and isobutyraldehyde, formic acid, ammonium formate, hydroxylammonium sulfate and hydroxylammonium phosphate.
  • regulators which contain sulfur in organically bound form such as organic compounds having SH groups, such as thioglycol acetic acid, mercaptopropionic acid, mercaptoethanol, mercaptopropanol, mercaptobutanols, mercaptohexanol, dodecyl mercaptan and tert. -Dodecyl mercaptan. Salts of hydrazine such as hydrazinium sulfate can also be used as regulators.
  • the amounts of regulator, based on the monomers to be polymerized are 0 to 20, preferably 0.5 to 15,% by weight.
  • the polymerization can also be carried out in bulk. This is possible because the complexes from (a) and (b) are compatible with the water-soluble monomers, so that no phase separation occurs during the copolymerization.
  • the water-insoluble monomers can be introduced into an aqueous solution of compounds containing cyclodextrins and / or cyclodextrin structures meter in and undergo the polymerization in the presence of polymerization initiators and optionally regulators. fen.
  • host / guest complexes are formed from the water-insoluble monomers (b) and the compounds present therein and contain cyclodextrins and / or cyclodextrin structures, which permit the production of uniform homopolymers and copolymers.
  • the cyclodextrins can also form host / guest complexes with water-soluble monomers.
  • the polymers are optionally in the form of inclusion compounds or can be obtained therefrom.
  • inclusion compounds from the polymers and the compounds of component (a) is reversible.
  • the polymers are usually present separately from the compounds (a).
  • the polymers are present in the form of inclusion compounds after production, they can be added, for example, by adding e.g. Wetting agents such as long chain ethoxylated alcohols are released to the reaction mixture from the inclusion compounds and isolated.
  • the polymers modified hydrophobically by the processes according to the invention can be used, for example, as thickeners, e.g. in cosmetic creams or lotions, as a component in lacquer formulations, as sizing agents for papermaking, as a coating material, as adhesive raw material, as a detergent additive or as a dispersant for pigments.
  • Such polymers can also be used as tanning, retanning, fatliquoring or water repellents for leather production.
  • Hydrophobically modified polymers also serve as polymeric emulsifiers which stabilize a fine distribution of a non-polar substance in a polar phase.
  • Crosslinked polyacrylic acids which are obtainable, for example, by copolymerizing acrylic acid in the presence of at least one complex of cyclodextrin and a water-insoluble crosslinking agent such as divinylbenzene, are used as superabsorbents or thickeners for aqueous systems.
  • complexes of monomers specified in the table were prepared with DMCD in a molar ratio of 1: 1.
  • the resulting polymer was separated and dried for 30 to 24 hours.
  • the polymer was obtained in 94% yield.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Wood Science & Technology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Emergency Medicine (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The invention relates to a method for the production of polymerisates from monomers insoluble in water and monomers optionally soluble in water by radical polymerisation of the monomers in water as the diluting agent, wherein the monomers insoluble in water are used in the form of complexes consisting of (a) cyclodextrins and/or compounds containing cyclodextrin structures, and (b) monomers which are insoluble in water or ethylenically unsaturated and soluble in water up to a maximum of 20 g/l at 20 °C, in the mol ratio (a):(b) of from 1:2 to 10:1, or the monomers are polymerised in the presence of up to 5 mol, in relation to 1 mol of the monomers (b), of cyclodextrins and/or compounds containing cyclodextrin structures. It also relates to the use of the polymerisates as sizing agents for the production of paper, as coating agents, as thickening agents for aqueous systems, as detergent additives and as thickening agents in cosmetic creams or lotions.

Description

Verfahren zur Herstellung von Polymerisaten in wäßrigem Medium und ihre VerwendungProcess for the preparation of polymers in an aqueous medium and their use
Beschreibungdescription
Die Erfindung betrifft ein Verfahren zur Herstellung von Polyme¬ risaten aus wasserunlöslichen Monomeren und gegebenenfalls was¬ serlöslichen Monomeren durch radikalische Polymerisation der Mo- nomeren in einem Verdünnungsmittel und die Verwendung der Polyme¬ risate als Leimungsmittel für die Papierherstellung, als Be¬ schichtungsmittel, als Verdickungsmittel für wäßrige Systeme, als Waschmittelzusatz und als Verdickungsmittel in kosmetischen Cre¬ mes oder Lotionen.The invention relates to a process for the production of polymers from water-insoluble monomers and optionally water-soluble monomers by radical polymerization of the monomers in a diluent and the use of the polymers as sizing agents for papermaking, as coating agents, as thickeners for aqueous systems, as a detergent additive and as a thickener in cosmetic creams or lotions.
Die radikalische Polymerisation von Monomeren in wäßrigen Lösun¬ gen ist von besonderem technischen Interesse. Voraussetzung für eine Lösungspolymerisation der Monomeren ist jedoch, daß sich die Monomeren in dem jeweils eingesetzten Lösemittel auch lösen. So ist es beispielsweise nicht möglich, unpolare Monomere nach Art einer Lösungspolymerisation in Wasser zu polymerisieren. Wasser¬ lösliche Monomere, wie Acrylsäure oder Maleinsäure, werden indu¬ striell nach dem Verfahren der Lösungspolymerisation in Wasser hergestellt. Die Copolymerisation von beispielsweise Acrylsäure mit wasserunlöslichen Monomeren ist daher in wäßrigem Medium nicht möglich.The radical polymerization of monomers in aqueous solutions is of particular technical interest. However, a prerequisite for solution polymerization of the monomers is that the monomers also dissolve in the solvent used in each case. For example, it is not possible to polymerize non-polar monomers in the manner of solution polymerization in water. Water-soluble monomers, such as acrylic acid or maleic acid, are produced industrially by the process of solution polymerization in water. The copolymerization of, for example, acrylic acid with water-insoluble monomers is therefore not possible in an aqueous medium.
Nach dem Verfahren der Wasser-in-Öl-Emulsionspolymerisation wer¬ den ebenfalls wasserlösliche Monomere radikalisch polymerisiert. Diese Methode versagt allerdings auch dann, wenn größere Mengen an wasserunlöslichen Comonomeren in das Copolymerisat eingebaut werden sollen, weil die wasserlöslichen Monomeren in der wäßrigen Phase und die wasserunlöslichen Monomeren in der Ölphase polyme¬ risieren, so daß praktisch keine Copolymerisation eintritt.According to the water-in-oil emulsion polymerization process, water-soluble monomers are also polymerized by free radicals. However, this method also fails if larger amounts of water-insoluble comonomers are to be incorporated into the copolymer because the water-soluble monomers polymerize in the aqueous phase and the water-insoluble monomers in the oil phase, so that virtually no copolymerization occurs.
Auch bei der Massepolymerisation von wasserlöslichen und wasser¬ unlöslichen Monomeren ist es notwendig, daß die unterschiedlichen Monomeren miteinander verträglich sind, um einheitliche Polymeri¬ sate zu erhalten. Dies ist bei Comonomeren mit stark unterschied- licher Polarität jedoch nicht gewährleistet. Auch bei anderen Po- lymersationstechniken wie der Fällungspolymerisation, ist die Un¬ verträglichkeit von wasserunlöslichen Monomeren mit den wäßrigen Medien oftmals ein entscheidender Nachteil.Even in the bulk polymerization of water-soluble and water-insoluble monomers, it is necessary for the different monomers to be compatible with one another in order to obtain uniform polymers. However, this is not guaranteed for comonomers with very different polarities. In other polymerization techniques, too, such as precipitation polymerization, the incompatibility of water-insoluble monomers with the aqueous media is often a decisive disadvantage.
Aus dem Stand der Technik ist außerdem bekannt, daß Cyclodextrine als organische Wirt-Moleküle dienen können und in der Lage sind, ein oder zwei Gastmoleküle unter Ausbildung supramolekularer Strukturen aufzunehmen, vgl. W. Saenger, Angew. Chem. Int. Ed. Engl. 1980, 19_, 344 und G. Wenz. Angew. Chem. Int. Ed. Engl. 1994, 3_3_, 803-822. So sind beispielsweise kristalline Komplexe aus Ethylen und Cyclodextrin bekannt.It is also known from the prior art that cyclodextrins can serve as organic host molecules and are able to form one or two guest molecules with the formation of supramolecular ones To include structures, cf. W. Saenger, Angew. Chem. Int. Ed. Engl. 1980, 19_, 344 and G. Wenz. Appl. Chem. Int. Ed. Engl. 1994, 3_3_, 803-822. For example, crystalline complexes of ethylene and cyclodextrin are known.
Aus J. Macromol.Sei. -Chem. , A13, 87-109 (1979) sind Einschlußver¬ bindungen von Polymeren bekannt, die durch radikalische Polymeri¬ sation von Monomeren in einer ß-Cyclodextrinmatrix in Dimethyl- formamidlösung hergestellt werden. Als Monomere werden Vinyliden- Chlorid, Methylacrylat, Styrol und Methacrylnitril genannt.From J. Macromol. -Chem. , A13, 87-109 (1979), inclusion compounds of polymers are known which are produced by radical polymerisation of monomers in a β-cyclodextrin matrix in dimethylformamide solution. Vinylidene chloride, methyl acrylate, styrene and methacrylonitrile are mentioned as monomers.
Aus der DE-A-4 009 621 sind schnellabbindende KlebstoffZusammen¬ setzungen auf Basis von α-Cyanacrylaten bekannt, die in α-Cyan- acrylaten zumindest partiell lösliche Derivate von Cyclodextrinen enthalten.DE-A-4 009 621 discloses fast-setting adhesive compositions based on α-cyanoacrylates which contain at least partially soluble derivatives of cyclodextrins in α-cyanoacrylates.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Ver¬ fahren zur Herstellung von Polymerisaten aus wasserunlöslichen Monomeren und gegebenenfalls wasserlöslichen Monomeren durch radikalische Polymerisation der Monomeren in einem Verdünnungs¬ mittel zur Verfügung zu stellen.The present invention has for its object to provide a process for the preparation of polymers from water-insoluble monomers and, if appropriate, water-soluble monomers by radical polymerization of the monomers in a diluent.
Die Aufgabe wird erfindungsgemäß gelöst, wenn man die Polymeri¬ sation in Wasser als Verdünnungsmittel durchführt und die wasser- unlöslichen Monomeren in Form von Komplexen ausThe object is achieved according to the invention if the polymerization is carried out in water as a diluent and the water-insoluble monomers in the form of complexes
(a) Cyclodextrinen und/oder Cyclodextrinstrukturen enthaltenden Verbindungen und(a) Cyclodextrins and / or compounds containing cyclodextrin structures and
(b) wasserunlöslichen oder höchstens bis zu 20 g/1 bei 20°C was¬ serlöslichen ethylenisch ungesättigten Monomeren(b) water-insoluble or at most up to 20 g / l of water-soluble ethylenically unsaturated monomers at 20 ° C.
im Molverhältnis (a) : (b) von 1:2 bis 10:1 einsetzt oder die Mono¬ meren in Gegenwart von bis zu 5 Mol, bezogen auf 1 Mol der Mono- meren (b) , an Cyclodextrinen und/oder Cyclodextrinstrukturen ent¬ haltenden Verbindungen polymerisiert.in a molar ratio (a): (b) of 1: 2 to 10: 1 or the monomers in the presence of up to 5 mol, based on 1 mol of the monomers (b), of cyclodextrins and / or cyclodextrin structures ¬ holding compounds polymerized.
Als Cyclodextrine kommen die in den oben genannten Literatur- stellen beschriebenen α-, ß-, γ- und δ-Cyclodextrine in Betracht. Sie werden beispielsweise durch enzymatischen Abbau von Stärke gewonnen und bestehen aus 6 bis 9 D-Glucoseeinheiten, die über eine α-1,4-glycosidische Bindung miteinander verknüpft sind. α-Cy- clodextrin besteht aus 6 Glucosemolekülen. Unter Cyclodextrin¬ strukturen enthaltenden Verbindungen sollen Umsetzungsprodukte von Cyclodextrinen mit reaktiven Verbindungen verstanden werden, z.B. Umsetzungsprodukte von Cyclodextrinen mit Alkylenoxiden wie Ethylenoxid, Propylenoxid, Butylenoxid oder Styroloxid, Umset- zungsprodukte von Cylcodextrinen mit Alkylierungsmitteln, z.B. Ci* bis C22-Alkylhalogeniden, z.B. Methylchlorid, Ethylchlorid, Butyl- Chlorid, Ethylbromid, Butylbromid, Benzylchlorid, Laurylchlorid, Stearylchlorid oder Behenylchlorid und Dimethylsulfat. Eine wei- tere Modifizierung von Cyclodextrin ist auch durch Umsetzung mit Chloressigsäure möglich. Derivate von Cyclodextrinen, die Cyclo¬ dextrinstrukturen enthalten, sind auch durch enzymatische Verknüpfung mit Maltose-Oligomeren erhältlich. Beispiele für Um¬ setzungsprodukte der oben angegebenen Art sind Dimethyl-ß-cyclo- dextrin, Hydroxypropyl-ß-cyclodextrin und Sulfonatopropylhydroxy- propyl-ß-cyclodextrin. Von den Verbindungen der Gruppe (a) verwendet man vorzugsweise α-Cyclodextrin, ß-Cyclodextrin, γ-Cy¬ clodextrin und/oder 2,6-Dirnethyl-ß-cyclodextrin.Suitable cyclodextrins are the α-, β-, γ- and δ-cyclodextrins described in the references mentioned above. They are obtained, for example, by enzymatic breakdown of starch and consist of 6 to 9 D-glucose units which are linked to one another via an α-1,4-glycosidic bond. α-Cyclodextrin consists of 6 glucose molecules. Compounds containing cyclodextrin structures are to be understood as meaning reaction products of cyclodextrins with reactive compounds, for example reaction products of cyclodextrins with alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide or styrene oxide, reaction products tion products of cyclodextrins with alkylating agents, for example Ci * to C 22 alkyl halides, for example methyl chloride, ethyl chloride, butyl chloride, ethyl bromide, butyl bromide, benzyl chloride, lauryl chloride, stearyl chloride or behenyl chloride and dimethyl sulfate. A further modification of cyclodextrin is also possible by reaction with chloroacetic acid. Derivatives of cyclodextrins which contain cyclodextrin structures can also be obtained by enzymatic linkage with maltose oligomers. Examples of reaction products of the type specified above are dimethyl-β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfonatopropylhydroxypropyl-β-cyclodextrin. Of the compounds of group (a), use is preferably made of α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin and / or 2,6-dimethyl-β-cyclodextrin.
Zu den Verbindungen der Gruppe (b) zählen wasserunlösliche oder höchstens bis zu 20 g/1 in Wasser bei 20°C lösliche ethylenisch ungesättigte Monomere. Beispiele für solche Verbindungen sind C2- bis C4o-Alkylester der Acrylsäure oder Cx* bis C4o-Alkylester der Methacrylsäure, wie Methylmethacrylat, Ethylacrylat, Ethylmeth- acrylat, Propylacrylat, Propylmethacrylat, Isopropylacrylat, Is- propylmethacrylat, n-Butylacrylat, n-Butylmethacrylat, Isobutyl- acrylat, Isobutylmethacrylat, tert.-Butylacrylat, Pentylacrylat, Pentylmethacrylat, n-Hexylacrylat, n-Hexylmethacrylat, n-Heptyla- crylat, n-Heptylmethacrylat, n-Octylacrylat, n-Octylmethacrylat, 2-Ethylhexylacrylat, 2-Ethylhexylmethacrylat, Decylacrylat, De- cylmethacrylat, Laurylacrylat, Laurylmethacrylat, Palmityl- acrylat, Palmitylmethacrylat, Octadecylacrylat, Octadecylmetha- crylat, Phenoxyethylacrylat, Phenoxyethylmethacrylat, Phenyl- acrylat und Phenylmethacrylat.The compounds of group (b) include water-insoluble or at most up to 20 g / l of ethylenically unsaturated monomers which are soluble in water at 20 ° C. Examples of such compounds are C 2 - to C 4 o-alkyl esters of acrylic acid or Cx * to C 4 o-alkyl esters of methacrylic acid, such as methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, n-butyl acrylate , n-butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate, pentyl acrylate, pentyl methacrylate, n-hexyl acrylate, n-hexyl methacrylate, n-heptyl acrylate, n-heptyl methacrylate, n-octyl acrylate, n-octyl methacrylate, 2-ethylhexyl methacrylate, decyl acrylate, decyl methacrylate, lauryl acrylate, lauryl methacrylate, palmityl acrylate, palmityl methacrylate, octadecyl acrylate, octadecyl methacrylate, phenoxyethyl acrylate, phenoxyethyl methacrylate, phenyl acrylate and phenyl methacrylate.
Weitere Monomere der Gruppe (b) sind α-Olefine mit 2 bis 30 C- Atomen sowie Polyisobutylene mit 3 bis 50, vorzugsweise 15 bis 35 Isobuten-Einheiten. Beispiele für α-Olefine sind Ethylen, Propylen, n-Buten, Isobuten, Penten-1, Cyclopenten, Hexen-1, Cyclohexen, Octen-1, Diisobutylen (2,4,4-Trimethyl-1-penten gege¬ benenfalls in Mischung mit 2,4,4-Trimethyl-2-penten) , Decen-1, Dodecen-1, Octadecen-1, Cι2/Cι4-Olefine, C20/C24-Olefine, Styrol, α-Methylstyrol, Polypropylene mit endständiger Vinyl- bzw. Viny- lidengruppe mit 3 bis 100 Propyleneinheiten, Oligohexen oder Oli- gooctadecen.Other monomers of group (b) are α-olefins with 2 to 30 C atoms and polyisobutylenes with 3 to 50, preferably 15 to 35, isobutene units. Examples of α-olefins are ethylene, propylene, n-butene, isobutene, pentene-1, cyclopentene, hexene-1, cyclohexene, octene-1 and diisobutylene (2,4,4-trimethyl-1-pentene, if appropriate in a mixture with 2,4,4-trimethyl-2-pentene), decene-1, dodecene-1, octadecene-1, C 2 / -C 4 -olefins, C 20 / C 24 -olefins, styrene, α-methylstyrene, polypropylene with terminal vinyl or vinylidene group with 3 to 100 propylene units, oligohexene or oligooctadecene.
Eine weitere Klasse von Monomeren der Gruppe (b) sind N-Alkylsub¬ stituierte Acrylamide und Methacrylamide, wie N-tert. -Butylacry- lamid, N-Hexylmethacrylamid, N-Octylacrylamid, N-Nonylmethacryla- mid, N-Dodecylmethacrylamid, N-Hexadecylmethacrylamid, N-Metha- crylamidocapronsäure, N-Methacrylamidoundecansäure, N,N-Dibutyla- crylamid, N-Hydroxyethylacrylamid und N-Hydroxyethylmethacryl- amid.Another class of monomers of group (b) are N-alkyl-substituted acrylamides and methacrylamides, such as N-tert. -Butyl acrylate, N-hexyl methacrylamide, N-octyl acrylamide, N-nonyl methacrylamide, N-dodecyl methacrylamide, N-hexadecyl methacrylamide, N-methacrylamide caproic acid, N-methacrylamido decanoic acid, N, N-dibutyla crylamide, N-hydroxyethyl acrylamide and N-hydroxyethyl methacrylamide.
Andere Monomere der Gruppe (b) sind Vinylalkylether mit 1 bis 40 Kohlenstoffatomen im Alkylrest, beispielsweise Methylvinylether, Ethylvinylether, n-Propylvinylether, Isopropylvinylether, n-Bu- tylvinylether, Isobutylvinylether, 2-Ethylhexylvinylether, Decyl- vinylether, Dodecylvinylether, Octadecylvinylether, 2- (Diethyl- amino)ethylvinylether, 2- (Di-n-butyl-amino)ethylvinylether, Me- thyldiglykolvinylether sowie die entsprechenden Allylether wie Allylmethylether, Allylethylether, Allyl-n-propylether, Allyl- isobutylether und Allyl-2-ethylhexylether. Außerdem eignen sich als Verbindungen der Gruppe (b) die wasserunlöslichen oder höch¬ stens bis zu 20 g/1 in Wasser löslichen Ester der Maleinsäure und Fumarsaure, die sich von einwertigen Alkoholen mit 1 bis 22Other monomers of group (b) are vinyl alkyl ethers having 1 to 40 carbon atoms in the alkyl radical, for example methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, 2-ethylhexyl vinyl ether, decyl vinyl ether, dodecyl vinyl ether, octadecyl vinyl ether, 2- (Diethylamino) ethyl vinyl ether, 2- (di-n-butylamino) ethyl vinyl ether, methyl diglycol vinyl ether and the corresponding allyl ethers such as allyl methyl ether, allyl ethyl ether, allyl n-propyl ether, allyl isobutyl ether and allyl 2-ethylhexyl ether. Also suitable as compounds of group (b) are the water-insoluble or at most up to 20 g / 1 water-soluble esters of maleic acid and fumaric acid, which are derived from monohydric alcohols with 1 to 22
Kohlenstoffatomen ableiten, beispielsweise Maleinsäuremono-n-bu- tylester, Maleinsäuredibutylester, Maleinsäuremonodecylester, Ma- leinsäuredidodecylester, Maleinsäuremonooctadecylester und Ma- leinsäuredioctadecylester. Außerdem eignen sich Vinylester von gesättigten C3- bis C4o-Carbonsäuren wie Vinylpropionat, Vinyl- butyrat, Vinylvalerat, Vinyl-2-ethylhexanoat, Vinyldecanoat, Vi- nylpalmitat, Vinylstearat und Vinyllaurat. Andere Monomere der Gruppe (b) sind Methacrylnitril, Vinylchlorid, Vinylidenchlorid, Isopren und Butadien.Derive carbon atoms, for example mono-n-butyl maleate, dibutyl maleate, monodecyl maleate, didododecyl maleate, monooctadecyl maleate and dioctadecale maleate. Also suitable are vinyl esters of saturated C 3 to C 4 o-carboxylic acids such as vinyl propionate, vinyl butyrate, vinyl valerate, vinyl 2-ethylhexanoate, vinyl decanoate, vinyl palmitate, vinyl stearate and vinyl laurate. Other group (b) monomers are methacrylonitrile, vinyl chloride, vinylidene chloride, isoprene and butadiene.
Die oben genannte Monomeren der Gruppe (b) können allein oder in Mischung zur Herstellung der Komplexe oder bei der Polymerisation eingesetzt werden. Bevorzugt als Monomere (b) in Betracht kom¬ mende Verbindungen sind C2- bis C30-Alkylester der Acrylsäure, Ci- bis C3o-Alkylester der Methacrylsäure, C2- bis C30-α-Olefine, Ci- bis C2o-Alkylvinylether, Styrol, Butadien, Isopren oder deren Mischungen. Besonders bevorzugte Monomere (b) sind Methylmeth¬ acrylat, Butylacrylat, Laurylacrylat, Stearylacrylat, Isobuten, Hexen-1, Diisobuten, Dodecen-1, Octadecen-1, Polyisobutene mit 15 bis 35 Isobuten-Einheiten, Styrol, Methylvinylether, Ethylvinyl¬ ether, Octadecylvinylether oder deren Mischungen.The above-mentioned monomers of group (b) can be used alone or in a mixture to prepare the complexes or in the polymerization. Preferred monomers (b) there are suitable in consideration Mende compounds are C 2 - to C 3 0-alkyl esters of acrylic acid, Ci to C3 o-alkyl esters of methacrylic acid, C 2 - to C 30 -α-olefins, Ci to C 2 o-alkyl vinyl ether, styrene, butadiene, isoprene or mixtures thereof. Particularly preferred monomers (b) are methyl methacrylate, butyl acrylate, lauryl acrylate, stearyl acrylate, isobutene, hexene-1, diisobutene, dodecene-1, octadecene-1, polyisobutenes with 15 to 35 isobutene units, styrene, methyl vinyl ether, ethyl vinyl ether, Octadecyl vinyl ether or mixtures thereof.
Als Monomere (b) eignen sich außerdem vernetzend wirkende Monomere, die mindestens 2 ethylenisch ungesättigte, nicht konju- gierte Doppelbindungen im Molekül aufweisen. Solche Verbindungen werden meistens in relativ geringer Menge zusammen mit wasserlös¬ lichen Monomeren verwendet, um wassercjuellbare Polymerisate her¬ zustellen. Solche Copolymerisate haben beispielsweise Bedeutung als wasserabsorbierende Polymere. Das Problem hierbei ist, daß man hierfür meistens wasserlösliche Vernetzer verwenden mußte, um einheitliche Polymerisate herzustellen. Nach dem erfindungs¬ gemaßen Verfahren gelingt es, auch sehr schwer in Wasser lösliche bzw. wasserunlösliche Vernetzer homogen in das entstehende ver¬ netzte Copolymerisat mit einem überwiegenden Anteil an wasserlös¬ lichen Monomeren einzupolymerisieren. Geeignete Vernetzer der Komponente (b) sind beispielsweise Divinylbenzol, Diallyl- phthalat, Allylvinylether und/oder Diallylfumarat. Die wasserun¬ löslichen Vernetzer können allein zu Homopolymerisaten oder zu¬ sammen mit wasserlöslichen Monomeren zu Copolymerisaten polymerisiert werden. Falls Vernetzer bei der Copolymerisation von wasserlöslichen Monomeren verwendet werden, beträgt die Menge an Vernetzer, bezogen auf die bei der Polymerisation eingesetzten Mengen an Monomeren, 0,05 bis 10, vorzugsweise 0,1 bis 2 Gew.-%.Also suitable as monomers (b) are crosslinking monomers which have at least 2 ethylenically unsaturated, non-conjugated double bonds in the molecule. Such compounds are mostly used in a relatively small amount together with water-soluble monomers in order to produce water-swellable polymers. Such copolymers are important, for example, as water-absorbing polymers. The problem here is that you usually had to use water-soluble crosslinking agents in order to produce uniform polymers. According to the method according to the invention, it is also possible to dissolve very poorly in water or water-insoluble crosslinkers to be polymerized homogeneously into the resulting crosslinked copolymer with a predominant proportion of water-soluble monomers. Suitable crosslinkers of component (b) are, for example, divinylbenzene, diallyl phthalate, allyl vinyl ether and / or diallyl fumarate. The water-insoluble crosslinkers can be polymerized alone to give homopolymers or together with water-soluble monomers to give copolymers. If crosslinking agents are used in the copolymerization of water-soluble monomers, the amount of crosslinking agent, based on the amounts of monomers used in the polymerization, is 0.05 to 10, preferably 0.1 to 2,% by weight.
Nach den aus dem oben genannten Stand der Technik bekannten Me¬ thoden werden Komplexe aus (a) und (b) hergestellt. So kann man beispielsweise ein Cyclodextrin und/oder eine Cyclodextrinstruk¬ turen enthaltende Verbindung und mindestens ein Monomer (b) ge¬ meinsam in einem Lösemittel lösen und die Lösung gegebenenfalls erwärmen. Nach dem Entfernen des Lösemittels verbleibt ein kri¬ stalliner Komplex. Ein Molekül der Verbindungen (a) kann bis zu zwei Moleküle der Monomeren (b) komplexartig gebunden enthalten. Diese Komplexe werden in der Literatur als Wirt/Gast-Komplexe be¬ zeichnet. Die Cyclodextrine bzw. Cyclodextrinstrukturen ent¬ haltenden Verbindungen enthalten dabei in ihren Hohlräumen das wasserunlösliche Monomer der Gruppe (b) .Complexes of (a) and (b) are prepared by the methods known from the prior art mentioned above. For example, a compound containing cyclodextrin and / or a cyclodextrin structure and at least one monomer (b) can be dissolved together in a solvent and the solution heated if necessary. After removal of the solvent, a crystalline complex remains. One molecule of the compounds (a) can contain up to two molecules of the monomers (b) bound in complex form. These complexes are referred to in the literature as host / guest complexes. The compounds containing cyclodextrins or cyclodextrin structures contain the water-insoluble monomer of group (b) in their cavities.
Die Komplexe aus den Verbindungen der Gruppen (a) und (b) können beispielsweise auch dadurch hergestellt werden, daß man die ein¬ zelnen Komponenten (a) und (b) in ein Lösemittel einträgt, das beispielsweise nur die Cyclodextrine und/oder Cyclodextrinstruk- turen enthaltenden Verbindungen löst, nicht dagegen die wasserun¬ löslichen Monomeren. Durch Erwärmen, Rühren, Ultraschallbehand¬ lung oder anderweitige mechanische oder thermische Maßnahmen kann der Vorgang der Bildung der Wirt/Gast-Komplexe beschleunigt wer¬ den. Eine Bildung der Komplexe aus den Verbindungen (a) und (b) ist auch in einem solchen Lösemittel möglich, das nur die Monome¬ ren (b) löst, nicht jedoch die Cyclodextrine. Die Komplexe können auch in Abwesenheit von Löse- und Verdünnungsmittel gebildet wer¬ den, wenn die Cyclodextrine und/oder Cyclodextrinstrukturen ent¬ haltenden Verbindungen in genügend feiner Verteilung vorliegen und mit den Monomeren (b) in Kontakt gebracht werden. Außerdem ist es möglich, die Monomeren (b) zu verdampfen und über die Gas- phase auf die Cyclodextrine einwirken zu lassen. Eine solche Ar¬ beitsweise ist beispielsweise bei der Herstellung von Komplexen aus Cyclodextrinen und niedrig siedenden Monomeren (b) besonders bevorzugt. So kann man beispielsweise Ethylen, Propylen oder Iso¬ buten über fein verteilte Cyclodextrine leiten. Die Bildung der Komplexe kann bei Normaldruck, unter vermindertem Druck oder auch unter erhöhtem Druck vorgenommen werden. Das Molverhältnis der Komponenten (a) : (b) beträgt 1:2 bis 10:1 und liegt vorzugsweise in dem Bereich von 1:1 bis 5:1.The complexes from the compounds of groups (a) and (b) can also be prepared, for example, by adding the individual components (a) and (b) to a solvent which, for example, only contains the cyclodextrins and / or cyclodextrin structure. Compounds containing compounds dissolves, but not the water-insoluble monomers. The process of forming the host / guest complexes can be accelerated by heating, stirring, ultrasound treatment or other mechanical or thermal measures. The complexes can also be formed from the compounds (a) and (b) in a solvent which only dissolves the monomers (b) but not the cyclodextrins. The complexes can also be formed in the absence of solvent and diluent if the compounds containing cyclodextrins and / or cyclodextrin structures are present in a sufficiently fine distribution and are brought into contact with the monomers (b). It is also possible to evaporate the monomers (b) and to act on the cyclodextrins via the gas phase. Such a mode of operation is particularly preferred, for example, in the production of complexes from cyclodextrins and low-boiling monomers (b). For example, ethylene, propylene or isobutene can be passed over finely divided cyclodextrins. The formation of the complexes can take place under normal pressure, under reduced pressure or be done under increased pressure. The molar ratio of components (a): (b) is 1: 2 to 10: 1 and is preferably in the range from 1: 1 to 5: 1.
Die hydrophoben Monomeren (b) können alleine oder in Mischung un¬ tereinander radikalisch polymerisiert werden. Außerdem ist es möglich, mindestens eine Klasse von Monomeren (b) mit wasserlös¬ lichen Monomeren der Copolymerisation zu unterwerfen. Geeignete wasserlösliche Monomere, die im Folgenden als Monomere der Gruppe (c) bezeichnet werden, sind beispielsweise monoethylenisch unge¬ sättigte C3- bis C5-Carbonsäuren, deren Amide und Ester mit Amino- alkoholen der FormelThe hydrophobic monomers (b) can be radically polymerized alone or in a mixture with one another. It is also possible to subject at least one class of monomers (b) to the copolymerization with water-soluble monomers. Suitable water-soluble monomers, which are referred to below as monomers of group (c), are, for example, monoethylenically unsaturated C 3 to C 5 carboxylic acids, their amides and esters with amino alcohols of the formula
in der R = C2- bis Cs-Alkylen, R1, R2, R3 = H, CH3, C2H5, C3H7 und X® ein Anion bedeutet. Geeignet sind außerdem Amide, die sich von Aminen der Formel in which R = C 2 - to Cs-alkylene, R 1 , R 2 , R 3 = H, CH 3 , C 2 H 5 , C 3 H 7 and X® is an anion. Amides derived from amines of the formula are also suitable
ableiten. Die Substituenten in Formel II und X® haben die gleiche Bedeutung wie in Formel I. deduce. The substituents in formula II and X® have the same meaning as in formula I.
Bei diesen Verbindungen handelt es sich beispielsweise um Acryl¬ säure, Methacrylsäure, Crotonsäure, Itaconsäure, Maleinsäure, Fumarsaure, Acrylamid, Methacrylamid, Crotonsäureamid, Dimethyl- aminoethylacrylat, Diethylaminoethylacrylat, Dimethylaminoneopen- tylacrylat und Dimethylaminoethylmethacrylat, Dimethylamino- propylacrylat, Dimethylaminoneopentylacrylat und Dimethylamino- neopentylmethacrylat. Die basischen Acrylate und Methacrylate bzw. basischen Amide, die sich von den Verbindungen der Formel II ableiten, werden in Form der Salze mit starken Mineralsäuren, Sulfonsauren oder Carbonsäuren oder in quaternisierter Form ein¬ gesetzt. Das Anion XΘ für die Verbindungen der Formel I ist der Säurerest der Mineralsäuren bzw. der Carbonsäuren oder Metho¬ sulfat, Ethosulfat oder Halogenid aus einem Quaternierungsmittel.These compounds are, for example, acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, acrylamide, methacrylamide, crotonic acid amide, dimethylaminoethyl acrylate, diethylaminoethylacrylate, dimethylaminoneopentyl acrylate and dimethylaminoethyl methacrylate and dimethylamino methyl amine methyl dimethyl amine methacrylate. The basic acrylates and methacrylates or basic amides derived from the compounds of the formula II are used in the form of the salts with strong mineral acids, sulfonic acids or carboxylic acids or in quaternized form. The anion XΘ for the compounds of formula I is the acid residue of the mineral acids or the carboxylic acids or methosulfate, ethosulfate or halide from a quaternizing agent.
Weitere wasserlösliche Monomere der Gruppe (c) sind N-Vinylpyrro¬ lidon, N-Vinylformamid, Acrylamidopropansulfonsaure,Vinyl- phosphonsäure und/oder Alkali- bzw. Ammoniumsalze der Vinyl- sulfonsaure. Die anderen Säuren können ebenfalls entweder in nicht neutralisierter Form oder in partiell bzw. bis zu 100 % neutralisierter Form bei der Polymerisation eingesetzt werden. Als wasserlösliche Monomere der Gruppe (c) eignen sich auch Dial- lylammoniumverbindungen, wie Dimethyldiallylammoniumchlorid, Diethyldiallylammoniumchlorid oder Diallylpiperidiniumbromid, N-Vinylimidazoliumverbindungen, wie Salze oder Quaternisierungs- produkte von N-Vinylimidazol und l-Vinyl-2-methylimidazol, und N- Vinylimidazoline, wie N-Vinylimidazolin, l-Vinyl-2-methylimida- zolin, l-Vinyl-2-ethylimidazolin oder l-Vinyl-2-n-propylimidazo- lin, die ebenfalls in quaternisierter Form oder als Salz bei der Polymerisation eingesetzt werden.Further water-soluble monomers of group (c) are N-vinylpyrrolidone, N-vinylformamide, acrylamidopropanesulfonic acid, vinylphosphonic acid and / or alkali metal or ammonium salts of the vinyl sulfonic acid. The other acids can also be used in the polymerization either in non-neutralized form or in partially or up to 100% neutralized form. Also suitable as water-soluble monomers of group (c) are dialylammonium compounds, such as dimethyldiallylammonium chloride, diethyldiallylammonium chloride or diallylpiperidinium bromide, N-vinylimidazolium compounds, such as salts or quaternization products of N-vinylimidazole and l-vinyl-2-methylimidazole, such as N-vinylimidazoline, l-vinyl-2-methylimidazoline, l-vinyl-2-ethylimidazoline or l-vinyl-2-n-propylimidazoline, which are also used in quaternized form or as a salt in the polymerization.
Bevorzugte Monomere der Gruppe (c) sind monoethylenisch unge- sättigte C3- bis C5-Carbonsäuren, Vinylsulfonsaure, Acrylamido- methylpropansulfonsäure, Vinylphosphonsäure, N-Vinylformamid, Dimethylaminoethyl (meth)acrylate, Alkali- oder Ammoniumsalze der genannten Säuregruppen enthaltenden Monomeren oder Mischungen der Monomeren untereinander. Von besonderer wirtschaftlicher Bedeu- tung ist der Einsatz von Acrylsäure oder Mischungen aus Acryl¬ säure und Maleinsäure oder deren Alkalisalze bei der Herstellung von hydrophob modifizierten wasserlöslichen Copolymerisaten.Preferred monomers of group (c) are monoethylenically unsaturated C 3 to C 5 carboxylic acids, vinyl sulfonic acid, acrylamido methyl propane sulfonic acid, vinyl phosphonic acid, N-vinyl formamide, dimethylaminoethyl (meth) acrylates, alkali metal or ammonium salts of the monomers or mixtures mentioned mentioned of the monomers with each other. The use of acrylic acid or mixtures of acrylic acid and maleic acid or their alkali metal salts in the production of hydrophobically modified water-soluble copolymers is of particular economic importance.
Um vernetzte Polymerisate herzustellen, die beispielsweise als Superabsorber oder Verdickungsmittel für wäßrige Systeme verwendet werden, polymerisiert man mindestens ein Monomer der Gruppe (c) , beispielsweise Acrylsäure, mit mindestens einem Kom¬ plex aus Cyclodextrinen und/oder Cyclodextrinstrukturen ent¬ haltenden Verbindungen und mindestens einer Klasse von ver- netztend wirkenden Monomeren, die mindestens zwei ethylenisch ungesättigte, nicht konjugierte Doppelbindungen im Molekül auf¬ weisen und in Wasser unlöslich sind. Die Herstellung der vernetz¬ ten Polymerisate kann gegebenenfalls zusätzlich in Gegenwart von Vernetzern erfolgen, die in Wasser löslich sind und ebenfalls über mindestens zwei ethylenisch ungesättigte, nicht konjugierte Doppelbindungen im Molekül verfügen. Solche Monomere sind beispielsweise N,N' -Methylen-bisacrylamid, Polyethylenglykol- diacrylate und Polyethylenglykoldimethacrylate, die sich jeweils von Polyethylenglykolen eines Molekulargewichts von 126 bis 8500 ableiten, Trimethylolpropantriacrylat, Trimethylolpropantrimeth- acrylat, Ethylenglykoldiacrylat, Propylenglykoldiacrylat, Butan- dioldiacrylat, Hexandioldiacrylat, Hexandioldimethacrylat, Diacrylate und Dimethacrylate von Blockcopolymerisaten aus Ethylenoxid und Propylenoxid, zweifach bzw. dreifach mit Acryl- säure oder Methacrylsäure veresterte mehrwertige Alkohole wie Glycerin oder Pentaerythrit, Triallylamin, Tetraallylethylen- diamin, Trimethylolpropandiallylether, Pentaerythrittriallylether und/oder N,N' -Divinylethylenharnstoff. Die wasserlöslichen Vernetzer werden vorzugsweise in Mengen von 0,01 bis 2,0 Gew. -%, bezogen auf die bei der Copolymerisation insgesamt eingesetzten Monomeren, verwendet.In order to produce crosslinked polymers which are used, for example, as superabsorbers or thickeners for aqueous systems, at least one monomer from group (c), for example acrylic acid, is polymerized with at least one complex of compounds containing cyclodextrins and / or cyclodextrin structures and at least one Class of crosslinking monomers which have at least two ethylenically unsaturated, non-conjugated double bonds in the molecule and are insoluble in water. The crosslinked polymers can optionally also be prepared in the presence of crosslinkers which are soluble in water and likewise have at least two ethylenically unsaturated, non-conjugated double bonds in the molecule. Such monomers are, for example, N, N '-methylene-bisacrylamide, polyethylene glycol diacrylates and polyethylene glycol dimethacrylates, which are each derived from polyethylene glycols with a molecular weight of 126 to 8500, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, ethylene glycol diacrylate, hexylene glycol diacrylate diacrylate diacrylate diacrylate diacrylate diacrylate, Diacrylates and dimethacrylates of block copolymers of ethylene oxide and propylene oxide, polyhydric alcohols esterified twice or three times with acrylic acid or methacrylic acid, such as glycerol or pentaerythritol, triallylamine, tetraallylethylenediamine, trimethylolpropane diallyl ether, pentaerythritol triallyl ether and / or N, N '-divinylethylene urea. The water-soluble crosslinking agents are preferably used in amounts of 0.01 to 2.0% by weight, based on the total monomers used in the copolymerization.
Die Polymerisation der wasserunlöslichen Monomeren und gegebenen¬ falls der wasserlöslichen Monomeren erfolgt nach Art einer Lösungs- oder Fällungspolymerisation in einem wäßrigen Medium, vorzugsweise in Wasser. Unter wäßrigem Medium sollen im vorlie- genden Zusammenhang Mischungen aus Wasser und damit mischbaren organischen Flüssigkeiten verstanden werden. Mit Wasser mischbare organische Flüssigkeiten sind beispielsweise Glykole wie Ethylen¬ glykol, Propylenglykol, Blockcopolymerisate aus Ethylenoxid und Propylenoxid, alkoxylierte C-.- bis C2o-Alkohole, Essigsäureester von Glykolen und Polyglykolen, Alkohole wie Methanol, Ethanol, Isopropanol und Butanol, Aceton, Tetrahydrofuran, Dimethylform¬ amid, N-Methylpyrrolidon oder auch Mischungen der genannten Löse¬ mittel. Falls die Polymerisation in Mischungen aus Wasser und mit Wasser mischbaren Lösemitteln erfolgt, so beträgt der Anteil an mit Wasser mischbaren Lösemitteln in der Mischung bis zuThe polymerization of the water-insoluble monomers and, if appropriate, the water-soluble monomers takes place in the manner of a solution or precipitation polymerization in an aqueous medium, preferably in water. In the present context, aqueous medium should be understood to mean mixtures of water and thus miscible organic liquids. Water-miscible organic liquids are, for example, glycols such as Ethylen¬ glycol, propylene glycol, block copolymers of ethylene oxide and propylene oxide, alkoxylated C -.- to C 2 o-alcohols, Essigsäureester of glycols and polyglycols, alcohols such as methanol, ethanol, isopropanol and butanol, acetone , Tetrahydrofuran, dimethylformamide, N-methylpyrrolidone or also mixtures of the solvents mentioned. If the polymerization takes place in mixtures of water and water-miscible solvents, the proportion of water-miscible solvents in the mixture is up to
45 Gew.-%. Vorzugsweise wird die Polymerisation jedoch in Wasser durchgeführt.45% by weight. However, the polymerization is preferably carried out in water.
Die Lösungs- bzw. Fällungspolymerisation der Monomeren erfolgt üblicherweise unter Sauerstoffausschluß bei Temperaturen von beispielsweise 20 bis 200, vorzugsweise 35 bis 140°C. Die Polymerisation kann diskontinuierlich oder kontinuierlich durch¬ geführt werden. Vorzugsweise dosiert man zumindest einen Teil der Monomeren, Initiatoren und gegebenenfalls Regler während der Polymerisation gleichmäßig in das Reaktionsgefäß zu. Die Monome¬ ren und der Polymerisationsinitiator können jedoch bei kleineren Ansätze auch im Reaktor vorgelegt und polymerisiert werden, wobei man gegebenenfalls durch Kühlen für eine ausreichend schnelle Ab¬ fuhr der Polymerisationswärme sorgen muß.The solution or precipitation polymerization of the monomers is usually carried out with the exclusion of oxygen at temperatures of, for example, 20 to 200, preferably 35 to 140 ° C. The polymerization can be carried out batchwise or continuously. Preferably, at least some of the monomers, initiators and optionally regulators are metered uniformly into the reaction vessel during the polymerization. In the case of smaller batches, however, the monomers and the polymerization initiator can also be initially introduced and polymerized in the reactor, where appropriate cooling must be used to ensure that the heat of polymerization is sufficiently rapidly removed.
Als Polymerisationsinitiatoren kommen die bei radikalischen Poly¬ merisationen üblicherweise verwendeten Verbindungen in Betracht, die unter den Polymerisationsbedingungen Radikale liefern, z.B. Peroxide, Hydroperoxide, Peroxodisulfate, Percarbonate, Peroxie- ster, Wasserstoffperoxid und Azoverbindungen. Beispiele für In¬ itiatoren sind Wasserstoffperoxid, Dibenzoylperoxid, Dicyclohe- xylperoxiddicarbonat, Dilaurylperoxid, Methylethylketonperoxid, Acetylacetonperoxid, tert. -Butylhydroperoxid, Cumolhydroperoxid, tert. -Butylperneodecanoat, tert. -Amylperpivalat, tert. -Butylper- pivalat, tert. -Butylperneohexanoat, tert. -Butylper-2-ethyl¬ hexanoat, tert. -Butylperbenzoat, Lithium-, Natrium-, Kalium- und Ammoniumperoxidisulfat, Azoisobutyronitril, 2, 2' -Azo- bis (2-amidinopropan) dihydrochlorid, 2- (Carbamoylazo) isobutyro- nitril und 4,4' -Azobis (4-cyanovaleriansäure) . Die Initiatoren werden üblicherweise in Mengen bis zu 15, vorzugsweise 0,02 bis 10 Gew.-%, bezogen auf die zu polymerisierenden Monomeren einge- setzt.Possible polymerization initiators are the compounds which are customarily used in free-radical polymerizations and which give free radicals under the polymerization conditions, for example peroxides, hydroperoxides, peroxodisulfates, percarbonates, peroxiesters, hydrogen peroxide and azo compounds. Examples of initiators are hydrogen peroxide, dibenzoyl peroxide, dicyclohexyl peroxide dicarbonate, dilauryl peroxide, methyl ethyl ketone peroxide, acetylacetone peroxide, tert. -Butyl hydroperoxide, cumene hydroperoxide, tert. Butyl perneodecanoate, tert. -Amyl perpivalate, tert. Butyl perpivalate, tert. Butyl perneohexanoate, tert. -Butylper-2-ethyl¬ hexanoate, tert. -Butyl perbenzoate, lithium, sodium, potassium and ammonium peroxydisulfate, azoisobutyronitrile, 2, 2 '-azo- bis (2-amidinopropane) dihydrochloride, 2- (carbamoylazo) isobutyronitrile and 4,4'-azobis (4-cyanovaleric acid). The initiators are usually used in amounts of up to 15, preferably 0.02 to 10,% by weight, based on the monomers to be polymerized.
Die Initiatoren können allein oder in Mischung untereinander verwendet werden. Auch die Anwendung der bekannten Redox¬ katalysatoren, bei denen die reduzierende Komponente im molaren Unterschuß angewendet wird, sind geeignet. Bekannte Redox¬ katalysatoren sind beispielsweise Salze von Übergangsmetallen wie Eisen-II-sulfat, Kobalt-II-chlorid, Nickel-II-sulfat, Kupfer-I- chlorid, Mangan-II-acetat, Vanadin-III-acetat. Als Redox¬ katalysatoren kommen weiterhin reduzierend wirkende Schwefelver- bindungen, wie Sulfite, Bisulfite, Thiosulfate, Dithionite und Tetrathionate von Alkalimetallen und Ammoniumverbindungen oder reduzierend wirkende Phosphorverbindungen, in denen Phosphor eine Oxidationszahl von 1 bis 4 hat, wie beispielsweise Natriumhypo- phosphit, phosphorige Säure und Phosphite in Betracht.The initiators can be used alone or as a mixture with one another. The use of the known redox catalysts, in which the reducing component is used in molar deficiency, are also suitable. Known redox catalysts are, for example, salts of transition metals such as iron (II) sulfate, cobalt (II) chloride, nickel (II) sulfate, copper (I) chloride, manganese (II) acetate, vanadium (III) acetate. Redox catalysts also include reducing sulfur compounds, such as sulfites, bisulfites, thiosulfates, dithionites and tetrathionates of alkali metals and ammonium compounds, or reducing phosphorus compounds in which phosphorus has an oxidation number of 1 to 4, such as sodium hypophosphite and phosphorous acid and phosphites.
Um das Molekulargewicht der Polymerisate zu steuern, kann man die Polymerisation gegebenenfalls in Gegenwart von Reglern durch¬ führen. Als Regler eignen sich beispielsweise Aldehyde wie Form¬ aldehyd, Acetaldehyd, Propionaldehyd, n-Butyraldehyd und Iso- butyraldehyd, Ameisensäure, Ammoniumformiat, Hydroxylammonium- sulfat und Hydroxylammoniumphosphat. Weiterhin können Regler ein¬ gesetzt werden, die Schwefel in organisch gebundener Form enthal¬ ten, wie SH-Gruppen aufweisende organische Verbindungen wie Thioglykolessigsäure, Mercaptopropionsäure, Mercaptoethanol, mercaptopropanol, Mercaptobutanole, Mercaptohexanol, Dodecyl- mercaptan und tert. -Dodecylmercaptan. Als Regler können weiterhin Salze des Hydrazins wie Hydraziniumsulfat eingesetzt werden. Die Mengen an Regler, bezogen auf die zu polymerisierenden Monomeren, betragen 0 bis 20, vorzugsweise 0,5 bis 15 Gew. -%.In order to control the molecular weight of the polymers, the polymerization can optionally be carried out in the presence of regulators. Suitable regulators are, for example, aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde and isobutyraldehyde, formic acid, ammonium formate, hydroxylammonium sulfate and hydroxylammonium phosphate. It is also possible to use regulators which contain sulfur in organically bound form, such as organic compounds having SH groups, such as thioglycol acetic acid, mercaptopropionic acid, mercaptoethanol, mercaptopropanol, mercaptobutanols, mercaptohexanol, dodecyl mercaptan and tert. -Dodecyl mercaptan. Salts of hydrazine such as hydrazinium sulfate can also be used as regulators. The amounts of regulator, based on the monomers to be polymerized, are 0 to 20, preferably 0.5 to 15,% by weight.
Die Polymerisation kann erfindungsgemäß auch in Masse durchge¬ führt werden. Dies ist dadurch möglich, weil die Komplexe aus (a) und (b) mit den wasserlöslichen Monomeren verträglich werden, so daß während der Copolymerisation keine Phasentrennung auftritt.According to the invention, the polymerization can also be carried out in bulk. This is possible because the complexes from (a) and (b) are compatible with the water-soluble monomers, so that no phase separation occurs during the copolymerization.
Sofern man bei der Polymerisation die wasserunlöslichen Monomeren nicht in Form von Komplexen aus Cyclodextrinen und wasserun¬ löslichen Monomeren der Gruppe (b) in den Reaktor einbringt, kann man die wasserunlöslichen Monomeren (b) in eine wäßrige Lösung von Cyclodextrinen und/oder Cyclodextrinstrukturen enthaltenden Verbindungen zudosieren und in Gegenwart von Polymerisationsini¬ tiatoren und gegebenenfalls Reglern der Polymerisation unterwer- fen. Im Reaktionsmedium bilden sich aus den wasserunlöslichen Mo¬ nomeren (b) und den darin anwesenden Cyclodextrinen und/oder Cy¬ clodextrinstrukturen enthaltenden Verbindungen Wirt/Gast-Komplexe aus, die die Herstellung einheitlicher Homo- und Copolymerisate gestatten. Die Cyclodextrine können auch mit wasserlöslichen Mo¬ nomeren Wirt/Gast-Komplexe bilden.If the water-insoluble monomers are not introduced into the reactor in the form of complexes of cyclodextrins and water-insoluble monomers from group (b) during the polymerization, the water-insoluble monomers (b) can be introduced into an aqueous solution of compounds containing cyclodextrins and / or cyclodextrin structures meter in and undergo the polymerization in the presence of polymerization initiators and optionally regulators. fen. In the reaction medium, host / guest complexes are formed from the water-insoluble monomers (b) and the compounds present therein and contain cyclodextrins and / or cyclodextrin structures, which permit the production of uniform homopolymers and copolymers. The cyclodextrins can also form host / guest complexes with water-soluble monomers.
Die Polymerisate liegen gegebenenfalls in Form von Einschlußver¬ bindungen vor bzw. können daraus gewonnen werden. Die Bildung von Einschlußverbindungen aus den Polymeren und den Verbindungen der Komponente (a) ist reversibel. Nach der Polymerisation liegen die Polymerisate meistens separat von den Verbindungen (a) vor. Beispielsweise fallen Copolymerisate aus Acrylsäure mit Gehalten an wasserunlöslichen monoethylenisch ungesättigten Verbindungen wie Stearylacrylat oder Polyisobuten von mehr als 20 Gew. -% aus der wäßrigen Reaktionslösung aus. Sofern die Polymerisate nach der Herstellung in Form von Einschlußverbindungen vorliegen, kön¬ nen sie beispielsweise durch Zusatz von z.B. Netzmitteln wie ethoxylierten langkettigen Alkoholen zur Reaktionsmischung aus den Einschlußverbindungen freigesetzt und isoliert werden. Die nach den erfindungsgemäßen Verfahren hydrophob modifizierten Po¬ lymerisate können beispielsweise als Verdickungsmittel, z.B. in kosmetischen Cremes oder Lotionen, als Komponente in Lackformu¬ lierungen, als Leimungsmittel für die Papierherstellung, als Be- schichtungsmasse, als Klebrohstoff, als Waschmittelzusatz oder als Dispergiermittel für Pigmente eingesetzt werden. Weiterhin können solche Polymere als Gerb-, Nachgerb-, Fettungs- oder Hydrophobiermittel für die Lederherstellung verwendet werden. Hy¬ drophob modifizierte Polymerisate dienen außerdem als polymere Emulgatoren, die eine feine Verteilung eines unpolaren Stoffes in einer polaren Phase stabilisieren. Vernetzte Polyacrylsäuren, die beispielsweise durch Copolymerisieren von Acrylsäure in Gegenwart mindestens eines Komplexes aus Cyclodextrin und einem wasserun¬ löslichen Vernetzer wie Divinylbenzol erhältlich sind, werden als Superabsorber oder Verdickungsmittel für wäßrige Systeme verwendet.The polymers are optionally in the form of inclusion compounds or can be obtained therefrom. The formation of inclusion compounds from the polymers and the compounds of component (a) is reversible. After the polymerization, the polymers are usually present separately from the compounds (a). For example, copolymers of acrylic acid with a content of water-insoluble monoethylenically unsaturated compounds such as stearyl acrylate or polyisobutene of more than 20% by weight precipitate out of the aqueous reaction solution. If the polymers are present in the form of inclusion compounds after production, they can be added, for example, by adding e.g. Wetting agents such as long chain ethoxylated alcohols are released to the reaction mixture from the inclusion compounds and isolated. The polymers modified hydrophobically by the processes according to the invention can be used, for example, as thickeners, e.g. in cosmetic creams or lotions, as a component in lacquer formulations, as sizing agents for papermaking, as a coating material, as adhesive raw material, as a detergent additive or as a dispersant for pigments. Such polymers can also be used as tanning, retanning, fatliquoring or water repellents for leather production. Hydrophobically modified polymers also serve as polymeric emulsifiers which stabilize a fine distribution of a non-polar substance in a polar phase. Crosslinked polyacrylic acids, which are obtainable, for example, by copolymerizing acrylic acid in the presence of at least one complex of cyclodextrin and a water-insoluble crosslinking agent such as divinylbenzene, are used as superabsorbents or thickeners for aqueous systems.
BeispieleExamples
Herstellung von Komplex IProduction of complex I.
Herstellung eines Komplexes aus 2,6-Dimethyl-ß-cyclodextrin (DMCD)- und N-Hexylmethacrylamid im Molverhältnis 1:1Preparation of a complex of 2,6-dimethyl-β-cyclodextrin (DMCD) - and N-hexyl methacrylamide in a molar ratio of 1: 1
6,4 g N-Hexylmethacrylamid wurden mit 50,0 g 2, 6-Dimethyl-ß-cyclo- dextrin (DMCD) in 100 g Chloroform gelöst und bei Raumtemperatur während 48 h gerührt. Das Lösemittel wurde abdestilliert und das resultierende Produkt getrocknet. Es wurde ein weißes Festprodukt in einer Ausbeute von 96 % erhalten.6.4 g of N-hexyl methacrylamide were dissolved in 50 g of 2,6-dimethyl-β-cyclodextrin (DMCD) in 100 g of chloroform and stirred at room temperature for 48 hours. The solvent was distilled off and that resulting product dried. A white solid product was obtained in a yield of 96%.
Komplexe II - IXComplexes II - IX
Analog zur Herstellung von Komplex I wurden Komplexe von in der Tabelle angegebenen Monomeren mit DMCD im Molverhältnis 1:1 her¬ gestellt.Analogously to the preparation of complex I, complexes of monomers specified in the table were prepared with DMCD in a molar ratio of 1: 1.
1010
1515
20 20th
Beispiel 1example 1
Homopolymerisation von Komplex IHomopolymerization of complex I
2525
60,0 g des Komplexes I aus N-Hexylmethacrylamid/DMCD werden in 200,0 g Wasser gelöst. Zu der Lösung werden 0,25 g Kaliumper¬ sulfat und 0,10 g Kaliumpyrosulfit (K2S2O5) gegeben. Unter Sauer¬ stoffausschluß wurde die Mischung bei 50°C polymerisiert. Nach60.0 g of complex I of N-hexyl methacrylamide / DMCD are dissolved in 200.0 g of water. 0.25 g of potassium per sulfate and 0.10 g of potassium pyrosulfite (K 2 S 2 O 5 ) are added to the solution. The mixture was polymerized at 50 ° C. with the exclusion of oxygen. To
30 24 h wurde das entstandene Polymerisat abgetrennt und getrocknet. Das Polymer wurde in einer Ausbeute von 94 % erhalten.The resulting polymer was separated and dried for 30 to 24 hours. The polymer was obtained in 94% yield.
Beispiele 2 bis 6Examples 2 to 6
Homopolymerisate der Komplexe II bis VI wurden in Analogie zu Beispiel 1 hergestellt. Die Ausbeuten sind in der folgenden Ta¬ belle angegeben.Homopolymers of complexes II to VI were prepared analogously to Example 1. The yields are given in the following table.
Beispiel 7 Example 7
Copolymerisation von Komplex I mit Acrylsäure (1:1 molar)Copolymerization of complex I with acrylic acid (1: 1 molar)
60,0 g des Komplexes I aus N-Hexylmethacrylamid/DMCD und 2,8 g Acrylsäure werden in 200,0 g Wasser gelöst. Zu der Lösung werden 0,25 g Kaliumpersulfat und 0,10 g Kaliumpyrosulfit (K2S205) gege¬ ben. Unter Sauerstoffausschluß wurde die Mischung bei 50°C polymerisiert. Nach 24 h trennte man das entstandene Polymerisat ab und trocknete es. Das Polymer wurde in einer Ausbeute von 91 % erhalten.60.0 g of complex I of N-hexyl methacrylamide / DMCD and 2.8 g of acrylic acid are dissolved in 200.0 g of water. 0.25 g of potassium persulfate and 0.10 g of potassium pyrosulfite (K 2 S 2 0 5 ) are added to the solution. The mixture was polymerized at 50 ° C. with exclusion of oxygen. After 24 hours, the polymer formed was separated off and dried. The polymer was obtained in a yield of 91%.
Beispiele 8-12Examples 8-12
Die Komplexe II, V, VII, VIII und IX wurden in Analogie zu Bei¬ spiel 7 mit den in der folgenden Tabelle angegebenen Monomeren polymerisiert.The complexes II, V, VII, VIII and IX were polymerized in analogy to Example 7 with the monomers specified in the table below.
Die Mischung aus A und B wurde 1:1 molar zum Komplex einge¬ setzt, wobei das molare Verhältnis A:B = 2:1 betrug. The mixture of A and B was used 1: 1 molar to form the complex, the molar ratio A: B = 2: 1.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung von Polymerisaten aus wasserun- löslichen Monomeren und gegebenenfalls wasserlöslichen Mono¬ meren durch radikalische Polymerisation der Monomeren in einem Verdünnungsmittel, dadurch gekennzeichnet, daß man die Polymerisation in Wasser als Verdünnungsmittel durchführt und die wasserunlöslichen Monomeren in Form von Komplexen aus1. A process for the preparation of polymers from water-insoluble monomers and optionally water-soluble monomers by free-radical polymerization of the monomers in a diluent, characterized in that the polymerization is carried out in water as a diluent and the water-insoluble monomers are in the form of complexes
(a) Cyclodextrinen und/oder Cyclodextrinstrukturen ent¬ haltenden Verbindungen und(a) Compounds containing cyclodextrins and / or cyclodextrin structures and
(b) wasserunlöslichen oder höchstens bis zu 20 g/1 bei 20°C wasserlöslichen ethylenisch ungesättigten Monomeren(b) water-insoluble or at most up to 20 g / 1 at 20 ° C water-soluble ethylenically unsaturated monomers
im Molverhältnis (a) : (b) von 1 : 2 bis 10 : 1 einsetzt oder die Monomeren in Gegenwart von bis zu 5 Mol, bezogen auf 1 Mol der Monomeren (b) , an Cyclodextrinen und/oder Cyclodex- trinstrukturen enthaltenden Verbindungen polymerisiert.in a molar ratio (a): (b) of 1: 2 to 10: 1 or the monomers are polymerized in the presence of up to 5 mol, based on 1 mol of the monomers (b), of compounds containing cyclodextrins and / or cyclodextrin structures .
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Monomere (b) C2- bis C3o-Alkylester der Acrylsäure, Ci- bis C30-Alkylester der Methacrylsäure, C2- bis C3rj-α-01efine, Ci- bis C2o*-Alkylvinylether, Styrol, Butadien, Isopren oder deren Mischungen einsetzt.2. The method according to claim 1, characterized in that as monomers (b) C 2 - to C 3 o-alkyl esters of acrylic acid, Ci- to C 30 -alkyl esters of methacrylic acid, C 2 - to C 3 rj-α-01efine , Ci to C 2 o * alkyl vinyl ether, styrene, butadiene, isoprene or mixtures thereof.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man als Monomere (b) vernetzend wirkende Monomere einsetzt, die mindestens zwei ethylenisch ungesättigte, nicht konju¬ gierte Doppelbindungen im Molekül aufweisen.3. The method according to claim 1 or 2, characterized in that as monomers (b) crosslinking monomers are used which have at least two ethylenically unsaturated, non-conjugated double bonds in the molecule.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man als Monomere (b) Butylacrylat, Laurylacrylat, Methylmeth- acrylat, Stearylacrylat, Isobuten, Hexen-1, Diisobuten,4. The method according to claim 1 or 2, characterized in that as monomers (b) butyl acrylate, lauryl acrylate, methyl methacrylate, stearyl acrylate, isobutene, 1-hexene, diisobutene,
Dodecen-1, Octadecen-1, Polyisobuten mit 15 bis 35 Isobuten- Einheiten, Styrol, Methylvinylether, Ethylvinylether, Octa- decylvinylether oder deren Mischungen einsetzt.Dodecen-1, octadecen-1, polyisobutene with 15 to 35 isobutene units, styrene, methyl vinyl ether, ethyl vinyl ether, ocadecyl vinyl ether or mixtures thereof.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man als vernetzend wirkende Monomere Divinylbenzol, Diallyl¬ phthalat, Allylvinylether und/oder Diallylfumarat einsetzt.5. The method according to claim 3, characterized in that the crosslinking monomers used are divinylbenzene, diallyl phthalate, allyl vinyl ether and / or diallyl fumarate.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeich- net, daß man als wasserlösliche Monomere monoethylenisch ungesättigte C3- bis C5-Carbonsäuren, Vinylsulfonsaure, Acryl- amidomethylpropansulfonsaure, Vinylphosphonsäure, N-Vinylfor- mamid, Dialkylaminoethyl (meth)acrylate, Alkali- oder Ammoniumsalze der genannten Säuregruppen enthaltenden Monome¬ ren oder Mischungen der Monomeren untereinander einsetzt.6. The method according to claims 1 to 5, characterized in that as water-soluble monomers monoethylenically unsaturated C 3 - to C 5 -carboxylic acids, vinylsulfonic acid, acrylic amidomethylpropanesulfonic acid, vinylphosphonic acid, N-Vinylfor- mamide, dialkylaminoethyl (meth) acrylates, alkali metal or ammonium salts of the monomers mentioned containing acid groups, or mixtures of the monomers with one another.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als wasserlösliche Monomere Acrylsäure, Mischungen aus Acryl¬ säure und Maleinsäure oder die Alkalisalze der genannten Mo¬ nomeren einsetzt.7. The method according to claim 1, characterized in that the water-soluble monomers used are acrylic acid, mixtures of acrylic acid and maleic acid or the alkali metal salts of the monomers mentioned.
8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Komponente (a) α-Cyclodextrin, ß-Cyclodextrin, γ-Cyclo¬ dextrin und/oder 2,6-Dimethyl-ß-cyclodextrin einsetzt.8. The method according to claim 1, characterized in that as component (a) α-cyclodextrin, β-cyclodextrin, γ-Cyclo¬ dextrin and / or 2,6-dimethyl-β-cyclodextrin is used.
9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Komponente (a) 2,6-Dimethyl-ß-cyclodextrin einsetzt.9. The method according to claim 1, characterized in that 2,6-dimethyl-ß-cyclodextrin is used as component (a).
10. Verwendung der nach den Ansprüchen 1 bis 9 erhältlichen Poly¬ merisate als Leimungsmittel für die Papierherstellung, als Beschichtungsmittel, als Verdickungsmittel für wäßrige Sy- steme, als Waschmittelzusatz und als Verdickungsmittel in kosmetischen Cremes oder Lotionen. 10. Use of the polymers obtainable according to claims 1 to 9 as sizing agents for paper manufacture, as coating agents, as thickeners for aqueous systems, as detergent additives and as thickeners in cosmetic creams or lotions.
EP96931021A 1995-09-08 1996-09-04 Method for the production of polymerisates in an aqueous medium and the use thereof Withdrawn EP0848722A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19533269 1995-09-08
DE19533269A DE19533269A1 (en) 1995-09-08 1995-09-08 Process for the preparation of polymers in an aqueous medium
PCT/EP1996/003890 WO1997009354A1 (en) 1995-09-08 1996-09-04 Method for the production of polymerisates in an aqueous medium and the use thereof

Publications (1)

Publication Number Publication Date
EP0848722A1 true EP0848722A1 (en) 1998-06-24

Family

ID=7771644

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96931021A Withdrawn EP0848722A1 (en) 1995-09-08 1996-09-04 Method for the production of polymerisates in an aqueous medium and the use thereof

Country Status (3)

Country Link
EP (1) EP0848722A1 (en)
DE (1) DE19533269A1 (en)
WO (1) WO1997009354A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040409A (en) * 1997-05-21 2000-03-21 Rohm And Haas Company Polymer compositions
DE19825486C2 (en) * 1998-06-08 2000-07-06 Stockhausen Chem Fab Gmbh Water-absorbing polymers with supramolecular cavity molecules, process for their preparation and their use
US6229062B1 (en) 1999-04-29 2001-05-08 Basf Aktiengesellschaft Corporation Superabsorbent polymer containing odor controlling compounds and methods of making the same
DE19956326A1 (en) * 1999-11-23 2001-05-31 Bayer Ag Production of 1,3-diene based polymers, useful for tires, shoe soles and sealants, comprises radical polymerization of cyclodextrin complexed 1,3-dienes and optionally other unsaturated monomers
DE19963586A1 (en) * 1999-12-29 2001-07-12 Dupont Performance Coatings Process for the preparation of lacquer binders and their use in coating compositions
DE10150484A1 (en) * 2001-10-16 2003-05-08 Roehm Gmbh Process for the preparation of substituted polymethacrylimides from polyalkylmethacrylamide-co-alkyl methacrylates using cyclodextrins
DE10212899A1 (en) * 2002-03-23 2003-10-02 Tesa Ag Production of polyacrylate adhesive material for use on adhesive tape involves emulsion or dispersion polymerisation of acrylate monomers in presence of a cyclodextrin, preferably methylated beta-cyclodextrin
DE10312509A1 (en) * 2003-03-20 2004-09-30 Basf Ag Process for the preparation of polymers with iso- or syndiotactic areas
US20060094844A1 (en) * 2004-10-29 2006-05-04 Council Of Scientific And Industrial Research Inclusion complexes of unsaturated monomers, their polymers and process for preparation thereof
US7598303B2 (en) 2005-02-17 2009-10-06 Rohm And Haas Company Process for making an aqueous dispersion
DE102005059863B4 (en) * 2005-12-15 2010-04-01 Deutsches Textilforschungszentrum Nord-West E.V. Fibers and films based on a polyamide or polyester present as rotaxane or pseudorotaxane
JP6830256B2 (en) 2015-06-17 2021-02-17 ユニバーシタット デ ザールラント How to prepare polyrotaxane and polyrotaxane
US11248092B2 (en) 2016-12-21 2022-02-15 Universitaet Des Saarlandes Method of preparing a polyrotaxane and polyrotaxane
DE102018107702A1 (en) 2018-03-29 2019-10-02 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Nanostructured composite materials with self-healing properties

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB932389A (en) * 1959-08-24 1963-07-24 Vinyl Products Ltd Improvements in or relating to polymer emulsions or dispersions
JPH0233722B2 (en) * 1982-03-30 1990-07-30 Nippon Starch Refining MONOMAANORAJIKARUJUGOHOHO
GB8806692D0 (en) * 1988-03-21 1988-04-20 Cerestar Holding Bv Acrylate polymer compositions
US5521266A (en) * 1994-10-28 1996-05-28 Rohm And Haas Company Method for forming polymers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9709354A1 *

Also Published As

Publication number Publication date
WO1997009354A1 (en) 1997-03-13
DE19533269A1 (en) 1997-03-13

Similar Documents

Publication Publication Date Title
DE19548038A1 (en) Process for the preparation of polymers by emulsion polymerization
DE69021266T2 (en) Multi-stage polymer particles with hydrophobically modified and ionically soluble polymer production section.
EP0239035B1 (en) Process for preparing fine particles of cured polymers, and their use
EP0848722A1 (en) Method for the production of polymerisates in an aqueous medium and the use thereof
MXPA96006466A (en) Preparation of polymers for polymerization in emulsion
EP1778736B1 (en) Aqueous dispersions of water-soluble and/or water-swellable anionic polymers, method for their production and use thereof
EP1651693B1 (en) Aqueous dispersions of hydrosoluble polymerisates of ethylenically unsaturated anionic monomers, method for the production and use thereof
DE19805122A1 (en) Aqueous polymer dispersion useful as binder agent for pigments for interior and exterior paints
EP0882094A1 (en) Formaldehyde-free coating material for mouldings
EP0600478B1 (en) Process for the preparation of a graft polymer latex from core-shell particles with improved adhesion between the core and the shell
JPH03170517A (en) Copolymer based on ethylenic unsaturated monomer and containing urethane group and its preparation and use
DE19608911A1 (en) Crosslinkable protective colloids
DE69933360T2 (en) REDISPERIBLE EMULSION POWDERS AND METHOD FOR THE PRODUCTION THEREOF
DE102005007483A1 (en) Aqueous dispersions of predominantly anionically charged polyelectrolyte complexes, process for their preparation and their use
DE19519339A1 (en) Water-soluble copolymers containing copolymerized crosslinkers, process for their preparation and their use
EP0711142B1 (en) Use of cross-linked copolymers of monoethylenically unsaturated carboxylic acids as stabilizers in oil-in-water emulsions
DE4341072A1 (en) Process for the preparation of polymers of alkyl-1-vinylimidazoles and their use
EP1512703B1 (en) Use of copolymerisable surfactants in the emulsion polymerisation
EP1031585B1 (en) Method of preparation of aqueous dispersions from copolymers of hydrophilic and hydrophobic monomers
EP1252197B1 (en) Method for producing binding agents for lacquer and their use in coating agents
DE60028694T2 (en) emulsion polymers
DE19601763A1 (en) Use of surfactants in the drying of hydrophilic, highly swellable hydrogels
DE19549084A1 (en) Powdery, redispersible binders
EP0785224B1 (en) Process for preparing hydrophilic hydrogels with high swelling capacity
DE60207250T2 (en) PROCESS FOR PREPARING AQUEOUS POLYMER DISPERSIONS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17Q First examination report despatched

Effective date: 19980720

18W Application withdrawn

Withdrawal date: 19980723