JPH0233722B2 - MONOMAANORAJIKARUJUGOHOHO - Google Patents

MONOMAANORAJIKARUJUGOHOHO

Info

Publication number
JPH0233722B2
JPH0233722B2 JP5197482A JP5197482A JPH0233722B2 JP H0233722 B2 JPH0233722 B2 JP H0233722B2 JP 5197482 A JP5197482 A JP 5197482A JP 5197482 A JP5197482 A JP 5197482A JP H0233722 B2 JPH0233722 B2 JP H0233722B2
Authority
JP
Japan
Prior art keywords
water
soluble
radical polymerization
cyclodextrin
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5197482A
Other languages
Japanese (ja)
Other versions
JPS58168603A (en
Inventor
Masayoshi Kinoshita
Norio Kunieda
Hirokane Taguchi
Sadamitsu Shiode
Tooru Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Starch Chemical Co Ltd
Original Assignee
Nippon Starch Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Starch Chemical Co Ltd filed Critical Nippon Starch Chemical Co Ltd
Priority to JP5197482A priority Critical patent/JPH0233722B2/en
Publication of JPS58168603A publication Critical patent/JPS58168603A/en
Publication of JPH0233722B2 publication Critical patent/JPH0233722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、水溶性もしくは水難溶性モノマーの
新規なラジカル重合方法に関する。 従来、水溶性モノマーのラジカル重合は水溶性
のラジカル重合開始剤を用いて水中で行なわれて
いる。しかしながら、水溶性のラジカル重合開始
剤の種類が非常に少なく、過酸化水素、過硫酸カ
リウム、過硫酸アンモニウムなどの無機過酸化物
や、過酸化水素―第一鉄塩、過硫酸塩―酸性亜硫
酸ナトリウムなどのレドツクス系開始剤のごと
く、限られたものしか利用できず、かかるラジカ
ル重合を広範に適用することはなかなか困難であ
る。 一方、有機溶媒可溶性もしくは分散性のラジカ
ル重合開始剤は種類が豊富で、その各々の特性を
利用して広範な有機溶媒可溶性モノマーのラジカ
ル重合に適用できる。しかし、これらはほとんど
水に溶解しないため、従来の水溶性モノマーのラ
ジカル重合方法には適さない。 加えて、最近、水溶性高分子物質の開発が進む
につれ、新しい水溶性モノマーが多く出現してい
るが、これらのラジカル重合に際して、何ら特殊
な重合開始剤の開発を必要とせず、既存の重合開
始剤を使用して重合を行なうことのできる方法の
確立が望まれている。 このような事情に鑑み、本発明は種類の豊富な
有機溶媒可溶性もしくは分散性のラジカル重合開
始剤を用い、水に可溶なモノマーのみならず水難
溶性モノマーに広範に適用することのできるラジ
カル重合方法を提供せんとするものである。 一般に、有機溶媒可溶性もしくは分散性のラジ
カル重合開始剤を用いる場合には有機溶媒が必要
であるが、単に、該開始剤を含有する有機溶媒相
と、水溶性もしくは水難溶性モノマーを含有する
水相を接触させても、両相が混合しないためラジ
カル重合は開始されがたい。 ところが、意外にも、本発明者らは、水溶性も
しくは水難溶性モノマーを含む水相と有機溶媒可
溶性もしくは分散性のラジカル重合開始剤を含む
有機溶媒相からなる二相系において、親油性の修
飾シクロデキストリン化合物が有機溶媒相中の重
合開始剤を水相へ運ぶ相間輸送剤として働き、水
相で水溶性もしくは水難溶性モノマーのラジカル
重合が好適に行なわれることを見出し、本発明を
完成するにいたつた。 すなわち、本発明の方法によれば、水に可溶も
しくは難溶なモノマーを含有する水相と、有機溶
媒可溶性もしくは分散性のラジカル重合開始剤を
含有する有機溶媒相からなる二相系に、親油性の
修飾シクロデキストリン化合物を添加することに
より、水相中で該モノマーのラジカル重合を行な
うことができる。かくして、本発明の方法は、何
ら、特殊な重合開始剤を必要とせず、水に可溶も
しくは難溶な種々のモノマーに広範に適用するこ
とができる。 用いる水に可溶もしくは難溶なモノマーとして
は、いわゆる水溶性モノマーをはじめ、水に対す
る溶解度が低いものでも水に分散もしくは懸濁し
うるものであればいずれでもよく、例えば、(メ
タ)アクリルアミド、2―メチル(メタ)アクリ
ルアミド、N―メチロール(メタ)アクリルアミ
ド、(メタ)アクリル酸メチル、(メタ)アクリル
酸エチル、(メタ)アクリル酸ブチル、(メタ)ア
クリル酸イソブチル、(メタ)アクリル酸―2―
ヒドロキシエチル、1―クロロ(メタ)アクリル
酸、アクリロニトリル、N―ビニルピロリドン、
ビニルスルホン酸、フマル酸ジニトリル、イタコ
ン酸、酢酸ビニル、クロトン酸ビニルなどが挙げ
られる〔(メタ)アクリルなる語はアクリルおよ
びメタアクリルを意味する〕。 有機溶媒としては、水と混和しないもの、例え
ば、クロロホルム、リグロイン、n―ヘキサン、
エーテルなどが挙げられる。 有機溶媒可溶性もしくは分散性ラジカル重合開
始剤としては、例えば、ベンゾイルペルオキシド
およびその誘導体、アセチルペルオキシド、ラウ
ロイルペルオキシドなどジアシルペルオキシド、
ジ―t―ブチルペルオキシド、ジクミルペルオキ
シドなどのジアルキルペルオキシド、メチルヒド
ロペルオキシド、t―ブチルヒドロペルオキシ
ド、クメンヒドロペルオキシドおよびその誘導体
などのヒドロペルオキシド、t―ブチルペルベン
ゾエート、t―ブチルペルアセテート、t―ブチ
ルペルホルメートなどのペルエステル、2,2′―
アゾビスイソブチロニトリル、2,2′―アゾビス
―2,4―ジメチルバレロニトリル、1,1′―ア
ゾビスシクロヘキサン―1―カルボニトリル、
2,4,4―トリメチル―2―フエニルアゾバレ
ロニトリル、2,2′―アゾビス―4―メトキシ―
2,4―ジメチルバレロニトリル、1,1′―アゾ
ビス―1―シクロブタンニトリル、2,2′―アゾ
ビス―2―メチルブチロニトリル、2,2′―アゾ
ビス―2―エチルプロピオニトリル、1,1′―ア
ゾビス―1―シクロペンタンニトリル、2,2′―
アゾビス―2―シクロプロピルプロピオニトリル
などのアゾ化合物などが挙げられる。 また、本発明方法において用いる親油性の修飾
シクロデキストリン化合物は、その構成グルコー
スの2、3および6位水酸基の水素の少なくとも
一部をアルキル基、例えば、炭素数16まで、好ま
しくは炭素数1〜6の直鎖または分枝鎖状アルキ
ル基で置換して、水にも有機溶媒にも可溶な親油
性を付与したα,βまたはγ―シクロデキストリ
ンでよい。かかる修飾シクロデキストリン化合物
は公知であるか、公知の方法に従つて製造するこ
とができ、例えば、ヘキサキス―2,6―O―ジ
メチル―α―シクロデキストリン、ヘキサキス―
2,3,6―O―トリメチル―α―シクロデキス
トリン、ヘプタキス―2,6―O―ジメチル―β
―シクロデキストリン、ヘプタキス―2,3,6
―O―トリメチル―β―シクロデキストリン、オ
クタキス―2,6―O―ジメチル―γ―シクロデ
キストリン、オクタキス―2,3,6―O―トリ
メチル―γ―シクロデキストリンなどが挙げられ
る。 かくして、本発明の方法は、一般に、水に可溶
もしくは難溶なモノマーおよび有機溶媒可溶性も
しくは分散性のラジカル重合開始剤を、各々、水
および有機溶媒に溶解もしくは分散させ二相系を
形成し、これに親油性の修飾シクロデキストリン
化合物を添加して実施する。通常、該モノマー1
部(重量部、以下同じ)当り、水2部以上、好ま
しくは、5〜100部、さらに好ましくは、10〜30
部、有機溶媒2部以上、好ましくは、2〜50部、
さらに好ましくは、5〜15部、重合開始剤0.01〜
0.1部、好ましくは、0.02〜0.05部、該シクロデキ
ストリン化合物0.05〜0.5部、好ましくは、0.1〜
0.2部を用い、20〜90℃、好ましくは、30〜50℃
で所望のポリマーが得られるまでラジカル重合を
行なう。 つぎに参考例および実施例を挙げて本発明をさ
らに詳しく説明する。 参考例 1 ヘプタキス―2,6―O―ジメチル―β―シク
ロデキストリンの調製 窒素雰囲気下、β―シクロデキストリン9g
(7.94ミリモル)をジメチルスルホキシド150mlに
溶解し、これにジメチルホルムアミド150mlを加
え、よく撹拌した。冷水にて冷却後、窒素雰囲気
下、この溶液にBa(OH)2・8H2O51g(0.162モ
ル)およびBaO51g(0.333モル)、ついでジメチ
ル硫酸105ml(1.11モル)を加え、0℃で1昼夜
撹拌した。さらに、60℃で6時間反応させた後、
28%アンモニア水45mlを加え、室温で3時間撹拌
して未反応のジメチル硫酸を分解し、ついで、過
剰のアンモニアと、ジメチルスルホキシドおよび
ジメチルホルムアミドを減圧下で除去した。得ら
れた白色固体をクロロホルムで抽出し、抽出液を
無水硫酸ナトリウムで乾燥した。ついで、減圧下
で約40mlに濃縮し、大量ののn―ヘキサンを加え
て白色粗製のβ―シクロデキストリンメチル化物
を沈殿させた。この粗製生成物をシリカゲルカラ
ム上でクロマトグラフイーに付し、ベンゼン―エ
タノール(4:1v/v)で溶出させて精製し、
ヘプタキス―2,6―O―ジメチル―β―シクロ
デキストリン6.93g(82.2%)を得た。これをさ
らに、クロロホルム―n―ヘキサンから再結晶さ
せた。比旋光度〔α〕D+123゜(c0.180、クロロホル
ム) 参考例 2 ヘプタキス―2,3,6―O―トリメチル―β
―シクロデキストリンの調製 β―シクロデキストリン8.88g(7.83ミリモ
ル)をジメチルホルムアミド400mlに溶解し、氷
水で0℃に冷却した。これに水素化ナトリウム
19.7g(0.822モル)を加え、室温で30分間撹拌
し、ついで、0℃に冷却し、ヨウ化メチル104ml
(1.67モル)を加えて室温で5時間激しく撹拌し
た。反応終了後、減圧下で過剰のヨウ化メチルを
除去し、生じた白色固体を去した。液を減圧
下で約50mlに濃縮し、クロロホルム200mlを加え
た。有機層を水、0.1Nチオ硫酸ナトリウム水溶
液、ついで、水で洗浄し、無水硫酸ナトリウムで
乾燥した。減圧下でクロロホルムを除去し、得ら
れた残渣をシリカゲルカラムクロマトグラフイー
に付し、ベンゼン―エタノール(4:1v/v)
で溶出させてヘプタキス―2,3,6―O―トリ
メチル―β―シクロデキストリン6.1g(55%)
を得た。これをさらに、クロロホルム―n―ヘキ
サンおよび水から再結晶させた。比旋光度〔α〕D
+161゜(c0.118、クロロホルム)、融点149〜151
℃。 実施例 1〜4 通常の封管法に従い、水10mlにアクリルアミド
0.5g(7.0×10-3モル)を、また、クロロホルム
―リグロイン(1:4v/v)5mlに1,1′―アゾ
ビスシクロヘキサン―1―カルボニトリル8.64mg
(3.5×10-5モル)および第1表に示す量のヘプタ
キス―2,6―O―ジメチル―β―シクロデキス
トリンを溶解し、振とう下、50℃で3時間ラジカ
ル重合を行なつた。該シクロデキストリン化合物
の添加量と生成ポリマーの収率および極限粘度
〔η〕(1N―NaNO3水溶液中30℃で測定)を第1
表に示す。なお、第1表には比較のため、該シク
ロデキストリン化合物無添加の場合も示す。
The present invention relates to a novel method for radical polymerization of water-soluble or poorly water-soluble monomers. Conventionally, radical polymerization of water-soluble monomers has been carried out in water using a water-soluble radical polymerization initiator. However, there are very few types of water-soluble radical polymerization initiators, such as inorganic peroxides such as hydrogen peroxide, potassium persulfate, ammonium persulfate, hydrogen peroxide-ferrous salt, persulfate-acidic sodium sulfite, etc. Only a limited number of redox initiators are available, making it difficult to widely apply such radical polymerization. On the other hand, there are many types of radical polymerization initiators that are soluble or dispersible in organic solvents, and each of them can be applied to the radical polymerization of a wide range of organic solvent-soluble monomers by utilizing their respective characteristics. However, since these are hardly soluble in water, they are not suitable for conventional radical polymerization methods of water-soluble monomers. In addition, with the recent progress in the development of water-soluble polymeric substances, many new water-soluble monomers have appeared, but the radical polymerization of these monomers does not require the development of any special polymerization initiators, and can be carried out using existing polymerization methods. It is desired to establish a method that can carry out polymerization using an initiator. In view of these circumstances, the present invention utilizes a wide variety of organic solvent-soluble or dispersible radical polymerization initiators to carry out radical polymerization that can be widely applied not only to water-soluble monomers but also to poorly water-soluble monomers. The purpose is to provide a method. Generally, when using an organic solvent-soluble or dispersible radical polymerization initiator, an organic solvent is required, but it is simply an organic solvent phase containing the initiator and an aqueous phase containing a water-soluble or poorly water-soluble monomer. Even when brought into contact with each other, radical polymerization is difficult to initiate because both phases do not mix. However, unexpectedly, the present inventors discovered that lipophilic modification was possible in a two-phase system consisting of an aqueous phase containing a water-soluble or poorly water-soluble monomer and an organic solvent phase containing an organic solvent-soluble or dispersible radical polymerization initiator. It was discovered that a cyclodextrin compound acts as an interphase transport agent to transport the polymerization initiator in the organic solvent phase to the aqueous phase, and radical polymerization of water-soluble or poorly water-soluble monomers is suitably carried out in the aqueous phase, and the present invention was completed based on this discovery. It was it. That is, according to the method of the present invention, in a two-phase system consisting of an aqueous phase containing a water-soluble or sparingly soluble monomer and an organic solvent phase containing an organic solvent-soluble or dispersible radical polymerization initiator, By adding a lipophilic modified cyclodextrin compound, radical polymerization of the monomer can be carried out in the aqueous phase. Thus, the method of the present invention does not require any special polymerization initiator and can be widely applied to various monomers that are soluble or sparingly soluble in water. The monomers that are soluble or sparingly soluble in water include so-called water-soluble monomers, and any monomers that can be dispersed or suspended in water, even if they have low solubility in water, such as (meth)acrylamide, 2 -Methyl (meth)acrylamide, N-methylol (meth)acrylamide, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, (meth)acrylic acid-2 ―
Hydroxyethyl, 1-chloro(meth)acrylic acid, acrylonitrile, N-vinylpyrrolidone,
Vinyl sulfonic acid, dinitrile fumarate, itaconic acid, vinyl acetate, vinyl crotonate, etc. [the term (meth)acrylic means acrylic and methacrylic]. Examples of organic solvents include those that are immiscible with water, such as chloroform, ligroin, n-hexane,
Examples include ether. Examples of organic solvent-soluble or dispersible radical polymerization initiators include benzoyl peroxide and its derivatives, diacyl peroxides such as acetyl peroxide and lauroyl peroxide,
Dialkyl peroxides such as di-t-butyl peroxide and dicumyl peroxide, hydroperoxides such as methyl hydroperoxide, t-butyl hydroperoxide, cumene hydroperoxide and derivatives thereof, t-butyl perbenzoate, t-butyl peracetate, t- Peresters such as butyl performate, 2,2'-
Azobisisobutyronitrile, 2,2'-azobis-2,4-dimethylvaleronitrile, 1,1'-azobiscyclohexane-1-carbonitrile,
2,4,4-trimethyl-2-phenylazovaleronitrile, 2,2'-azobis-4-methoxy-
2,4-dimethylvaleronitrile, 1,1'-azobis-1-cyclobutanenitrile, 2,2'-azobis-2-methylbutyronitrile, 2,2'-azobis-2-ethylpropionitrile, 1, 1′-azobis-1-cyclopentanenitrile, 2,2′-
Examples include azo compounds such as azobis-2-cyclopropylpropionitrile. Furthermore, in the lipophilic modified cyclodextrin compound used in the method of the present invention, at least a part of the hydrogens of the 2-, 3-, and 6-position hydroxyl groups of its constituent glucose are replaced with alkyl groups, for example, up to 16 carbon atoms, preferably 1 to 1 carbon atoms. It may be α-, β- or γ-cyclodextrin substituted with a straight-chain or branched alkyl group of 6 to impart lipophilicity that makes it soluble in both water and organic solvents. Such modified cyclodextrin compounds are known or can be produced according to known methods, for example, hexakis-2,6-O-dimethyl-α-cyclodextrin, hexakis-2,6-O-dimethyl-α-cyclodextrin, hexakis-
2,3,6-O-trimethyl-α-cyclodextrin, heptakis-2,6-O-dimethyl-β
- Cyclodextrin, heptakis - 2, 3, 6
-O-trimethyl-β-cyclodextrin, octakis-2,6-O-dimethyl-γ-cyclodextrin, octakis-2,3,6-O-trimethyl-γ-cyclodextrin, and the like. Thus, the method of the present invention generally involves dissolving or dispersing a water-soluble or sparingly soluble monomer and an organic solvent-soluble or dispersible radical polymerization initiator in water and an organic solvent, respectively, to form a two-phase system. , by adding a lipophilic modified cyclodextrin compound thereto. Usually, the monomer 1
2 parts or more of water, preferably 5 to 100 parts, more preferably 10 to 30 parts (parts by weight, same hereinafter)
parts, 2 parts or more of organic solvent, preferably 2 to 50 parts,
More preferably, 5 to 15 parts, polymerization initiator 0.01 to
0.1 part, preferably 0.02 to 0.05 part, 0.05 to 0.5 part, preferably 0.1 to 0.05 part of the cyclodextrin compound
using 0.2 part at 20-90°C, preferably 30-50°C
Radical polymerization is carried out until the desired polymer is obtained. Next, the present invention will be explained in more detail with reference to reference examples and examples. Reference Example 1 Preparation of heptakis-2,6-O-dimethyl-β-cyclodextrin 9 g of β-cyclodextrin under nitrogen atmosphere
(7.94 mmol) was dissolved in 150 ml of dimethyl sulfoxide, and 150 ml of dimethyl formamide was added thereto, followed by thorough stirring. After cooling with cold water, 1 g (0.162 mol) of Ba(OH) 2.8H 2 O and 51 g (0.333 mol) of BaO were added to this solution under a nitrogen atmosphere, followed by 105 ml (1.11 mol) of dimethyl sulfate, and the mixture was stirred at 0°C for one day. did. Furthermore, after reacting at 60°C for 6 hours,
45 ml of 28% ammonia water was added and stirred at room temperature for 3 hours to decompose unreacted dimethyl sulfate, and then excess ammonia, dimethyl sulfoxide, and dimethyl formamide were removed under reduced pressure. The obtained white solid was extracted with chloroform, and the extract was dried over anhydrous sodium sulfate. The mixture was then concentrated to about 40 ml under reduced pressure, and a large amount of n-hexane was added to precipitate a white crude methylated β-cyclodextrin. The crude product was purified by chromatography on a silica gel column, eluting with benzene-ethanol (4:1 v/v),
6.93 g (82.2%) of heptakis-2,6-O-dimethyl-β-cyclodextrin was obtained. This was further recrystallized from chloroform-n-hexane. Specific optical rotation [α] D +123° (c0.180, chloroform) Reference example 2 Heptakis-2,3,6-O-trimethyl-β
-Preparation of cyclodextrin 8.88 g (7.83 mmol) of β-cyclodextrin was dissolved in 400 ml of dimethylformamide and cooled to 0°C with ice water. Sodium hydride
Add 19.7 g (0.822 mol) and stir at room temperature for 30 minutes, then cool to 0°C and add 104 ml of methyl iodide.
(1.67 mol) was added and stirred vigorously at room temperature for 5 hours. After the reaction was completed, excess methyl iodide was removed under reduced pressure to remove the white solid produced. The liquid was concentrated under reduced pressure to about 50 ml, and 200 ml of chloroform was added. The organic layer was washed with water, a 0.1N aqueous sodium thiosulfate solution, then water, and dried over anhydrous sodium sulfate. Chloroform was removed under reduced pressure, and the resulting residue was subjected to silica gel column chromatography, and benzene-ethanol (4:1v/v)
6.1 g (55%) of heptakis-2,3,6-O-trimethyl-β-cyclodextrin
I got it. This was further recrystallized from chloroform-n-hexane and water. Specific optical rotation [α] D
+161° (c0.118, chloroform), melting point 149-151
℃. Examples 1 to 4 Acrylamide was added to 10 ml of water according to the usual sealing method.
0.5 g (7.0 x 10 -3 mol) and 8.64 mg of 1,1'-azobiscyclohexane-1-carbonitrile in 5 ml of chloroform-ligroin (1:4 v/v).
(3.5×10 -5 mol) and heptakis-2,6-O-dimethyl-β-cyclodextrin in the amount shown in Table 1 were dissolved, and radical polymerization was carried out at 50° C. for 3 hours with shaking. The amount of the cyclodextrin compound added, the yield of the produced polymer, and the intrinsic viscosity [η] (measured at 30°C in a 1N-NaNO 3 aqueous solution) were determined in the first step.
Shown in the table. For comparison, Table 1 also shows the case where the cyclodextrin compound was not added.

【表】 実施例 5〜11 実施例1〜4と同様に、水10mlにアクリルアミ
ド0.5g(7.0×10-3モル)を、また、クロロホル
ム―リグロイン(1:4v/v)5mlに第2表に
示す各有機溶媒可溶性の重合開始剤3.5×10-5
ルおよび各親油性修飾シクロデキストリン化合物
7.5×10-5モルを溶解し、各反応条件下でラジカ
ル重合を行なつた。結果を第2表に示す。なお、
第2表にも比較のため、該シクロデキストリン化
合物無添加の場合を示す。
[Table] Examples 5 to 11 Similarly to Examples 1 to 4, 0.5 g of acrylamide (7.0 × 10 -3 mol) was added to 10 ml of water, and Table 2 was added to 5 ml of chloroform-ligroin (1:4 v/v). 3.5 x 10 -5 mol of each organic solvent soluble polymerization initiator and each lipophilic modified cyclodextrin compound shown in
7.5×10 -5 mol was dissolved and radical polymerization was performed under each reaction condition. The results are shown in Table 2. In addition,
For comparison, Table 2 also shows the case where the cyclodextrin compound was not added.

【表】 注〕第2表中、各略号はつぎのものを意味す
る。 AIBN:2,2′―アゾビスイソブチロニトリル ADVN:2,2′―アゾビス―2,4―ジメチル
バレロニトリル ACN:1,1′―アゾビスシクロヘキサン―1―
カルボニトリル TPVN:2,4,4―トリメチル―2―フエニ
ルアゾバレロニトリル HDM(β―CD):ヘプタキス―2,6―O―ジ
メチル―β―シクロデキストリン HTM(β―CD):ヘプタキス―2,3,6―O
―トリメチル―β―シクロデキストリン
[Table] Note: In Table 2, each abbreviation means the following. AIBN: 2,2'-azobisisobutyronitrile ADVN: 2,2'-azobis-2,4-dimethylvaleronitrile ACN: 1,1'-azobiscyclohexane-1-
Carbonitrile TPVN: 2,4,4-trimethyl-2-phenylazovaleronitrile HDM (β-CD): Heptakis-2,6-O-dimethyl-β-cyclodextrin HTM (β-CD): Heptakis-2 ,3,6-O
-Trimethyl-β-cyclodextrin

Claims (1)

【特許請求の範囲】 1 水と有機溶媒からなる二相系において、有機
溶媒可溶性もしくは分散性のラジカル重合開始剤
を用い、親油性の修飾シクロデキストリン化合物
の存在下、モノマーをラジカル重合させることを
特徴とするモノマーのラジカル重合方法。 2 該修飾シクロデキストリン化合物が、その構
成グルコースの2、3および6位水酸基の水素の
少なくとも一部を炭素数16までのアルキル基で置
換したα,βまたはγ―シクロデキストリンであ
る前記第1項の重合方法。
[Claims] 1. In a two-phase system consisting of water and an organic solvent, a monomer is radically polymerized in the presence of a lipophilic modified cyclodextrin compound using an organic solvent-soluble or dispersible radical polymerization initiator. Characteristic radical polymerization method of monomers. 2. Item 1 above, wherein the modified cyclodextrin compound is an α-, β-, or γ-cyclodextrin in which at least a portion of the hydrogens of the 2-, 3-, and 6-position hydroxyl groups of its constituent glucose are substituted with an alkyl group having up to 16 carbon atoms. polymerization method.
JP5197482A 1982-03-30 1982-03-30 MONOMAANORAJIKARUJUGOHOHO Expired - Lifetime JPH0233722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5197482A JPH0233722B2 (en) 1982-03-30 1982-03-30 MONOMAANORAJIKARUJUGOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5197482A JPH0233722B2 (en) 1982-03-30 1982-03-30 MONOMAANORAJIKARUJUGOHOHO

Publications (2)

Publication Number Publication Date
JPS58168603A JPS58168603A (en) 1983-10-05
JPH0233722B2 true JPH0233722B2 (en) 1990-07-30

Family

ID=12901837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5197482A Expired - Lifetime JPH0233722B2 (en) 1982-03-30 1982-03-30 MONOMAANORAJIKARUJUGOHOHO

Country Status (1)

Country Link
JP (1) JPH0233722B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521266A (en) * 1994-10-28 1996-05-28 Rohm And Haas Company Method for forming polymers
DE4440236A1 (en) * 1994-11-10 1996-05-15 Wacker Chemie Gmbh Redispersible polymer powder composition containing cyclodextrins or cyclodextrin derivatives
DE19533269A1 (en) * 1995-09-08 1997-03-13 Basf Ag Process for the preparation of polymers in an aqueous medium
DE19548038A1 (en) * 1995-12-21 1997-06-26 Basf Ag Process for the preparation of polymers by emulsion polymerization
TW494125B (en) 1997-07-11 2002-07-11 Rohm And Haas Compary Preparation of fluorinated polymers
US7045559B2 (en) * 2003-12-18 2006-05-16 Kimberly-Clark Worldwide, Inc. Electrically conductive adhesive hydrogels with solubilizer

Also Published As

Publication number Publication date
JPS58168603A (en) 1983-10-05

Similar Documents

Publication Publication Date Title
JP3938795B2 (en) Improved polymer formation method
US4169079A (en) Polystyrene based polymers containing cyclodextrin derivatives, metal complexes of the same, and process for the production of the same
JP2001031745A (en) Preparation of conductive copolymer composition
JP2586916B2 (en) Cement dispersant
JP2020143220A (en) Polymer material and production method of the same
JPH0233722B2 (en) MONOMAANORAJIKARUJUGOHOHO
US3919140A (en) Process for producing acrylamide polymers in an acetone-water solvent system
KR970061921A (en) Method for producing beads of polymer based on acrylic
Fischer et al. Influence of initiator in controlled radical polymerization using nitroxide capping: the case of N, N-dimethylacrylamide.: synthesis of block copolymers of 4-vinylpyridine and N, N-dimethylacrylamide
JPH039901A (en) Thickening or stabilization of aqueous medium containing high molecular amphoteric polysaccharide and its thickening or stabilizing composition
JPH04348115A (en) Production of graft copolymer
JPS60192718A (en) Production of aqueous resin dispersion
KR910002979A (en) Manufacturing method of effervescent beads
JP2002534499A (en) Emulsion polymerization using a compound that acts as both a surfactant and a polymerization initiator
Haridharan et al. Synthesis of fluorescent, dansyl end‐functionalized PMMA and poly (methyl methacrylate‐b‐phenanthren‐1‐yl‐methacrylate) diblock copolymers, at ambient temperature
US4950748A (en) Polysaccharides
JP2505842B2 (en) Electrorheological fluid composition
JPH05117331A (en) Sodium styrenesulfonate/n-(4-sulfophenyl)maleimide copolymer
CN115651188B (en) RAFT chain transfer agent and preparation method and application thereof
US4946949A (en) Polymerizable aromatic-azo-aliphatic compounds and polymers made therefrom
JPH05306266A (en) Polymerizable emulsifier, reactive group and polymer of emulsifier and other monomer
JP2597272B2 (en) Method for producing graft polymer
JP2704735B2 (en) Method for producing water-soluble high molecular weight polymer
JP3923943B2 (en) Water-based conductive composition
JPH03221502A (en) Synthesis of cyclodextrin polymer and production of cyclodextrin film