EP0841668B1 - Résistance électrique et son procédé de fabrication - Google Patents

Résistance électrique et son procédé de fabrication Download PDF

Info

Publication number
EP0841668B1
EP0841668B1 EP19970119468 EP97119468A EP0841668B1 EP 0841668 B1 EP0841668 B1 EP 0841668B1 EP 19970119468 EP19970119468 EP 19970119468 EP 97119468 A EP97119468 A EP 97119468A EP 0841668 B1 EP0841668 B1 EP 0841668B1
Authority
EP
European Patent Office
Prior art keywords
substrate
resistor
adhesive layer
resistors
resistive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19970119468
Other languages
German (de)
English (en)
Other versions
EP0841668A1 (fr
Inventor
Ullrich Dr. Hetzler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IsabellenHuette Heusler GmbH and Co KG
Original Assignee
IsabellenHuette Heusler GmbH and Co KG
Isabellen Huette GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IsabellenHuette Heusler GmbH and Co KG, Isabellen Huette GmbH filed Critical IsabellenHuette Heusler GmbH and Co KG
Publication of EP0841668A1 publication Critical patent/EP0841668A1/fr
Application granted granted Critical
Publication of EP0841668B1 publication Critical patent/EP0841668B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/08Cooling, heating or ventilating arrangements
    • H01C1/084Cooling, heating or ventilating arrangements using self-cooling, e.g. fins, heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/142Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being coated on the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/006Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistor chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/07Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by resistor foil bonding, e.g. cladding

Definitions

  • the invention relates to an electrical resistor according to the preamble of claim 1, preferably with arranged on the side facing away from the substrate of the resistor foil terminal contact surfaces, and method for producing such resistors.
  • Low-resistance measuring power resistors of this kind whose resistance values are often in the milliohm range, but can also extend to orders of magnitude of more than 100 ohms for many applications, are often required in SMD design, so that they like the known chip components with their flat Terminal contacts soldered directly to flat leads of printed circuit boards or can be soldered or glued with its substrate flat on the surface of a heat sink.
  • the resistors can also be used together with power semiconductors and other passive components in so-called power hybrid circuits, wherein external connection wires are attached to the terminal contact layers of the resistors ("bonding").
  • a known from DE-GM 90 15 206 known SMD resistor of the type mentioned has as a terminal contact a compact bead of solder.
  • a terminal contact a compact bead of solder.
  • an aluminum substrate eg AlMg3 sheet metal
  • a film of a resistance alloy between which an adhesive film is located.
  • the resistance foil is brought into the desired shape with the required web structures by photoetching.
  • the resistive film-bearing surface of the composite is screen-printed with a layer of solder mask, the subsequent terminal contact areas are defined and recessed, which are then screen printed with a solder paste, from finally by a remelting a solder ball forming the terminal contact arises.
  • a low-impedance measuring resistor in SMD construction is also known, the terminal contacts are not located on the side facing away from the substrate of the resistor foil, but are formed by the substrate itself.
  • a polyimide film covered with an adhesive and the resistance film is first formed a relatively large laminate, which forms the so-called "benefit” from the after etching the required resistance structure, then producing the resistive foil with the copper sheet connecting copper layers and Through etching of the copper sheet for separation of the terminal contacts formed by the substrate, for example, about 2000 resistors can be isolated.
  • the invention has for its object to provide a suitable as a power resistor for current measurements resistance that is even higher load than before and can be easily produced and reusable in large quantities without the required precision and reliability of Resistance is impaired.
  • the invention enables the production of a large number of resistors having the above-mentioned properties from the prefabricated triple laminate laminate of resistance foil, adhesive layer and substrate with little effort.
  • a "benefit" of 300 x 400 mm can easily be used to produce 8000 resistors.
  • the resistors may be used as SMD components for printed circuit boards or as internal elements for other resistor types as required, e.g. built into housings or attached to thicker copper bars, heat sinks, etc.
  • the use of a relatively strong with ceramic powder filled resin adhesive is preferably advantageous in the form of a film as an adhesive layer of the laminate, both during manufacture, in particular when separating the resistors, as well as the finished device.
  • This adhesive layer is mechanically and thermally resilient and superior to the polyimide adhesive films previously used in the production of resistors in terms of dissipation of the heat loss of the resistance film.
  • plastic adhesive layers filled with ceramic powder or other thermally conductive but electrically insulating granular material are known per se, namely for adhering semiconductor devices and resistive circuits to heat-dissipating housing parts or heat sinks (US Pat. No. 5,547,758). In the case of the resistor described here, however, they have not relevant advantages in the known case, such as brittleness and easy breakability.
  • the substrate containing a good heat-conducting metal such as copper or aluminum can be etched through along the parting lines for severing the laminate from its rear side facing away from the resistance film. There is then only the material of the adhesive layer, as at the separation points before when etching the resistor structures and, if necessary, the terminal contact layers also all metal had been removed from the other side.
  • the above-mentioned filled adhesive is relatively brittle and can be easily broken to singulate the resistors, conveniently in a single operation with a rubber-elastic mat pressed onto the resistive side of the laminate covering the entire surface of the "benefit".
  • the terminal contact layers can not be deposited as before after the etching of the resistor structure, but by partial pre-metallization of the resistor foil, either on its upper side or e.g. in previously etched recesses of the resistance foil. If the pad layers are first made larger than desired to simplify the process, the resistor and contact structures can be etched in a single, common operation. However, the advantages of using the filled adhesive also result in resistors whose resistance foil have no pre-metallized contact layers, but only terminal contact surfaces, which are contacted only when isolated resistance.
  • the invention is particularly suitable for extremely small resistors, but also for large-scale components with side lengths of a few cm.
  • the resistor shown in Fig. 1A consists essentially of a substrate 1 of a metal such as copper or aluminum, the resistance foil 2 of metal such as one of the CuNi alloys known for refzisionsmeßwiderrange and an interposed adhesive layer 3, with the resistance foil 2 on attached to the substrate 1.
  • the substrate 1 is usually thicker than the resistance foil and can serve as a heat sink in addition to the support function.
  • the resistance foil is structured in a customary manner for the respective desired resistance value, for example in a four-pole design (see FIG. 2B) and / or in the form of a meandering path, and has on its surface facing away from the substrate at opposite ends in each case at the edge of the resistor electrical connection to external circuits serving separate terminal contact surfaces.
  • terminal contact layers 4 there are metallized terminal contact layers 4 on these surfaces, but these are not always necessary.
  • the terminal contacts may each consist of several layers of different metals, e.g. from a lower layer 5 of copper, which creates a low-resistance contact junction, and a layer of nickel thereon 6, which facilitates the subsequent external contacting, so depending on the application, a solder joint or the connection of connecting wires.
  • the adhesive layer 3 which is a flexible plastic film, which may have a thickness of the order of 75 or 100 ⁇ m, for example. she should on the one hand, in addition to the required electrical insulation to ensure the solid and permanently reliable adhesion of the resistor foil on the substrate, even at high mechanical and thermal stress and on the other hand, the best possible thermal conductivity.
  • the layer 3 consists of a plastic adhesive such as epoxy resin or polyimide material which is filled with a thermally conductive powder, preferably with ceramic powder, for example alumina, boron nitride or the like, as it is known per se for other purposes.
  • the heat dissipation from the resistance foil into the substrate is substantially improved in comparison with the plastic adhesive layers hitherto used for the production of resistors.
  • the degree of filling (for example 60-70%, based on the weight of the plastic) is chosen so that, with good heat conduction (high degree of filling), sufficient adhesion of the resistance foil 2 to the substrate 1 results.
  • Fig. 1B shows a modified embodiment of the resistor, the terminal contact layers 4 'are arranged in recesses 8, which are incorporated at the lateral edges of the resistor in the substrate 1 facing away from the top of the resistance foil 2', as will be explained in more detail.
  • the terminal contact layer 4 ' may consist of one or, if necessary, a plurality of different metal layers.
  • the terminal contact layers 4 are completely within the outer periphery of the resistive layer, which in turn lies within the outer periphery of the substrate.
  • the resistance element shown schematically can then be provided in the usual way with protective layers and / or easily installed in housing or other external arrangements.
  • Fig. 2A illustrated laminate of the substrate 1 forming a metal sheet, which may be, for example, a 0.5 mm thick copper sheet, the adhesive layer 3 and the metallic resistance foil 2 produced in a several thousand resistors resulting size.
  • the adhesive is either applied by screen printing in several layers, for example on the substrate or transferred as a prefabricated dry film in a tempered press.
  • areas are now defined in a first working step in the manner known from photolithography with the aid of a photomask and a photosensitive laminated film, which covers the later contact surfaces of the resistors.
  • areas 42 are defined which are larger than the later contact areas 23 of the finished resistor, because this is simpler than a photolithographic definition corresponding exactly to the desired terminal contact layers.
  • the resistance structure to be generated later is indicated at 22.
  • a galvanic or chemical metallization is then performed, wherein the lying between the areas 42 part may be covered during the metallization with a photoresist or other protective layer.
  • the partial metallization can also take place by first coating the entire surface and then selectively etching away the region complementary to the contact surfaces (without attacking the underlying resistance metal).
  • the resistance structure 22 may be formed for each of two mutually separate pads at their opposite ends, as at 23 is indicated.
  • this four-pole training known to serve two terminal contacts for the power connection and the other two for the voltage connection, as it is required for measurement purposes.
  • Fig. 2C shows a section through Fig. 2B along the plane A-A.
  • the metallization of the regions 42 can be performed with one or as shown in FIG. 2C multiple layers.
  • the lowermost, preferably made of copper layer 5 serves to make this area lower impedance, while the uppermost, preferably made of nickel layer 6 facilitates the subsequent contact, as already mentioned.
  • the resistance foil is etched in the defined regions 42 before the metallization by an amount thinner, which corresponds approximately to the subsequent application thickness of the copper layer.
  • the etched trough-like depressions or recesses can be seen in the FIG. 2D at 43 (corresponding to FIG. 2C).
  • a preferably thinner nickel layer 6 can be metallized onto the copper introduced into the recesses 43.
  • the etching is carried out in a single operation, wherein etched in the region of the actual resistance, only the resistance material and etched in the contact region, the resistance foil with its metallization up to the adhesive layer 3 can be seen, as in Fig. 2E the example of the (alternative to Fig. 2C) embodiment of FIG. 2D can be seen.
  • the etching edges at the edges of the later resistors are designated 44 therein.
  • resistors without terminal contact layers.
  • only the desired structure of resistance is photolithographically defined and etched.
  • the necessary connections can be formed later on further use of the individual, substantially finished resistors.
  • the resistors are now ready to singulate. If necessary, a balance of the resistance values in a known manner, e.g. be performed by cuts in the resistance foil.
  • the ceramic filling of the adhesive preferably used in the method described here can have a strong abrasive effect on the punching tools, which must therefore be constantly reworked, for example after less than 1000 operations, so that not even the resistors of a "benefit" without reworking the punch could be singled.
  • punching there is a risk that in the edge region of the resistors, where a material feed occurs during punching, a more or less wide adhesive detachment takes place, as shown in Fig. 3 for explanation at 30.
  • the edge region 31, over which the adhesive dissolves from the substrate may be more than 0.5 mm. This danger arises in particular in the case of the adhesive which is relatively brittle due to the high degree of ceramic filling and limits the desired miniaturization the resistances.
  • One way to avoid this difficulty would be to singulate the resistors by cutting, especially with a laser cutting machine, but this is relatively expensive and slow and may also affect the electrical properties of the components.
  • the metal substrate 1 is etched away from its rear side facing away from the resistance foil 2 in a narrow region following the contour of the resistor so that the incisions that extend through the adhesive layer 3 are etched on the substrate 1
  • Side surfaces 51 of the component to be produced similar to the etched side surfaces 44 (FIG. 2E), provide the resistance foil 2 and the terminal contact surfaces 5 and 6. Since the contour of the parting lines 50 is photolithographically and etch-technically defined and generated, it can easily approach almost be arbitrarily complex. It is also particularly advantageous that in this case also desired other recesses or holes in the resistor can be generated in the resistor without additional effort.
  • the resistors on the adhesive layer 3 are still in the "benefit", ie in the original large laminate together, so that easily further handling is possible.
  • the resistance metal was also removed up to within the parting lines, as shown in FIG. 2F, the resistances after etching the sipes 50 are only still connected by the short adhesive bridge 52, which can be easily broken because of their brittleness. The separation takes place by a simple pressing cycle in a plate press.
  • a silicone mat 54 is placed over the entire surface, so that when the press is moved by the material flow of the silicone, a shearing or breaking of the adhesive takes place via the outer edge, as can be seen in FIG. 2G at the break points 55.
  • the resistors of the type described herein are suitable both for de SMD assembly as well as for bonding via bonding wires and can be used especially as a measuring resistor with resistance values in the milliohm range (typically between 1 and 500 mOhm). They are highly resilient and, due to their extremely low internal heat resistance (typically less than 1 K / W x cm 2 ), can be briefly overloaded for a short time.
  • resistors according to the invention with the filled adhesive between its resistance foil and its substrate, methods other than that described above are also suitable.
  • the resistors could be singulated in a conventional manner by cutting the laminate with a laser.
  • the method described can also have advantages over comparable known methods when adhesive films are used without ceramic powder filling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Claims (9)

  1. Résistance électrique, en particulier de basse impédance avec un film de résistance (2) constitué d'un film métallique à base d'un alliage de résistance, un substrat (1) bon thermoconducteur et une couche adhésive (3) se trouvant entre le film de résistance (2) et le substrat (1) et reliant ceux-ci de façon fixe entre eux à base de matériau isolant,
    caractérisée en ce que la couche adhésive (3) est à base d'un matériau plastique chargé avec de la poudre à base de matériau électro-isolant et thermoconducteur.
  2. Résistance selon la revendication 1,
    caractérisée en ce que la couche adhésive (3) est à base d'une résine époxy remplie de poudre céramique ou d'un plastique de polyimide.
  3. Résistance selon la revendication 1 ou 2,
    caractérisée en ce que le degré de remplissage de la poudre s'élève à environ 60 à 70 %.
  4. Résistance selon l'une quelconque des revendications 1 à 3 avec des couches de contact de raccordement (4) disposées sur le côté, opposé au substrat (1), du film de résistance (2),
    caractérisée en ce que les couches de contact de raccordement (4) sont à base d'une métallisation appliquée de façon galvanique ou chimique par exemple à base de cuivre et/ou de nickel.
  5. Résistance selon l'une quelconque des revendications précédentes,
    caractérisée en ce qu'elle contient des contacts de raccordement disposés dans des évidements (43) du film de résistance (2) dans sa surface opposée au substrat (1).
  6. Résistance selon l'une quelconque des revendications précédentes,
    caractérisée en ce que les faces latérales (44 ; 51) métalliques, agencées transversalement aux plans de couche, sont formées par décapage.
  7. Procédé pour la fabrication de résistances électriques, en particulier de basse impédance, avec un film de résistance (2), qui se trouve complètement à l'intérieur du pourtour d'un substrat (1) des résistances individuelles, le film de résistance (2) utilisant un film métallique à base d'un alliage de résistance et étant collé au moyen d'une couche adhésive (3) thermoconductible à base de matériau isolant sur un substrat (1) à base de matériau bon électroconducteur, le film de résistance (2) étant décapé pour générer une pluralité d'éléments de résistance individuels, et le stratifié constitué du film de résistance (2) décapé, du substrat (1) et de la couche adhésive (3) intercalée étant séparé entre les résistances individuelles,
    caractérisé en ce que le film de résistance (2), le substrat (1) et la couche (3) disposée entre eux, à base d'une colle de matière plastique, qui est chargée d'une poudre à base de matériau isolant électro-isolant et thermoconducteur, sont réchauffés dans une presse et comprimés entre eux en ce que les résistances sont d'abord séparées à l'exception des ponts (52) restant entre elles de la couche adhésive (3) et les ponts (52) de la couche adhésive (3) sont cassés alors en exerçant une pression sur le stratifié contenant la couche adhésive (3).
  8. Procédé selon la revendication 7,
    caractérisé en ce que le collage est effectué par compression du stratifié (1, 2, 3) dans le vide.
  9. Procédé selon la revendication 7 ou 8,
    caractérisé en ce que la couche adhésive (3) est appliquée dans la procédure de sérigraphie ou est disposée comme pellicule sèche préfabriquée entre le film de résistance (2) et le substrat (1).
EP19970119468 1996-11-11 1997-11-06 Résistance électrique et son procédé de fabrication Expired - Lifetime EP0841668B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19646441 1996-11-11
DE1996146441 DE19646441A1 (de) 1996-11-11 1996-11-11 Elektrischer Widerstand und Verfahren zu seiner Herstellung

Publications (2)

Publication Number Publication Date
EP0841668A1 EP0841668A1 (fr) 1998-05-13
EP0841668B1 true EP0841668B1 (fr) 2007-01-10

Family

ID=7811243

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19970119468 Expired - Lifetime EP0841668B1 (fr) 1996-11-11 1997-11-06 Résistance électrique et son procédé de fabrication

Country Status (3)

Country Link
EP (1) EP0841668B1 (fr)
JP (1) JPH10149901A (fr)
DE (2) DE19646441A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19905156A1 (de) * 1999-02-08 2000-08-10 Hbm Waegetechnik Gmbh Abgleichelement für einen Aufnehmer
DE10116531B4 (de) * 2000-04-04 2008-06-19 Koa Corp., Ina Widerstand mit niedrigem Widerstandswert
JP3803025B2 (ja) 2000-12-05 2006-08-02 富士電機ホールディングス株式会社 抵抗器
DE10122468C1 (de) * 2001-05-09 2003-03-20 Heusler Isabellenhuette Elektrischer Widerstand und Verfahren zu seiner Herstellung
DE10139323C1 (de) * 2001-08-10 2002-12-05 Heusler Isabellenhuette Niederohmiger elektrischer Widerstand und Verfahren zur Herstellung solcher Widerstände
DE10338041B3 (de) * 2003-08-19 2005-02-24 Isabellenhütte Heusler GmbH KG Elektrischer Widerstand und Verfahren zum Herstellen von Widerständen
JP2006344776A (ja) * 2005-06-09 2006-12-21 Alpha Electronics Corp チップ抵抗器とその製造方法
DE202006020215U1 (de) * 2006-12-20 2008-02-21 Isabellenhütte Heusler Gmbh & Co. Kg Widerstand, insbesondere SMD-Widerstand
DE102006060978B4 (de) * 2006-12-20 2014-09-11 Ifm Electronic Gmbh SMD-Temperaturmesselement und Vorrichtung
DE102011109007A1 (de) 2011-07-29 2013-01-31 Epcos Ag Verfahren zum Herstellen eines elektrischen Bauelements und elektrisches Bauelement
CN104541338B (zh) 2013-04-18 2018-03-02 松下知识产权经营株式会社 电阻器制造方法
US10083781B2 (en) 2015-10-30 2018-09-25 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
US10438729B2 (en) 2017-11-10 2019-10-08 Vishay Dale Electronics, Llc Resistor with upper surface heat dissipation
DE102018101419A1 (de) * 2018-01-23 2019-07-25 Biotronik Se & Co. Kg Elektrischer Widerstand, insbesondere für medizinische Implantate
WO2022252657A1 (fr) * 2021-06-04 2022-12-08 深圳市卓力能技术有限公司 Ensemble élément chauffant, procédé de préparation d'élément chauffant, et atomiseur

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254493A (en) * 1990-10-30 1993-10-19 Microelectronics And Computer Technology Corporation Method of fabricating integrated resistors in high density substrates
US5576362A (en) * 1992-04-20 1996-11-19 Denki Kagaku Kogyo Kabushiki Kaisha Insulating material and a circuit substrate in use thereof
JP2756075B2 (ja) * 1993-08-06 1998-05-25 三菱電機株式会社 金属ベース基板およびそれを用いた電子機器
DE4339551C1 (de) * 1993-11-19 1994-10-13 Heusler Isabellenhuette Widerstand in SMD-Bauweise und Verfahren zu seiner Herstellung sowie Leiterplatte mit solchem Widerstand
JP3012875B2 (ja) * 1996-01-16 2000-02-28 北陸電気工業株式会社 チップ抵抗器の製造方法

Also Published As

Publication number Publication date
EP0841668A1 (fr) 1998-05-13
DE59712796D1 (de) 2007-02-22
JPH10149901A (ja) 1998-06-02
DE19646441A1 (de) 1998-05-14

Similar Documents

Publication Publication Date Title
DE4339551C1 (de) Widerstand in SMD-Bauweise und Verfahren zu seiner Herstellung sowie Leiterplatte mit solchem Widerstand
DE69938582T2 (de) Halbleiterbauelement, seine herstellung, leiterplatte und elektronischer apparat
DE112006002516B4 (de) Chip-Widertand und Befestigungsstruktur für einen Chip-Widerstand
DE3221199C2 (fr)
DE2840514C2 (fr)
EP0841668B1 (fr) Résistance électrique et son procédé de fabrication
DE69827687T2 (de) Träger für integrierte Schaltung und seine Herstellung
DE10238037B4 (de) Halbleitereinrichtung mit Gehäuse und Halterung
DE4010370C2 (de) Verfahren zum Herstellen von Halbleiterbauteilen
DE3125518A1 (de) "duenne verdrahtungsanordnung"
EP3095307B1 (fr) Circuit imprimé, montage et procédé de fabrication d'un montage
DE112009001287T5 (de) Widerstand
DE102014117245B4 (de) Verfahren zum Herstellen eines Halbleiterelements mit Substratadapter und damit hergestelltes Halbleiterelement mit Substratadapter und Verfahren zum Kontaktieren dieses Halbleiterelements
DE19814388B4 (de) Thermistorelemente mit Erhöhungen für eine Oberflächenbefestigung
DE102006033856B3 (de) Temperaturmesssensor und Verfahren zu dessen Herstellung
DE102014109766B3 (de) Verfahren zum Herstellen eines Substratadapters, Substratadapter und Verfahren zum Kontaktieren eines Halbleiterelements
EP1692476B1 (fr) Composant et son procede de fabrication
DE102014203306A1 (de) Herstellen eines Elektronikmoduls
DE102017112650A1 (de) Chip-Widerstand und Verfahren zur Herstellung desselben
EP1664698B1 (fr) Composant et son procede de production
EP2609620B1 (fr) Procédé de réalisation d'un circuit électrique et circuit électrique
DE1953678A1 (de) Schaltungstraeger fuer elektrische Schaltungselemente und -bestandteile,sowie Verfahren zu dessen Herstellung
DE3412296A1 (de) Hybridschaltung in multilayer-technik
EP1283528B1 (fr) Résistance électrique de basse impédance et procédé de fabrication
DE1804349C3 (de) Elektrische Kontaktanordnung an einem Halbleiterabschnitt und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19980923

AKX Designation fees paid

Free format text: AT BE CH DE LI

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE LI

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20040608

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ISABELLENHUETTE HEUSLER GMBH & CO.KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070111

REF Corresponds to:

Ref document number: 59712796

Country of ref document: DE

Date of ref document: 20070222

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101103

Year of fee payment: 14

Ref country code: IT

Payment date: 20101110

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111130

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120116

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121106

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59712796

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121106