EP0842381B1 - Verfahren und system zum anfahren eines durchlaufdampferzeugers - Google Patents

Verfahren und system zum anfahren eines durchlaufdampferzeugers Download PDF

Info

Publication number
EP0842381B1
EP0842381B1 EP96924761A EP96924761A EP0842381B1 EP 0842381 B1 EP0842381 B1 EP 0842381B1 EP 96924761 A EP96924761 A EP 96924761A EP 96924761 A EP96924761 A EP 96924761A EP 0842381 B1 EP0842381 B1 EP 0842381B1
Authority
EP
European Patent Office
Prior art keywords
evaporator
evaporator tubes
water
feed
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96924761A
Other languages
English (en)
French (fr)
Other versions
EP0842381A1 (de
Inventor
Rudolf Kral
Joachim Franke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0842381A1 publication Critical patent/EP0842381A1/de
Application granted granted Critical
Publication of EP0842381B1 publication Critical patent/EP0842381B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/14Control systems for steam boilers for steam boilers of forced-flow type during the starting-up periods, i.e. during the periods between the lighting of the furnaces and the attainment of the normal operating temperature of the steam boilers

Definitions

  • the invention relates to a method for starting a Continuous steam generator with a number of burners for a fossil fuel combustion chamber, whose gastight surrounding wall is at least approximately vertical extending evaporator tubes is formed, through which the feed water flows from bottom to top. It also relates to a start-up system for implementation of the procedure.
  • the heating leads from the gastight surrounding wall of a combustion chamber forming vertically arranged tubes of an evaporator to a complete Evaporation of the flow medium in the evaporator tubes in one pass.
  • a circulation current is superimposed during start-up. Thereby should be due to correspondingly high speeds in the pipes these are safely cooled.
  • The is from continuous flow and superimposed circulating current existing minimum current with vertically arranged pipes in the surrounding walls the combustion chamber between 25% and 50% of the full load flow. This means that the steam generator load only when starting must be increased to at least 25% to 50% before the Efficient continuous operation with its high efficiency Steam outlet temperatures is reached.
  • the invention is therefore based on the object of a method to start up a continuous steam generator in which Start-up losses, especially due to excess removal Water, are largely avoided. This is said to be one suitable starting system for carrying out the method simple means can be achieved.
  • this object is achieved according to the invention solved in that the ratio of fuel flow to Feed water flow and before starting the water level in the Evaporator tubes can be set so that the feed water when passing through the evaporator completely evaporates so that no more water at the evaporator outlet is available.
  • the invention is based on the consideration that before Approach, i.e. before the first burner fired, the water level is driven to a defined height in the evaporator.
  • the water level in the evaporator tubes should on the one hand be high enough to adequately cool the evaporator tubes to ensure.
  • the water level in the evaporator tubes should not be too high for training one during the start-up process downstream of the start of evaporation to avoid resulting water clogging. While the starting process, i.e.
  • the (first) or each burner should then be per unit time amount of feed water to be supplied depending on the Amount of fuel supplied to burners per unit of time with the Aim to be set that even without a separator no water downstream in the evaporator Superheater heating surfaces.
  • the level of water i.e. the water level in the evaporator tubes
  • Differential pressure can be derived. Therefore, it becomes more convenient Continuing education for both identification and recruitment the water level in the evaporator tubes the pressure difference, preferably between the evaporator outlet and the evaporator inlet, determined.
  • the gastight surrounding wall evaporator tubes running at least approximately vertically has, the feed water side from bottom to top are flowable, the stated object is inventively solved by an adjustment device before starting of the continuous steam generator the water level in the evaporator tubes and when starting the continuous steam generator that Ratio of fuel flow to feed water flow like this sets that the feed water as it passes through the evaporator tubes completely evaporated.
  • the setting or control variable is expediently the evaporator throughput, i.e. the amount of the evaporator on the medium side feed water supplied per unit of time.
  • the adjustment device is therefore conveniently associated with an actuator and a flow sensor, which in a feed water pipe leading the evaporator are switched.
  • the setting device with an actuator and a flow sensor connected in one to the or each burner leading fuel line are switched.
  • the setting device is connected to an actuator, the one connected to the evaporator on the inlet side Drain line for drainage is switched.
  • the setting device is connected to means for determination the water level in the evaporator. Both for identification as well as to adjust the water level in the evaporator expediently at least two arranged along the evaporator Pressure sensors provided.
  • a connecting line between evaporator outlet and evaporator inlet provided in which a fitting, e.g. a check valve, to avoid backflow to the evaporator outlet, is switched.
  • the evaporator outlet can be connected via the connecting line any water present at the evaporator inlet are supplied if the existing pressure conditions allow it. Otherwise, this water can have a discharge line connected to the connecting line is discharged become.
  • the advantages achieved with the invention are in particular in that only by adjusting the ratio of Fuel flow to feed water flow already during start-up the live steam temperature to the required value can be set or regulated since there is no defined one Evaporation end point there more. With a start-up system with separating device would be held there due to the Evaporation end the live steam temperature accordingly the ratio of evaporator to superheater heating area inevitably adjust when starting, so that a regulation the fresh steam temperature to the required value is not possible during start-up.
  • FIG. 1 An embodiment of the invention is based on a Drawing explained in more detail.
  • the figure shows schematically a continuous steam generator with vertical throttle cable and with an adjustment device of a start-up system.
  • the vertical throttle cable of the steam generator 1 according to FIG. 1 with rectangular cross section is formed by a surrounding wall 2, at the bottom of the throttle cable into a funnel-shaped Floor 3 merges.
  • Evaporator tubes 4 of the surrounding wall 2 are gas-tightly connected on their long sides, e.g. welded.
  • the bottom 3 includes a not shown Discharge opening 3a for ashes.
  • the lower area of the Surrounding wall 2 forms the one with a number of burners 5 provided combustion chamber 6 of the once-through steam generator 1.
  • the medium side i.e. of feed water or a water / water-steam mixture, parallel from bottom to top - or in the case of evaporator tube groups one behind the other - evaporator tubes flowed through 4 of the surrounding wall 2 are with their entry ends to an inlet header 8 and with its outlet ends connected to an outlet header 10.
  • the entry collector 8 and the outlet collector 10 are located outside the throttle cable and are e.g. each by an annular Tube formed.
  • the inlet header 8 is via a line 12 and one Collector 14 with the output of a high pressure preheater or Economizers 15 connected.
  • the heating surface of the economizer 15 is in a room above the combustion chamber 6 Surrounding wall 2 arranged.
  • the economizer 15 is on the input side via a collector 16 and a feed water line 18 connected to a heat exchanger 20 heated by steam D, connected to the pressure side of a feed water pump 22 is.
  • the suction side of the feed water pump 22 is in unspecified manner via a capacitor connected to a steam turbine and thus in its water-steam cycle switched.
  • the outlet header 10 is via a connecting line 24 and a branch line 26 with an inlet header 27 one High pressure superheater 28 connected within the containment wall 2 between the economizer 15 and the combustion chamber 6 is arranged.
  • the high pressure superheater 28 is during the Operation on the output side via a collector 30 with a high-pressure part connected to the steam turbine.
  • an intermediate superheater 32 is provided which Collector 34, 36 between the high pressure part and a medium pressure part the steam turbine is switched.
  • the Economizer 15, the high pressure superheater 28 and the reheater 32 are in the so-called convection or bulkhead heating surfaces Convection train of the once-through steam generator 1.
  • connection line 24 From the outlet collector 10 of the surrounding wall 2 of the convection train of the steam generator 1 to the lower-lying inlet header 27 of the high pressure superheater 28 guided connection line 24 is vertical up to the level of the entry collector 8, i.e. of the evaporator inlet, continued.
  • connection line 24 In the connecting line 24 is connected to a check valve 40.
  • drainage lines 42, 44 On both sides of the check valve 40 are on the connecting line 24 drainage lines 42, 44 connected, switched into the drainage valves 46 and 48, respectively are.
  • Feed water S In the feed water line 18 are in the direction of flow Feed water S behind the heat exchanger 20, a first valve 50 and a first flow sensor 52 switched.
  • the Flow sensor 52 is used to determine the per unit time amount of feed water led through the feed water line 18 S and thus to determine the feed water flow.
  • the led per unit of time via the feed water line 18 The amount of feed water S corresponds to that from the evaporator tubes 4 feed water volume supplied to existing evaporators and thus the evaporator throughput.
  • a second flow sensor 54 is in a fuel line 56 switched, the partial lines 58 in the burner 5 opens.
  • a second valve is in the fuel line 56 60 for setting the or each burner 5 per unit time supplied amount of fuel B and thus for adjustment of the fuel flow switched.
  • fuel B can Oil, gas or coal can be used.
  • the flow sensors 52 and 54 are connected via signal lines 62 and 64 to a controller module 66 as an adjusting device.
  • Another signal line 68 connected to the controller module 66 is connected via measuring lines 70 and 72 to pressure sensors 74 and 76, respectively, which are provided for measuring the pressure p E at the evaporator inlet and the pressure p A at the evaporator outlet.
  • the controller module 66 is also connected to the valves 50, 60 and 48 via control lines 78, 80 and 82.
  • the controller module 66 and the flow sensors 52, 54 and the valves 50 and 60 used to adjust the amount of feed water S and adjust the amount of fuel B are components of a start-up system 84 for starting the steam generator 1.
  • Other components of the start-up system 84 are Pressure sensors 74, 76 connected to controller module 66 via signal line 68 and valve 48 connected to controller module 66 via control line 82 for dewatering from the lower evaporator part.
  • the start-up system 84 is used to adjust the ratio of fuel flow to feed water flow with the aim that the feed water S evaporates completely as it passes through the evaporator tubes 4, so that there is no more water at the evaporator outlet, ie at the outlet header 10.
  • the water level H in the evaporator tubes 4 is raised to a defined height H min before starting in the evaporator, which is just above the burner 5. This is done, for example, by replenishing feed water S by means of the feed water pump 22 or by dewatering from the lower evaporator part via the drainage line 44.
  • the water level H in the evaporator tubes 4, ie the water level is set by means of a differential pressure measurement above the evaporator.
  • the differential pressure .DELTA.p A, E is fed to the controller module 66 via the signal line 68 as a measured value, which results from the difference between the pressures p A and p E measured by the pressure sensors 74 and 76 at the evaporator outlet or at the evaporator inlet.
  • the controller module 66 via the signal line 62 the measured by means of the flow sensor 52 current value of the amount of the evaporator, i.e. the evaporator tubes 4, feed water S supplied per unit of time transmitted.
  • This the controller block 66 from the flow sensor 52 supplied value corresponds to the current feed water flow and thus the evaporator throughput.
  • the level, i.e. the water level H, at time "fire ON" and the ratio of fuel flow to feed water flow chosen such that at the outlet header 10 pure steam is present so that no water in the superheater heating surface 28 flows.
  • the branch line 26 from the connecting line 24 is in Entry height of the superheater heating surface 28 is arranged. Thereby any water present in the outlet collector 10 flow past this branch to the superheater heating surface 28 and in the lower part of the vertical connecting line 24 collect. From there, this water can either discharged via the drain valve 46 or the inlet collector 8 of the evaporator are supplied. Alternatively, you can this possibly existing water between the line 12 between the economizer 15 and the inlet header 8 of the evaporator be fed. The check valve 40 backflow to the outlet header 10 is prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zum Anfahren eines Durchlaufdampferzeugers mit einer eine Anzahl von Brennern für einen fossilen Brennstoff aufweisenden Brennkammer, deren gasdichte Umfassungswand aus mindestens annähernd vertikal verlaufend angeordneten Verdampferrohren gebildet ist, die speisewasserseitig von unten nach oben durchströmt werden. Sie bezieht sich weiter auf ein Anfahrsystem zur Durchführung des Verfahrens.
In einem Durchlaufdampferzeuger führt die Beheizung von die gasdichte Umfassungswand einer Brennkammer bildenden vertikal angeordneten Rohren eines Verdampfers zu einer vollständigen Verdampfung des Strömungsmediums in den Verdampferrohren in einem Durchgang. Üblicherweise wird dem Durchlaufstrom des Verdampfers - und häufig auch einem im Durchlaufdampferzeuger angeordneten rauchgas-beheizten Vorwärmer oder Economizer - während des Anfahrens ein Umlaufstrom überlagert. Dadurch sollen durch entsprechend hohe Geschwindigkeiten in den Rohren diese sicher gekühlt werden. Dabei beträgt der aus Durchlaufstrom und überlagertem Umlaufstrom bestehende Mindeststrom bei vertikal angeordneten Rohren in den Umfassungswänden der Brennkammer zwischen 25% und 50% des Vollaststroms. Dies bedeutet, daß beim Anfahren die Dampferzeugerlast erst auf mindestens 25% bis 50% gesteigert werden muß, bevor der wirkungsgradmäßig günstige Durchlaufbetrieb mit seinen hohen Dampfaustrittstemperaturen erreicht wird.
Wie aus der Europäischen Patentschrift 0 054 601 Bl bekannt ist, wird daher üblicherweise zum Anfahren und in einem unter einer bestimmten Grenzlast von 50% der Vollast liegenden Lastbereich die Menge des von einer Speisepumpe zu fördernden Strömungsmediums vorzugsweise konstant gehalten. Dabei ist der Förderstrom der Speisepumpe gleich dem Verdampferdurchsatz. Bei dieser Betriebsweise sind die mit dem Zünden eines ersten Brenners des Durchlaufdampferzeugers beginnenden und mit Erreichen des Durchlaufbetriebs mit seinen hohen Dampftemperaturen endenden Anfahrzeiten sehr lang. Dies hat verhältnismäßig hohe Anfahrverluste zur Folge, da deren Höhe wesentlich von den Anfahrzeiten beeinflußt wird.
Hohe Anfahrverluste ergeben sich auch durch einen Wasserüberschuß. Dieser entsteht einerseits durch einen im Vergleich zur zugeführten Wärme hohen Wassermassenstrom und zum anderen durch den sogenannten Wasserausstoß. Dieser wiederum entsteht, wenn die Verdampfung in der Mitte des Verdampfers beginnt und die stromabwärts vorhandene Wassermenge (Wasserpfropfen) ausschiebt. Daher ist in einem Durchlaufdampferzeuger üblicherweise eine Abscheideeinrichtung vorgesehen, aus der überschüssiges Wasser abgezogen und entweder mittels einer Umwälzpumpe wieder dem Verdampfer zugeführt oder verworfen wird. In dieser Abscheideeinrichtung ist somit während des Anfahrens das Ende der Verdampfung festgelegt. in Anfahrsystem mit einer derartigen Abscheideeinrichtung sowie dabei zusätzlich erforderlichem Trenngefäß, Ventilen und einer Umwälzpumpe erfordert bei hohem technischen Aufwand hohe Investitionskosten, die mit einer gewünschten Realisierung hoher und höchster Dampfdrücke stark zunehmen.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zum Anfahren eines Durchlaufdampferzeugers anzugeben, bei dem Anfahrverluste, insbesondere durch Abführen überschüssigen Wassers, weitestgehend vermieden sind. Dies soll bei einem zur Durchführung des Verfahrens geeigneten Anfahrsystem mit einfachen Mitteln erreicht werden.
Bezuglich des Verfahrens wird diese Aufgabe erfindungsgemäß dadurch gelöst, daß das Verhältnis von Brennstoffstrom zu Speisewasserstrom und vor dem Anfahren der Wasserstand in den Verdampferrohren derart eingestellt werden, daß das Speisewasser beim Durchlauf durch den Verdampfer vollständig verdampft, so daß am Verdampferaustritt kein Wasser mehr vorhanden ist.
Die Erfindung geht dabei von der Überlegung aus, daß vor dem Anfahren, d.h. vor Feuerung des ersten Brenners, der Wasserstand im Verdampfer auf eine definierte Höhe gefahren wird. Dabei soll der Wasserstand in den Verdampferrohren einerseits hoch genug sein, um eine ausreichende Kühlung der Verdampferrohre zu gewährleisten. Andererseits darf der Wasserstand in den Verdampferrohren nicht zu hoch sein, um die Ausbildung eines während des Anfahrvorgangs stromabwärts des Verdampfungsbeginns entstehenden Wasserpfropfens zu vermeiden. Während des Anfahrvorgangs, d.h. zum Zeitpunkt der Feuerung des (ersten) oder jedes Brenners, soll dann die pro Zeiteinheit zuzuführende Speisewassermenge in Abhängigkeit von der den Brennern pro Zeiteinheit zugeführten Brennstoffmenge mit dem Ziel eingestellt werden, daß auch ohne Abscheideeinrichtung kein Wasser in dem Verdampfer dampfseitig nachgeschaltete Überhitzerheizflächen gelangt.
Das Niveau des Wassers, d.h. der Wasserstand in den Verdampferrohren, kann aus dem sich über dem Verdampfer einstellenden Differenzdruck abgeleitet werden. Daher wird in zweckmäßiger Weiterbildung sowohl zur Ermittlung als auch zur Einstellung des Wasserstandes in den Verdampferrohren die Druckdifferenz, vorzugsweise zwischen Verdampferaustritt und Verdampfereintritt, ermittelt.
Bezüglich des Anfahrsystems für einen Durchlaufdampferzeuger mit einer eine Anzahl von Brennern für einen fossilen Brennstoff aufweisenden Brennkammer, deren gasdichte Umfassungswand mindestens annähernd vertikal verlaufende Verdampferrohre aufweist, die speisewasserseitig von unten nach oben durchströmbar sind, wird die genannte Aufgabe erfindungsgemäß gelöst durch eine Einstelleinrichtung, die vor dem Anfahren des Durchlaufdampferzeugers den Wasserstand in den Verdampferrohren und beim Anfahren des Durchlaufdampferzeugers das Verhältnis von Brennstoffstrom zu Speisewasserstrom derart einstellt, daß das Speisewasser beim Durchlauf durch die Verdampferrohre vollständig verdampft.
Die Einstell- oder Regelgröße ist zweckmäßigerweise der Verdampferdurchsatz, d.h. die Menge des dem Verdampfer mediumseitig pro Zeiteinheit zugeführten Speisewassers. Die Einstelleinrichtung ist daher zweckmäßigerweise verbunden mit einem Stellglied und einem Durchflußmeßfühler, die in eine in den Verdampfer führende Speisewasserleitung geschaltet sind. Weiter ist die Einstelleinrichtung mit einem Stellglied und einem Durchflußmeßfühler verbunden, die in eine an den oder jeden Brenner führende Brennstoffleitung geschaltet sind. Ferner ist die Einstelleinrichtung verbunden mit einem Stellglied, das in eine mit dem Verdampfer eingangsseitig verbundene Ablaßleitung zur Entwässerung geschaltet ist. Außerdem ist die Einstelleinrichtung verbunden mit Mitteln zur Ermittlung des Wasserstandes im Verdampfer. Sowohl zur Ermittlung als auch zur Einstellung des Wasserstandes im Verdampfer sind zweckmäßigerweise mindestens zwei entlang des Verdampfers angeordnete Drucksensoren vorgesehen.
In vorteilhafter Ausgestaltung ist außerdem eine Verbindungsleitung zwischen Verdampferaustritt und Verdampfereintritt vorgesehen, in die eine Armatur, z.B. eine Rückschlagklappe, zur Vermeidung einer Rückströmung zum Verdampferaustritt hin, geschaltet ist. Über die Verbindungsleitung kann am Verdampferaustritt eventuell vorhandenes Wasser dem Verdampfereintritt zugeführt werden, wenn die vorhandenen Druckverhältnisse es erlauben. Andernfalls kann dieses Wasser über eine an die Verbindungsleitung angeschlossene Abströmleitung abgeführt werden.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß allein durch Verstellen des Verhältnisses von Brennstoffstrom zu Speisewasserstrom bereits während des Anfahrens die Frischdampftemperatur auf den erforderlichen Wert eingestellt oder geregelt werden kann, da es keinen definierten Verdampfungsendpunkt mehr gibt. Bei einem Anfahrsystem mit Abscheideeinrichtung würde sich aufgrund des dort festgehaltenen Verdampfungsendes die Frischdampftemperatur entsprechend dem Verhältnis von Verdampfer- zu Überhitzerheizfläche beim Anfahren zwangsläufig einstellen, so daß eine Einregelung der Frischdampftemperatur auf den erforderlichen Wert während des Anfahrens nicht möglich ist.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigt die Figur schematisch einen Durchlaufdampferzeuger mit vertikalem Gaszug und mit einer Einstelleinrichtung eines Anfahrsystems.
Der vertikale Gaszug des Dampferzeugers 1 gemäß Figur 1 mit rechteckigem Querschnitt ist durch eine Umfassungswand 2 gebildet, die am Unterende des Gaszugs in einen trichterförmigen Boden 3 übergeht. Verdampferrohre 4 der Umfassungswand 2 sind an ihren Längsseiten gasdicht miteinander verbunden, z.B. verschweißt. Der Boden 3 umfaßt eine nicht näher dargestellte Austragsöffnung 3a für Asche. Der untere Bereich der Umfassungswand 2 bildet die mit einer Anzahl von Brennern 5 versehene Brennkammer 6 des Durchlaufdampferzeugers 1.
Die mediumseitig, d.h. von Speisewasser oder einem Wasser/Wasser-Dampf-Gemisch, von unten nach oben parallel - oder bei Verdampferrohrgruppen hintereinander - durchströmten Verdampferrohre 4 der Umfassungswand 2 sind mit ihren Eintrittsenden an einen Eintrittssammler 8 und mit ihren Austrittsenden an einen Austrittssammler 10 angeschlossen. Der Eintrittssammler 8 und der Austrittssammler 10 befinden sich außerhalb des Gaszugs und sind z.B. jeweils durch ein ringförmiges Rohr gebildet.
Der Eintrittssammler 8 ist über eine Leitung 12 und einen Sammler 14 mit dem Ausgang eines Hochdruck-Vorwärmers oder Economizers 15 verbunden. Die Heizfläche des Economizers 15 ist in einem oberhalb der Brennkammer 6 liegenden Raum der Umfassungswand 2 angeordnet. Der Economizer 15 ist eingangsseitig über einen Sammler 16 und eine Speisewasserleitung 18 mit einem mittels Dampf D beheizten Wärmetauscher 20 verbunden, der an die Druckseite einer Speisewasserpumpe 22 angeschlossen ist. Die Saugseite der Speisewasserpumpe 22 ist in nicht näher dargestellter Art und Weise über einen Kondensator mit einer Dampfturbine verbunden und somit in deren Wasser-Dampf-Kreislauf geschaltet.
Der Austrittssammler 10 ist über eine Verbindungsleitung 24 und eine Abzweigleitung 26 mit einem Eintrittssammler 27 eines Hochdruck-Überhitzers 28 verbunden, der innerhalb der Umfassungswand 2 zwischen dem Economizer 15 und der Brennkammer 6 angeordnet ist. Der Hochdruck-Überhitzer 28 ist während des Betriebs ausgangsseitig über einen Sammler 30 mit einem Hochdruckteil der Dampfturbine verbunden. Zwischen dem HochdruckÜberhitzer 28 und dem Economizer 15 ist innerhalb der Umfassungswand 2 ein Zwischenüberhitzer 32 vorgesehen, der über Sammler 34, 36 zwischen den Hochdruckteil und einen Mitteldruckteil der Dampfturbine geschaltet ist. Der Economizer 15, der Hochdruck-Überhitzer 28 und der Zwischenüberhitzer 32 liegen als Konvektions- oder Schottheizflächen im sogenannten Konvektionszug des Durchlaufdampferzeugers 1.
Die vom Austrittssammler 10 der Umfassungswand 2 des Konvektionszuges des Dampferzeugers 1 zum tiefer liegenden Eintrittssammler 27 des Hochdruck-Überhitzers 28 geführte Verbindungsleitung 24 ist senkrecht bis in Höhe des Eintrittssammlers 8, d.h. des Verdampfereintritts, weitergeführt. In die Verbindungsleitung 24 ist eine Rückschlagklappe 40 geschaltet. Auf beiden Seiten der Rückschlagklappe 40 sind an die Verbindungsleitung 24 Entwässerungsleitungen 42, 44 angeschlossen, in die Entwasserungsventile 46 bzw. 48 geschaltet sind.
In die Speisewasserleitung 18 sind in Strömungsrichtung des Speisewassers S hinter dem Wärmetauscher 20 ein erstes Ventil 50 und ein erster Durchflußmeßfühler 52 geschaltet. Der Durchflußmeßfühler 52 dient zur Ermittlung der pro Zeiteinheit über die Speisewasserleitung 18 geführten Menge an Speisewasser S und somit zur Ermittlung des Speisewasserstroms. Die pro Zeiteinheit über die Speisewasserleitung 18 geführte Menge des Speisewassers S entspricht der dem aus den Verdampferrohren 4 bestehenden Verdampfer zugeführten Speisewassermenge und somit dem Verdampferdurchsatz.
Ein zweiter Durchflußmeßfühler 54 ist in eine Brennstoffleitung 56 geschaltet, die über Teilleitungen 58 in die Brenner 5 mündet. In die Brennstoffleitung 56 ist ein zweites Ventil 60 zur Einstellung der dem oder jedem Brenner 5 pro Zeiteinheit zugeführten Menge an Brennstoff B und somit zur Einstellung des Brennstoffstroms geschaltet. Als Brennstoff B kann Öl, Gas oder Kohle eingesetzt werden.
Die Durchflußmeßfühler 52 und 54 sind über Signalleitungen 62 bzw. 64 mit einem Reglerbaustein 66 als Einstelleinrichtung verbunden. Eine weitere mit dem Reglerbaustein 66 verbundene Signalleitung 68 ist über Meßleitungen 70 und 72 mit Drucksensoren 74 bzw. 76 verbunden, die zur Messung des Drucks pE am Verdampfereintritt bzw. des Drucks pA am Verdampferaustritt vorgesehen sind. Der Reglerbaustein 66 ist außerdem über Steuerleitungen 78, 80 und 82 mit den Ventilen 50, 60 bzw. 48 verbunden. Der Reglerbaustein 66 und die Durchflußmeßfühler 52, 54 sowie die zur Einstellung der Menge des Speisewassers S und zur Einstellung der Menge des Brennstoffs B dienenden Ventile 50 bzw. 60 sind Bestandteile eines Anfahrsystems 84 zum Anfahren des Durdhlaufdampferzeugers 1. Weitere Bestandteile des Anfahrsystems 84 sind die über die Signalleitung 68 mit dem Reglerbaustein 66 verbundenen Drucksensoren 74, 76 sowie das über die Steuerleitung 82 mit dem Reglerbaustein 66 verbundene Ventil 48 zum Entwässern aus dem unteren Verdampferteil.
Das Anfahrsystem 84 dient zum Einstellen des Verhältnisses von Brennstoffstrom zu Speisewasserstrom mit dem Ziel, daß das Speisewasser S während des Durchlauf durch die Verdampferrohre 4 vollständig verdampft, so daß am Verdampferaustritt, d.h. am Austrittssammler 10, kein Wasser mehr vorhanden ist. Dabei wird der Wasserstand H in den Verdampferrohren 4 vor dem Anfahren im Verdampfer auf eine definierte Höhe Hmin gefahren, die kurz oberhalb der Brenner 5 liegt. Dies erfolgt z.B. durch Nachspeisen von Speisewasser S mittels der Speisewasserpumpe 22 oder durch Entwässern aus dem unteren Verdampferteil über die Entwässerungsleitung 44. Der Wasserstand H in den Verdampferrohren 4, d.h. das Wasserniveau, wird mittels einer Differenzdruckmessung über dem Verdampfer eingestellt. Dazu wird dem Reglerbaustein 66 über die Signalleitung 68 der Differenzdruck ΔpA,E als Meßwert zugeführt, der sich aus der Differenz zwischen den mittels der Drucksensoren 74 und 76 gemessenen Drücken pA und pE am Verdampferaustritt bzw. am Verdampfereintritt ergibt.
Der Wasserstand H in den Verdampferrohren 4 wird dabei zwischen den beiden Grenzwerten Hmax und Hmin gehalten, wobei Hmin = H SB + L · Ps · F und Hmax = HKHF - Tmin · vWS ist.
Dabei sind:
HSB
die Höhe (Oberkante) des höchsten Brenners, der mit der Startfeuerleistung in Betrieb ist;
L
die Flammenlänge L bei Vollast des Brenners;
PS
die relative Startfeuerleistung des Brenners;
F
ein Anpassungsfaktor, der empirisch zu ca. 0,5 bis 2 ermittelt wurde;
HKHF
die Höhe, in der die Konvektions- oder Schottheizflächen mit enger Teilung (< 400 mm) beginnen;
Tmin
die Zeit (3 bis 10 Minuten) zum Füllen des Speichers, d.h. der Verdampferrohre bis zum Wasserstand H, mit der Geschwindigkeit vW,S;
vWS
die Wassergeschwindigkeit in den Verdampferrohren beim Start des Speisewasserstroms zum Zeitpunkt des Zündens des ersten Brenners.
Zur Einstellung des Verhältnisses von Brennstoffstrom zu Speisewasserstrom wird dem Reglerbaustein 66 über die Signalleitung 62 der mittels des Durchflußmeßfühlers 52 gemessene aktuelle Wert derMenge des dem Verdampfer, d.h. den Verdampferrohren 4, pro Zeiteinheit zugeführten Speisewassers S übermittelt. Dieser dem Reglerbaustein 66 von dem Durchflußmeßfühler 52 zugeführte Wert entspricht dem aktuellen Speisewasserstrom und damit dem Verdampferdurchsatz. Außerdem wird dem Reglerbaustein 66 über die Signalleitung 64 der mittels des Durchflußmeßfühlers 54 zum aktuellen Zeitpunkt gemessene Wert der Menge des den Brennern 5 zugeführten Brennstoffs B übermittelt. Dabei wird das Niveau, d.h. der Wasserstand H, zum Zeitpunkt "Feuer EIN" und das Verhältnis von Brennstoffstrom zu Speisewasserstrom derart gewählt, daß am Austrittssammler 10 reiner Dampf vorhanden ist, so daß kein Wasser in die Überhitzer-Heizfläche 28 strömt.
Die Abzweigleitung 26 von der Verbindungsleitung 24 ist in Eintrittshöhe der Überhitzer-Heizfläche 28 angeordnet. Dadurch wird im Austrittssammler 10 eventuell vorhandenes Wasser an diesem Abzweig zur Überhitzer-Heizfläche 28 vorbeiströmen und sich im unteren Teil der senkrechten Verbindungsleitung 24 sammeln. Von dort aus kann dieses Wasser entweder über das Entwässerungsventil 46 abgeführt oder dem Eintrittssammler 8 des Verdampfers zugeführt werden. Alternativ kann dies eventuell vorhandene Wasser auch der Leitung 12 zwischen dem Economizer 15 und dem Eintrittssammler 8 des Verdampfers zugeführt werden. Dabei wird durch die Rückschlagklappe 40 eine Rückströmung zum Austrittssammler 10 verhindert.

Claims (7)

  1. Verfahren zum Anfahren eines Durchlaufdampferzeugers mit einer eine Anzahl von Brennern (5) für einen fcssilen Brennstoff (B) aufweisenden Brennkammer (6), deren gasdichte Umfassungswand (2) aus mindestens annähernd vertiKal verlaufend angeordneten Verdampferrohren (4) gebildet ist, die speisewasserseitig von unten nach oben durchströmt werden,
    dadurch gekennzeichnet, daß das Verhältnis von Brennstoffstrom zu Speisewasserstrom und vor dem Anfahren der Wasserstand (H) in den Verdampferrohren (4) derart eingestellt werden, daß das Speisewasser (S) beim Durchlauf durch die Verdampferrohre (4) vollständig verdampft.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, daß der Wasserstand (H) in den Verdampferrohren (4) auf eine oberhalb der Brenner (5) vorgesehene Höhe (Hmin, Hmax) eingestellt wird.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß zur Einstellung des Wasserstandes (H) in den Verdampferrohren (4) die Druckdifferenz (ΔpA,E) entlang der Verdampferrohre (4) ermittelt wird.
  4. Anfahrsystem für einen Durchlaufdampferzeuger mit einer eine Anzahl von Brennern (5) für einen fossilen Brennstoff (B) aufweisenden Brennkammer (6), deren gasdichte Umfassungswand (2) mindestens annähernd vertikal verlaufende Verdampferrohre (4) aufweist, die speisewasserseitig von unten nach oben durchströmbar sind,
    gekennzeichnet durch eine Einstelleinrichtung (66), die vor dem Anfahren des Durchlaufdampferzeuges den Wasserstand (H) in den Verdampferrohren (4) und beim Anfahren des Durchlaufdampferzeugers das Verhältnis von Brennstoffstrom zu Speisewasserstrom derart einstellt, daß das Speisewasser (S) beim Durchlauf durch die Verdampferrohre (4) vollständig verdampft.
  5. Anfahrsystem nach Anspruch 4,
    dadurch gekennzeichnet, daß die Einstelleinrichtung (66) verbunden ist mit einem ersten Stellglied (50) und einem ersten Durchflußmeßfühler (52), die in eine in die Verdampferrohre (4) führende Speisewasserleitung (18) geschaltet sind, mit einem zweiten Stellglied (60) und einem zweiten Durchflußmeßfühler (54), die in eine an den oder jeden Brenner (5) führende Brennstoffleitung (56) geschaltet sind, mit einem in eine mit den Verdampferrohren (4) eingangsseitig verbundene Ablaßleitung (44) geschalteten dritten Stellglied (48) sowie mit Mitteln (70, 74, 76) zur Ermittlung des Wasserstandes (H) in den Verdampferrohren (4).
  6. Anfahrsystem nach Anspruch 5,
    dadurch gekennzeichnet, daß als Mittel zur Ermittlung des Wasserstands (H) in den Verdampferrohren (4) mindestens zwei entlang der Verdampferrohre (4) angeordnete Drucksensoren (74, 76) vorgesehen sind.
  7. Anfahrsystem nach einem der Ansprüche 4 bis 6,
    gekennzeichnet durch eine Verbindungsleitung (24) zwischen Verdampferaustritt (10) und Verdampfereintritt (8), in die eine Armatur (40) zur Vermeidung einer Rückströmung zum Verdampferaustritt (10) hin geschaltet ist, und an die eine Abströmleitung (42) angeschlossen ist.
EP96924761A 1995-08-02 1996-07-19 Verfahren und system zum anfahren eines durchlaufdampferzeugers Expired - Lifetime EP0842381B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19528438 1995-03-02
DE19528438A DE19528438C2 (de) 1995-08-02 1995-08-02 Verfahren und System zum Anfahren eines Durchlaufdampferzeugers
PCT/DE1996/001343 WO1997005425A1 (de) 1995-08-02 1996-07-19 Verfahren und system zum anfahren eines durchlaufdampferzeugers

Publications (2)

Publication Number Publication Date
EP0842381A1 EP0842381A1 (de) 1998-05-20
EP0842381B1 true EP0842381B1 (de) 2000-01-12

Family

ID=7768544

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96924761A Expired - Lifetime EP0842381B1 (de) 1995-08-02 1996-07-19 Verfahren und system zum anfahren eines durchlaufdampferzeugers

Country Status (6)

Country Link
US (1) US5983639A (de)
EP (1) EP0842381B1 (de)
JP (1) JPH11510241A (de)
DE (2) DE19528438C2 (de)
IN (1) IN189235B (de)
WO (1) WO1997005425A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19717158C2 (de) 1997-04-23 1999-11-11 Siemens Ag Durchlaufdampferzeuger und Verfahren zum Anfahren eines Durchlaufdampferzeugers
DE10039317A1 (de) * 2000-08-11 2002-04-11 Alstom Power Boiler Gmbh Dampferzeugeranlage
EP1288567A1 (de) * 2001-08-31 2003-03-05 Siemens Aktiengesellschaft Verfahren zum Anfahren eines Dampferzeugers mit einem in einer annähernd horizontalen Heizgasrichtung durchströmbaren Heizgaskanal und Dampferzeuger
EP1701091A1 (de) * 2005-02-16 2006-09-13 Siemens Aktiengesellschaft Durchlaufdampferzeuger
EP2065641A3 (de) * 2007-11-28 2010-06-09 Siemens Aktiengesellschaft Verfahren zum Betrieben eines Durchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
US8381690B2 (en) 2007-12-17 2013-02-26 International Paper Company Controlling cooling flow in a sootblower based on lance tube temperature
EP2119880A1 (de) 2008-02-15 2009-11-18 Siemens Aktiengesellschaft Verfahren zum Anfahren eines Durchdampferzeugers
EP2180251A1 (de) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Durchlaufdampferzeuger
EP2180250A1 (de) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Durchlaufdampferzeuger
EP2182278A1 (de) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Durchlaufdampferzeuger
DE102010038883C5 (de) * 2010-08-04 2021-05-20 Siemens Energy Global GmbH & Co. KG Zwangdurchlaufdampferzeuger
DE102013215456A1 (de) 2013-08-06 2015-02-12 Siemens Aktiengesellschaft Durchlaufdampferzeuger
US9541282B2 (en) 2014-03-10 2017-01-10 International Paper Company Boiler system controlling fuel to a furnace based on temperature of a structure in a superheater section
US9927231B2 (en) * 2014-07-25 2018-03-27 Integrated Test & Measurement (ITM), LLC System and methods for detecting, monitoring, and removing deposits on boiler heat exchanger surfaces using vibrational analysis
PL3172520T3 (pl) 2014-07-25 2019-07-31 International Paper Company System i sposób określania lokalizacji zanieczyszczenia na powierzchni przenoszenia ciepła kotła
EP3048366A1 (de) * 2015-01-23 2016-07-27 Siemens Aktiengesellschaft Abhitzedampferzeuger
US10345028B2 (en) * 2016-06-17 2019-07-09 Panasonic Intellectual Property Management Co., Ltd. Evaporators, methods for defrosting an evaporator, and cooling apparatuses using the evaporator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072182A (en) * 1977-01-05 1978-02-07 International Power Technology, Inc. Pressure staged heat exchanger
US4241585A (en) * 1978-04-14 1980-12-30 Foster Wheeler Energy Corporation Method of operating a vapor generating system having integral separators and a constant pressure furnace circuitry
DE3166099D1 (en) * 1980-12-23 1984-10-25 Sulzer Ag Forced-circulation steam boiler
JPH04371712A (ja) * 1991-06-21 1992-12-24 Mitsubishi Heavy Ind Ltd ごみ焼却炉の燃焼制御方法
DE4342156C1 (de) * 1993-12-10 1995-04-20 Balcke Duerr Ag Anordnung zur Wirkungsgradverbesserung eines Kraftwerkes oder dergleichen
US5535687A (en) * 1994-08-25 1996-07-16 Raytheon Engineers & Constructors Circulating fluidized bed repowering to reduce Sox and Nox emissions from industrial and utility boilers

Also Published As

Publication number Publication date
WO1997005425A1 (de) 1997-02-13
DE19528438A1 (de) 1997-02-06
EP0842381A1 (de) 1998-05-20
DE19528438C2 (de) 1998-01-22
JPH11510241A (ja) 1999-09-07
IN189235B (de) 2003-01-11
US5983639A (en) 1999-11-16
DE59604183D1 (de) 2000-02-17

Similar Documents

Publication Publication Date Title
EP0842381B1 (de) Verfahren und system zum anfahren eines durchlaufdampferzeugers
EP0993581B1 (de) Abhitzedampferzeuger
DE2845021C2 (de) Verfahren zum Anfahren eines Zwanglaufdampferzeugers
DE19651678A1 (de) Dampferzeuger
DE19717158C2 (de) Durchlaufdampferzeuger und Verfahren zum Anfahren eines Durchlaufdampferzeugers
EP0425717A1 (de) Durchlaufdampferzeuger
EP0054601A1 (de) Zwanglaufdampferzeugeranlage
EP0657010B2 (de) Dampferzeuger
DE4142376A1 (de) Fossil befeuerter durchlaufdampferzeuger
EP1848926A2 (de) Durchlaufdampferzeuger
EP0439765B1 (de) Dampferzeuger
DE19929088C1 (de) Fossilbeheizter Dampferzeuger mit einer Entstickungseinrichtung für Heizgas
DE2102024C3 (de) Dampferzeuger
EP0808440B1 (de) Verfahren und vorrichtung zum anfahren eines durchlaufdampferzeugers
CH653758A5 (de) Zwangsdurchlaufkessel.
DE10039317A1 (de) Dampferzeugeranlage
EP2676072B1 (de) Verfahren zum betreiben eines durchlaufdampferzeugers
DE2621340C3 (de) Abhitzedampferzeuger
EP0812407B1 (de) Verfahren und system zum anfahren eines durchlaufdampferzeugers
DE3616095A1 (de) Dampferzeuger mit katalytischer rauchgasbehandlung und verfahren beim betrieb des dampferzeugers
DE2006409B2 (de) Fuer gleitdruckbetrieb geeigneter zwanglaufdampferzeuger
DE3004093C2 (de) Dampferzeuger mit wahlweise zu betreibenden Brennern für zwei Brennstoffe unterschiedlich intensiver Flammenstrahlung
DE1275072B (de) UEberkritischer Zwangdurchlauf-Dampferzeuger mit ueberlagertem Zwangumlauf
DE3511877A1 (de) Durchlaufdampferzeuger
DE4236835A1 (de) Dampferzeuger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19990528

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59604183

Country of ref document: DE

Date of ref document: 20000217

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000316

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20011018

Year of fee payment: 6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120802

Year of fee payment: 17

Ref country code: IT

Payment date: 20120726

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150918

Year of fee payment: 20

Ref country code: GB

Payment date: 20150709

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59604183

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160718