EP0832231A2 - C5a-ÄHNLICHER SIEBEN TRANSMEMBRAN-REZEPTOR - Google Patents
C5a-ÄHNLICHER SIEBEN TRANSMEMBRAN-REZEPTORInfo
- Publication number
- EP0832231A2 EP0832231A2 EP96922382A EP96922382A EP0832231A2 EP 0832231 A2 EP0832231 A2 EP 0832231A2 EP 96922382 A EP96922382 A EP 96922382A EP 96922382 A EP96922382 A EP 96922382A EP 0832231 A2 EP0832231 A2 EP 0832231A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- calr
- polypeptide
- expression
- sequence
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 title abstract description 6
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 title abstract description 6
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 62
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 47
- 229920001184 polypeptide Polymers 0.000 claims abstract description 37
- 230000014509 gene expression Effects 0.000 claims abstract description 32
- 108091028043 Nucleic acid sequence Proteins 0.000 claims abstract description 19
- 239000003112 inhibitor Substances 0.000 claims abstract description 13
- 238000009396 hybridization Methods 0.000 claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 claims abstract description 12
- 230000000692 anti-sense effect Effects 0.000 claims abstract description 10
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 10
- 239000013604 expression vector Substances 0.000 claims abstract description 7
- 238000002405 diagnostic procedure Methods 0.000 claims abstract description 5
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract 4
- 238000000034 method Methods 0.000 claims description 70
- 101150117824 Calr gene Proteins 0.000 claims description 26
- 239000012634 fragment Substances 0.000 claims description 18
- 201000010099 disease Diseases 0.000 claims description 16
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 16
- 239000000556 agonist Substances 0.000 claims description 9
- 108091033319 polynucleotide Proteins 0.000 claims description 7
- 102000040430 polynucleotide Human genes 0.000 claims description 7
- 239000002157 polynucleotide Substances 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 230000000295 complement effect Effects 0.000 claims description 4
- 238000004113 cell culture Methods 0.000 claims description 2
- 239000008194 pharmaceutical composition Substances 0.000 claims 8
- 239000012472 biological sample Substances 0.000 claims 6
- 239000000546 pharmaceutical excipient Substances 0.000 claims 4
- 238000012258 culturing Methods 0.000 claims 1
- 210000004027 cell Anatomy 0.000 abstract description 39
- 125000003729 nucleotide group Chemical group 0.000 abstract description 38
- 239000002773 nucleotide Substances 0.000 abstract description 37
- 230000027455 binding Effects 0.000 abstract description 20
- 239000000523 sample Substances 0.000 abstract description 20
- 210000003630 histaminocyte Anatomy 0.000 abstract description 15
- 239000005557 antagonist Substances 0.000 abstract description 10
- 108091034117 Oligonucleotide Proteins 0.000 abstract description 9
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 abstract description 6
- 108020004707 nucleic acids Proteins 0.000 abstract description 6
- 102000039446 nucleic acids Human genes 0.000 abstract description 6
- 238000001514 detection method Methods 0.000 abstract description 3
- 101000793651 Homo sapiens Calreticulin Proteins 0.000 description 113
- 102100029968 Calreticulin Human genes 0.000 description 110
- 108090000623 proteins and genes Proteins 0.000 description 54
- 239000002299 complementary DNA Substances 0.000 description 36
- 150000001413 amino acids Chemical group 0.000 description 33
- 102000004169 proteins and genes Human genes 0.000 description 30
- 235000018102 proteins Nutrition 0.000 description 29
- 102000005962 receptors Human genes 0.000 description 27
- 108020003175 receptors Proteins 0.000 description 27
- 239000013598 vector Substances 0.000 description 22
- 229940024606 amino acid Drugs 0.000 description 21
- 235000001014 amino acid Nutrition 0.000 description 21
- 108020004414 DNA Proteins 0.000 description 19
- 238000000746 purification Methods 0.000 description 16
- 238000003752 polymerase chain reaction Methods 0.000 description 14
- 239000013615 primer Substances 0.000 description 13
- 230000019491 signal transduction Effects 0.000 description 13
- 238000010367 cloning Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 101150038567 lst gene Proteins 0.000 description 11
- 239000003446 ligand Substances 0.000 description 10
- 102000005590 Anaphylatoxin C5a Receptor Human genes 0.000 description 9
- 108010059426 Anaphylatoxin C5a Receptor Proteins 0.000 description 9
- 108091006027 G proteins Proteins 0.000 description 9
- 102000030782 GTP binding Human genes 0.000 description 9
- 108091000058 GTP-Binding Proteins 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000013459 approach Methods 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 230000002068 genetic effect Effects 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 8
- 102100031506 Complement C5 Human genes 0.000 description 7
- 230000002159 abnormal effect Effects 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 230000003834 intracellular effect Effects 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 108020004511 Recombinant DNA Proteins 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 230000002759 chromosomal effect Effects 0.000 description 6
- 210000004408 hybridoma Anatomy 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 238000012163 sequencing technique Methods 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- 230000014616 translation Effects 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 108020004635 Complementary DNA Proteins 0.000 description 5
- 101000941598 Homo sapiens Complement C5 Proteins 0.000 description 5
- 108060003951 Immunoglobulin Proteins 0.000 description 5
- 230000004071 biological effect Effects 0.000 description 5
- 238000004587 chromatography analysis Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 238000007877 drug screening Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 102000018358 immunoglobulin Human genes 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- 108020004705 Codon Proteins 0.000 description 4
- 206010020751 Hypersensitivity Diseases 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 108010029485 Protein Isoforms Proteins 0.000 description 4
- 102000001708 Protein Isoforms Human genes 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 210000000349 chromosome Anatomy 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000009510 drug design Methods 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000001575 pathological effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 108060003345 Adrenergic Receptor Proteins 0.000 description 3
- 102000017910 Adrenergic receptor Human genes 0.000 description 3
- 201000009030 Carcinoma Diseases 0.000 description 3
- 241000701959 Escherichia virus Lambda Species 0.000 description 3
- 102100037564 Filamin-binding LIM protein 1 Human genes 0.000 description 3
- 206010020772 Hypertension Diseases 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 102000003141 Tachykinin Human genes 0.000 description 3
- 230000002052 anaphylactic effect Effects 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- 102000005936 beta-Galactosidase Human genes 0.000 description 3
- 108010005774 beta-Galactosidase Proteins 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 238000012875 competitive assay Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 230000003053 immunization Effects 0.000 description 3
- 238000002649 immunization Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 238000001742 protein purification Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 108060008037 tachykinin Proteins 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 230000000451 tissue damage Effects 0.000 description 3
- 231100000827 tissue damage Toxicity 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 230000000472 traumatic effect Effects 0.000 description 3
- 238000002424 x-ray crystallography Methods 0.000 description 3
- 210000005253 yeast cell Anatomy 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 108020004491 Antisense DNA Proteins 0.000 description 2
- 206010003445 Ascites Diseases 0.000 description 2
- 101800001654 C5a anaphylatoxin Proteins 0.000 description 2
- 241000282465 Canis Species 0.000 description 2
- 108700010070 Codon Usage Proteins 0.000 description 2
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 2
- 238000001712 DNA sequencing Methods 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 2
- NMJREATYWWNIKX-UHFFFAOYSA-N GnRH Chemical compound C1CCC(C(=O)NCC(N)=O)N1C(=O)C(CC(C)C)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)CNC(=O)C(NC(=O)C(CO)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C(CC=1NC=NC=1)NC(=O)C1NC(=O)CC1)CC1=CC=C(O)C=C1 NMJREATYWWNIKX-UHFFFAOYSA-N 0.000 description 2
- JBCLFWXMTIKCCB-UHFFFAOYSA-N H-Gly-Phe-OH Natural products NCC(=O)NC(C(O)=O)CC1=CC=CC=C1 JBCLFWXMTIKCCB-UHFFFAOYSA-N 0.000 description 2
- 108090000144 Human Proteins Proteins 0.000 description 2
- 102000003839 Human Proteins Human genes 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 101000857870 Squalus acanthias Gonadoliberin Proteins 0.000 description 2
- 108010006785 Taq Polymerase Proteins 0.000 description 2
- 102000014384 Type C Phospholipases Human genes 0.000 description 2
- 108010079194 Type C Phospholipases Proteins 0.000 description 2
- IVOMOUWHDPKRLL-UHFFFAOYSA-N UNPD107823 Natural products O1C2COP(O)(=O)OC2C(O)C1N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- MIKHIIQMRFYVOR-RCWTZXSCSA-N Val-Pro-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@H](C(C)C)N)O MIKHIIQMRFYVOR-RCWTZXSCSA-N 0.000 description 2
- 102000030621 adenylate cyclase Human genes 0.000 description 2
- 108060000200 adenylate cyclase Proteins 0.000 description 2
- 238000001261 affinity purification Methods 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 239000003816 antisense DNA Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000012867 bioactive agent Substances 0.000 description 2
- 230000000975 bioactive effect Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 229960003669 carbenicillin Drugs 0.000 description 2
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 229940095074 cyclic amp Drugs 0.000 description 2
- 108010016616 cysteinylglycine Proteins 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 108010081551 glycylphenylalanine Proteins 0.000 description 2
- 102000053922 human CALR Human genes 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 2
- 108010057821 leucylproline Proteins 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000002853 nucleic acid probe Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000010647 peptide synthesis reaction Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- XOJVVFBFDXDTEG-UHFFFAOYSA-N pristane Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 235000004400 serine Nutrition 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000007306 turnover Effects 0.000 description 2
- LLXVXPPXELIDGQ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(2,5-dioxopyrrol-1-yl)benzoate Chemical compound C=1C=CC(N2C(C=CC2=O)=O)=CC=1C(=O)ON1C(=O)CCC1=O LLXVXPPXELIDGQ-UHFFFAOYSA-N 0.000 description 1
- KYRUKRFVOACELK-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(4-hydroxyphenyl)propanoate Chemical compound C1=CC(O)=CC=C1CCC(=O)ON1C(=O)CCC1=O KYRUKRFVOACELK-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- FXKNPWNXPQZLES-ZLUOBGJFSA-N Ala-Asn-Ser Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(O)=O FXKNPWNXPQZLES-ZLUOBGJFSA-N 0.000 description 1
- YEELWQSXYBJVSV-UWJYBYFXSA-N Ala-Cys-Tyr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O YEELWQSXYBJVSV-UWJYBYFXSA-N 0.000 description 1
- YCRAFFCYWOUEOF-DLOVCJGASA-N Ala-Phe-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C)CC1=CC=CC=C1 YCRAFFCYWOUEOF-DLOVCJGASA-N 0.000 description 1
- IHMCQESUJVZTKW-UBHSHLNASA-N Ala-Phe-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](C)N)CC1=CC=CC=C1 IHMCQESUJVZTKW-UBHSHLNASA-N 0.000 description 1
- 108010025188 Alcohol oxidase Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 108091093088 Amplicon Proteins 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- IGULQRCJLQQPSM-DCAQKATOSA-N Arg-Cys-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(O)=O IGULQRCJLQQPSM-DCAQKATOSA-N 0.000 description 1
- HQIZDMIGUJOSNI-IUCAKERBSA-N Arg-Gly-Arg Chemical compound N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(O)=O HQIZDMIGUJOSNI-IUCAKERBSA-N 0.000 description 1
- WVNFNPGXYADPPO-BQBZGAKWSA-N Arg-Gly-Ser Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O WVNFNPGXYADPPO-BQBZGAKWSA-N 0.000 description 1
- JEOCWTUOMKEEMF-RHYQMDGZSA-N Arg-Leu-Thr Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O JEOCWTUOMKEEMF-RHYQMDGZSA-N 0.000 description 1
- ATABBWFGOHKROJ-GUBZILKMSA-N Arg-Pro-Ser Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O ATABBWFGOHKROJ-GUBZILKMSA-N 0.000 description 1
- XRNXPIGJPQHCPC-RCWTZXSCSA-N Arg-Thr-Val Chemical compound CC(C)[C@H](NC(=O)[C@@H](NC(=O)[C@@H](N)CCCNC(N)=N)[C@@H](C)O)C(O)=O XRNXPIGJPQHCPC-RCWTZXSCSA-N 0.000 description 1
- YJRORCOAFUZVKA-FXQIFTODSA-N Asn-Arg-Cys Chemical compound C(C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)N)N)CN=C(N)N YJRORCOAFUZVKA-FXQIFTODSA-N 0.000 description 1
- QHBMKQWOIYJYMI-BYULHYEWSA-N Asn-Asn-Val Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(O)=O QHBMKQWOIYJYMI-BYULHYEWSA-N 0.000 description 1
- ZKDGORKGHPCZOV-DCAQKATOSA-N Asn-His-Arg Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)NC(=O)[C@H](CC(=O)N)N ZKDGORKGHPCZOV-DCAQKATOSA-N 0.000 description 1
- TZFQICWZWFNIKU-KKUMJFAQSA-N Asn-Leu-Tyr Chemical compound NC(=O)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 TZFQICWZWFNIKU-KKUMJFAQSA-N 0.000 description 1
- VWADICJNCPFKJS-ZLUOBGJFSA-N Asn-Ser-Asp Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(O)=O VWADICJNCPFKJS-ZLUOBGJFSA-N 0.000 description 1
- HNXWVVHIGTZTBO-LKXGYXEUSA-N Asn-Ser-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O HNXWVVHIGTZTBO-LKXGYXEUSA-N 0.000 description 1
- ZAESWDKAMDVHLL-RCOVLWMOSA-N Asn-Val-Gly Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)NCC(O)=O ZAESWDKAMDVHLL-RCOVLWMOSA-N 0.000 description 1
- KBQOUDLMWYWXNP-YDHLFZDLSA-N Asn-Val-Phe Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)NC(=O)[C@H](CC(=O)N)N KBQOUDLMWYWXNP-YDHLFZDLSA-N 0.000 description 1
- IXIWEFWRKIUMQX-DCAQKATOSA-N Asp-Arg-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O IXIWEFWRKIUMQX-DCAQKATOSA-N 0.000 description 1
- VBVKSAFJPVXMFJ-CIUDSAMLSA-N Asp-Asn-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC(=O)O)N VBVKSAFJPVXMFJ-CIUDSAMLSA-N 0.000 description 1
- YRBGRUOSJROZEI-NHCYSSNCSA-N Asp-His-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C(C)C)C(O)=O YRBGRUOSJROZEI-NHCYSSNCSA-N 0.000 description 1
- NONWUQAWAANERO-BZSNNMDCSA-N Asp-Phe-Tyr Chemical compound C([C@H](NC(=O)[C@H](CC(O)=O)N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)C1=CC=CC=C1 NONWUQAWAANERO-BZSNNMDCSA-N 0.000 description 1
- AHWRSSLYSGLBGD-CIUDSAMLSA-N Asp-Pro-Glu Chemical compound OC(=O)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O AHWRSSLYSGLBGD-CIUDSAMLSA-N 0.000 description 1
- FOXXZZGDIAQPQI-XKNYDFJKSA-N Asp-Pro-Ser-Ser Chemical compound OC(=O)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O FOXXZZGDIAQPQI-XKNYDFJKSA-N 0.000 description 1
- VHUKCUHLFMRHOD-MELADBBJSA-N Asp-Tyr-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CC=C(C=C2)O)NC(=O)[C@H](CC(=O)O)N)C(=O)O VHUKCUHLFMRHOD-MELADBBJSA-N 0.000 description 1
- ALMIMUZAWTUNIO-BZSNNMDCSA-N Asp-Tyr-Tyr Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O ALMIMUZAWTUNIO-BZSNNMDCSA-N 0.000 description 1
- ZUNMTUPRQMWMHX-LSJOCFKGSA-N Asp-Val-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(O)=O ZUNMTUPRQMWMHX-LSJOCFKGSA-N 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 101710125089 Bindin Proteins 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102000017063 Catecholamine Receptors Human genes 0.000 description 1
- 108010013659 Catecholamine Receptors Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108010028773 Complement C5 Proteins 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- WTEACWBAULENKE-SRVKXCTJSA-N Cys-Phe-Asn Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CS)N WTEACWBAULENKE-SRVKXCTJSA-N 0.000 description 1
- SWJYSDXMTPMBHO-FXQIFTODSA-N Cys-Pro-Ser Chemical compound [H]N[C@@H](CS)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O SWJYSDXMTPMBHO-FXQIFTODSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 108010017826 DNA Polymerase I Proteins 0.000 description 1
- 102000004594 DNA Polymerase I Human genes 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 108010013369 Enteropeptidase Proteins 0.000 description 1
- 102100029727 Enteropeptidase Human genes 0.000 description 1
- 108010074860 Factor Xa Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- FLLRAEJOLZPSMN-CIUDSAMLSA-N Glu-Asn-Arg Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(O)=O)CCCN=C(N)N FLLRAEJOLZPSMN-CIUDSAMLSA-N 0.000 description 1
- RTOOAKXIJADOLL-GUBZILKMSA-N Glu-Asp-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CCC(=O)O)N RTOOAKXIJADOLL-GUBZILKMSA-N 0.000 description 1
- MUSGDMDGNGXULI-DCAQKATOSA-N Glu-Glu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CCC(O)=O MUSGDMDGNGXULI-DCAQKATOSA-N 0.000 description 1
- NPMSEUWUMOSEFM-CIUDSAMLSA-N Glu-Met-Asn Chemical compound CSCC[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CCC(=O)O)N NPMSEUWUMOSEFM-CIUDSAMLSA-N 0.000 description 1
- DCBSZJJHOTXMHY-DCAQKATOSA-N Glu-Pro-Pro Chemical compound OC(=O)CC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 DCBSZJJHOTXMHY-DCAQKATOSA-N 0.000 description 1
- JVYNYWXHZWVJEF-NUMRIWBASA-N Glu-Thr-Asn Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CCC(=O)O)N)O JVYNYWXHZWVJEF-NUMRIWBASA-N 0.000 description 1
- MXJYXYDREQWUMS-XKBZYTNZSA-N Glu-Thr-Ser Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(O)=O MXJYXYDREQWUMS-XKBZYTNZSA-N 0.000 description 1
- KRRMJKMGWWXWDW-STQMWFEESA-N Gly-Arg-Phe Chemical compound NC(=N)NCCC[C@H](NC(=O)CN)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 KRRMJKMGWWXWDW-STQMWFEESA-N 0.000 description 1
- LXXLEUBUOMCAMR-NKWVEPMBSA-N Gly-Asp-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)O)NC(=O)CN)C(=O)O LXXLEUBUOMCAMR-NKWVEPMBSA-N 0.000 description 1
- LLZXNUUIBOALNY-QWRGUYRKSA-N Gly-Leu-Lys Chemical compound NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCCCN LLZXNUUIBOALNY-QWRGUYRKSA-N 0.000 description 1
- NNCSJUBVFBDDLC-YUMQZZPRSA-N Gly-Leu-Ser Chemical compound NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O NNCSJUBVFBDDLC-YUMQZZPRSA-N 0.000 description 1
- MIIVFRCYJABHTQ-ONGXEEELSA-N Gly-Leu-Val Chemical compound [H]NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O MIIVFRCYJABHTQ-ONGXEEELSA-N 0.000 description 1
- FXGRXIATVXUAHO-WEDXCCLWSA-N Gly-Lys-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CCCCN FXGRXIATVXUAHO-WEDXCCLWSA-N 0.000 description 1
- JBCLFWXMTIKCCB-VIFPVBQESA-N Gly-Phe Chemical compound NCC(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 JBCLFWXMTIKCCB-VIFPVBQESA-N 0.000 description 1
- PNUFMLXHOLFRLD-KBPBESRZSA-N Gly-Tyr-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CC1=CC=C(O)C=C1 PNUFMLXHOLFRLD-KBPBESRZSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- VYUXYMRNGALHEA-DLOVCJGASA-N His-Leu-Ala Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(O)=O VYUXYMRNGALHEA-DLOVCJGASA-N 0.000 description 1
- AVQNTYBAFBKMDL-WDSOQIARSA-N His-Pro-Trp Chemical compound N[C@@H](Cc1cnc[nH]1)C(=O)N1CCC[C@H]1C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(O)=O AVQNTYBAFBKMDL-WDSOQIARSA-N 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 108010065920 Insulin Lispro Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- FADYJNXDPBKVCA-UHFFFAOYSA-N L-Phenylalanyl-L-lysin Natural products NCCCCC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FADYJNXDPBKVCA-UHFFFAOYSA-N 0.000 description 1
- HFKJBCPRWWGPEY-BQBZGAKWSA-N L-arginyl-L-glutamic acid Chemical compound NC(=N)NCCC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(O)=O HFKJBCPRWWGPEY-BQBZGAKWSA-N 0.000 description 1
- ZUKPVRWZDMRIEO-VKHMYHEASA-N L-cysteinylglycine Chemical compound SC[C@H]([NH3+])C(=O)NCC([O-])=O ZUKPVRWZDMRIEO-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- BQSLGJHIAGOZCD-CIUDSAMLSA-N Leu-Ala-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O BQSLGJHIAGOZCD-CIUDSAMLSA-N 0.000 description 1
- NHHKSOGJYNQENP-SRVKXCTJSA-N Leu-Cys-Lys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCCN)C(=O)O)N NHHKSOGJYNQENP-SRVKXCTJSA-N 0.000 description 1
- DZQMXBALGUHGJT-GUBZILKMSA-N Leu-Glu-Ala Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(O)=O DZQMXBALGUHGJT-GUBZILKMSA-N 0.000 description 1
- HYIFFZAQXPUEAU-QWRGUYRKSA-N Leu-Gly-Leu Chemical compound CC(C)C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CC(C)C HYIFFZAQXPUEAU-QWRGUYRKSA-N 0.000 description 1
- XVZCXCTYGHPNEM-UHFFFAOYSA-N Leu-Leu-Pro Natural products CC(C)CC(N)C(=O)NC(CC(C)C)C(=O)N1CCCC1C(O)=O XVZCXCTYGHPNEM-UHFFFAOYSA-N 0.000 description 1
- IEWBEPKLKUXQBU-VOAKCMCISA-N Leu-Leu-Thr Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O IEWBEPKLKUXQBU-VOAKCMCISA-N 0.000 description 1
- HDHQQEDVWQGBEE-DCAQKATOSA-N Leu-Met-Ser Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CO)C(O)=O HDHQQEDVWQGBEE-DCAQKATOSA-N 0.000 description 1
- XOWMDXHFSBCAKQ-SRVKXCTJSA-N Leu-Ser-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC(C)C XOWMDXHFSBCAKQ-SRVKXCTJSA-N 0.000 description 1
- GOFJOGXGMPHOGL-DCAQKATOSA-N Leu-Ser-Met Chemical compound CSCC[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(C)C GOFJOGXGMPHOGL-DCAQKATOSA-N 0.000 description 1
- ZJZNLRVCZWUONM-JXUBOQSCSA-N Leu-Thr-Ala Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(O)=O ZJZNLRVCZWUONM-JXUBOQSCSA-N 0.000 description 1
- HQBOMRTVKVKFMN-WDSOQIARSA-N Leu-Trp-Val Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](C(C)C)C(O)=O HQBOMRTVKVKFMN-WDSOQIARSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- XIZQPFCRXLUNMK-BZSNNMDCSA-N Lys-Leu-Phe Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)NC(=O)[C@H](CCCCN)N XIZQPFCRXLUNMK-BZSNNMDCSA-N 0.000 description 1
- BOJYMMBYBNOOGG-DCAQKATOSA-N Lys-Pro-Ala Chemical compound [H]N[C@@H](CCCCN)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(O)=O BOJYMMBYBNOOGG-DCAQKATOSA-N 0.000 description 1
- QRHWTCJBCLGYRB-FXQIFTODSA-N Met-Ala-Cys Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CS)C(O)=O QRHWTCJBCLGYRB-FXQIFTODSA-N 0.000 description 1
- WXHHTBVYQOSYSL-FXQIFTODSA-N Met-Ala-Ser Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O WXHHTBVYQOSYSL-FXQIFTODSA-N 0.000 description 1
- KRLKICLNEICJGV-STQMWFEESA-N Met-Phe-Gly Chemical compound CSCC[C@H](N)C(=O)N[C@H](C(=O)NCC(O)=O)CC1=CC=CC=C1 KRLKICLNEICJGV-STQMWFEESA-N 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 108010086093 Mung Bean Nuclease Proteins 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 102000014415 Muscarinic acetylcholine receptor Human genes 0.000 description 1
- 108050003473 Muscarinic acetylcholine receptor Proteins 0.000 description 1
- 101800000135 N-terminal protein Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 101800001452 P1 proteinase Proteins 0.000 description 1
- 238000009004 PCR Kit Methods 0.000 description 1
- 208000037273 Pathologic Processes Diseases 0.000 description 1
- YTILBRIUASDGBL-BZSNNMDCSA-N Phe-Leu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC1=CC=CC=C1 YTILBRIUASDGBL-BZSNNMDCSA-N 0.000 description 1
- YCCUXNNKXDGMAM-KKUMJFAQSA-N Phe-Leu-Ser Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O YCCUXNNKXDGMAM-KKUMJFAQSA-N 0.000 description 1
- WEQJQNWXCSUVMA-RYUDHWBXSA-N Phe-Pro Chemical compound C([C@H]([NH3+])C(=O)N1[C@@H](CCC1)C([O-])=O)C1=CC=CC=C1 WEQJQNWXCSUVMA-RYUDHWBXSA-N 0.000 description 1
- AFNJAQVMTIQTCB-DLOVCJGASA-N Phe-Ser-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC1=CC=CC=C1 AFNJAQVMTIQTCB-DLOVCJGASA-N 0.000 description 1
- RAGOJJCBGXARPO-XVSYOHENSA-N Phe-Thr-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H]([C@H](O)C)NC(=O)[C@@H](N)CC1=CC=CC=C1 RAGOJJCBGXARPO-XVSYOHENSA-N 0.000 description 1
- YFXXRYFWJFQAFW-JHYOHUSXSA-N Phe-Thr-Thr Chemical compound C[C@H]([C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)N)O YFXXRYFWJFQAFW-JHYOHUSXSA-N 0.000 description 1
- AGTHXWTYCLLYMC-FHWLQOOXSA-N Phe-Tyr-Glu Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCC(O)=O)C(O)=O)C1=CC=CC=C1 AGTHXWTYCLLYMC-FHWLQOOXSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010021757 Polynucleotide 5'-Hydroxyl-Kinase Proteins 0.000 description 1
- 102000008422 Polynucleotide 5'-hydroxyl-kinase Human genes 0.000 description 1
- 241001417524 Pomacanthidae Species 0.000 description 1
- UUHXBJHVTVGSKM-BQBZGAKWSA-N Pro-Gly-Asn Chemical compound [H]N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CC(N)=O)C(O)=O UUHXBJHVTVGSKM-BQBZGAKWSA-N 0.000 description 1
- CLJLVCYFABNTHP-DCAQKATOSA-N Pro-Leu-Asp Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O CLJLVCYFABNTHP-DCAQKATOSA-N 0.000 description 1
- SUENWIFTSTWUKD-AVGNSLFASA-N Pro-Leu-Val Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O SUENWIFTSTWUKD-AVGNSLFASA-N 0.000 description 1
- LEIKGVHQTKHOLM-IUCAKERBSA-N Pro-Pro-Gly Chemical compound OC(=O)CNC(=O)[C@@H]1CCCN1C(=O)[C@H]1NCCC1 LEIKGVHQTKHOLM-IUCAKERBSA-N 0.000 description 1
- AFWBWPCXSWUCLB-WDSKDSINSA-N Pro-Ser Chemical compound OC[C@@H](C([O-])=O)NC(=O)[C@@H]1CCC[NH2+]1 AFWBWPCXSWUCLB-WDSKDSINSA-N 0.000 description 1
- POQFNPILEQEODH-FXQIFTODSA-N Pro-Ser-Ala Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O POQFNPILEQEODH-FXQIFTODSA-N 0.000 description 1
- BGWKULMLUIUPKY-BQBZGAKWSA-N Pro-Ser-Gly Chemical compound OC(=O)CNC(=O)[C@H](CO)NC(=O)[C@@H]1CCCN1 BGWKULMLUIUPKY-BQBZGAKWSA-N 0.000 description 1
- PRKWBYCXBBSLSK-GUBZILKMSA-N Pro-Ser-Val Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O PRKWBYCXBBSLSK-GUBZILKMSA-N 0.000 description 1
- RSTWKJFWBKFOFC-JYJNAYRXSA-N Pro-Trp-Asn Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CC(N)=O)C(O)=O RSTWKJFWBKFOFC-JYJNAYRXSA-N 0.000 description 1
- VDHGTOHMHHQSKG-JYJNAYRXSA-N Pro-Val-Phe Chemical compound CC(C)[C@H](NC(=O)[C@@H]1CCCN1)C(=O)N[C@@H](Cc1ccccc1)C(O)=O VDHGTOHMHHQSKG-JYJNAYRXSA-N 0.000 description 1
- 102000008866 Prostaglandin E receptors Human genes 0.000 description 1
- 108010088540 Prostaglandin E receptors Proteins 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 108020004518 RNA Probes Proteins 0.000 description 1
- 108010065868 RNA polymerase SP6 Proteins 0.000 description 1
- 239000003391 RNA probe Substances 0.000 description 1
- 108700005075 Regulator Genes Proteins 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- PVDTYLHUWAEYGY-CIUDSAMLSA-N Ser-Glu-Arg Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O PVDTYLHUWAEYGY-CIUDSAMLSA-N 0.000 description 1
- LALNXSXEYFUUDD-GUBZILKMSA-N Ser-Glu-Leu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O LALNXSXEYFUUDD-GUBZILKMSA-N 0.000 description 1
- NLOAIFSWUUFQFR-CIUDSAMLSA-N Ser-Leu-Asp Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O NLOAIFSWUUFQFR-CIUDSAMLSA-N 0.000 description 1
- ZIFYDQAFEMIZII-GUBZILKMSA-N Ser-Leu-Glu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O ZIFYDQAFEMIZII-GUBZILKMSA-N 0.000 description 1
- KCGIREHVWRXNDH-GARJFASQSA-N Ser-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CO)N KCGIREHVWRXNDH-GARJFASQSA-N 0.000 description 1
- NMZXJDSKEGFDLJ-DCAQKATOSA-N Ser-Pro-Lys Chemical compound C1C[C@H](N(C1)C(=O)[C@H](CO)N)C(=O)N[C@@H](CCCCN)C(=O)O NMZXJDSKEGFDLJ-DCAQKATOSA-N 0.000 description 1
- WLJPJRGQRNCIQS-ZLUOBGJFSA-N Ser-Ser-Asn Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(O)=O WLJPJRGQRNCIQS-ZLUOBGJFSA-N 0.000 description 1
- BMKNXTJLHFIAAH-CIUDSAMLSA-N Ser-Ser-Leu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O BMKNXTJLHFIAAH-CIUDSAMLSA-N 0.000 description 1
- WUXCHQZLUHBSDJ-LKXGYXEUSA-N Ser-Thr-Asp Chemical compound OC[C@H](N)C(=O)N[C@@H]([C@H](O)C)C(=O)N[C@@H](CC(O)=O)C(O)=O WUXCHQZLUHBSDJ-LKXGYXEUSA-N 0.000 description 1
- QNBVFKZSSRYNFX-CUJWVEQBSA-N Ser-Thr-His Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](CO)N)O QNBVFKZSSRYNFX-CUJWVEQBSA-N 0.000 description 1
- HNDMFDBQXYZSRM-IHRRRGAJSA-N Ser-Val-Phe Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O HNDMFDBQXYZSRM-IHRRRGAJSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 101710137500 T7 RNA polymerase Proteins 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- VFEHSAJCWWHDBH-RHYQMDGZSA-N Thr-Arg-Leu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(O)=O VFEHSAJCWWHDBH-RHYQMDGZSA-N 0.000 description 1
- YLXAMFZYJTZXFH-OLHMAJIHSA-N Thr-Asn-Asp Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CC(=O)O)C(=O)O)N)O YLXAMFZYJTZXFH-OLHMAJIHSA-N 0.000 description 1
- AYCQVUUPIJHJTA-IXOXFDKPSA-N Thr-His-Leu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(C)C)C(O)=O AYCQVUUPIJHJTA-IXOXFDKPSA-N 0.000 description 1
- IQHUITKNHOKGFC-MIMYLULJSA-N Thr-Phe Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 IQHUITKNHOKGFC-MIMYLULJSA-N 0.000 description 1
- WNQJTLATMXYSEL-OEAJRASXSA-N Thr-Phe-Leu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(C)C)C(O)=O WNQJTLATMXYSEL-OEAJRASXSA-N 0.000 description 1
- DEGCBBCMYWNJNA-RHYQMDGZSA-N Thr-Pro-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)[C@@H](C)O DEGCBBCMYWNJNA-RHYQMDGZSA-N 0.000 description 1
- YGZWVPBHYABGLT-KJEVXHAQSA-N Thr-Pro-Tyr Chemical compound C[C@@H](O)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 YGZWVPBHYABGLT-KJEVXHAQSA-N 0.000 description 1
- CKHWEVXPLJBEOZ-VQVTYTSYSA-N Thr-Val Chemical compound CC(C)[C@@H](C([O-])=O)NC(=O)[C@@H]([NH3+])[C@@H](C)O CKHWEVXPLJBEOZ-VQVTYTSYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- SMDQRGAERNMJJF-JQWIXIFHSA-N Trp-Cys Chemical compound C1=CC=C2C(C[C@H](N)C(=O)N[C@@H](CS)C(O)=O)=CNC2=C1 SMDQRGAERNMJJF-JQWIXIFHSA-N 0.000 description 1
- WSGPBCAGEGHKQJ-BBRMVZONSA-N Trp-Gly-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)CNC(=O)[C@H](CC1=CNC2=CC=CC=C21)N WSGPBCAGEGHKQJ-BBRMVZONSA-N 0.000 description 1
- PWPJLBWYRTVYQS-PMVMPFDFSA-N Trp-Phe-Leu Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(C)C)C(O)=O PWPJLBWYRTVYQS-PMVMPFDFSA-N 0.000 description 1
- LORJKYIPJIRIRT-BVSLBCMMSA-N Trp-Pro-Tyr Chemical compound C([C@H](NC(=O)[C@@H]1CCCN1C(=O)[C@H](CC=1C2=CC=CC=C2NC=1)N)C(O)=O)C1=CC=C(O)C=C1 LORJKYIPJIRIRT-BVSLBCMMSA-N 0.000 description 1
- MXKUGFHWYYKVDV-SZMVWBNQSA-N Trp-Val-Val Chemical compound CC(C)[C@H](NC(=O)[C@@H](NC(=O)[C@@H](N)Cc1c[nH]c2ccccc12)C(C)C)C(O)=O MXKUGFHWYYKVDV-SZMVWBNQSA-N 0.000 description 1
- DBMMKEHYWIZTPN-JYJNAYRXSA-N Val-Cys-Trp Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)N DBMMKEHYWIZTPN-JYJNAYRXSA-N 0.000 description 1
- FEXILLGKGGTLRI-NHCYSSNCSA-N Val-Leu-Asn Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](C(C)C)N FEXILLGKGGTLRI-NHCYSSNCSA-N 0.000 description 1
- VNGKMNPAENRGDC-JYJNAYRXSA-N Val-Phe-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)CC1=CC=CC=C1 VNGKMNPAENRGDC-JYJNAYRXSA-N 0.000 description 1
- HJSLDXZAZGFPDK-ULQDDVLXSA-N Val-Phe-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)[C@H](C(C)C)N HJSLDXZAZGFPDK-ULQDDVLXSA-N 0.000 description 1
- MHHAWNPHDLCPLF-ULQDDVLXSA-N Val-Phe-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)CC1=CC=CC=C1 MHHAWNPHDLCPLF-ULQDDVLXSA-N 0.000 description 1
- GBIUHAYJGWVNLN-UHFFFAOYSA-N Val-Ser-Pro Natural products CC(C)C(N)C(=O)NC(CO)C(=O)N1CCCC1C(O)=O GBIUHAYJGWVNLN-UHFFFAOYSA-N 0.000 description 1
- AEFJNECXZCODJM-UWVGGRQHSA-N Val-Val-Gly Chemical compound CC(C)[C@H]([NH3+])C(=O)N[C@@H](C(C)C)C(=O)NCC([O-])=O AEFJNECXZCODJM-UWVGGRQHSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 1
- MMWCIQZXVOZEGG-HOZKJCLWSA-N [(1S,2R,3S,4S,5R,6S)-2,3,5-trihydroxy-4,6-diphosphonooxycyclohexyl] dihydrogen phosphate Chemical compound O[C@H]1[C@@H](O)[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](O)[C@H]1OP(O)(O)=O MMWCIQZXVOZEGG-HOZKJCLWSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000001800 adrenalinergic effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 108010041407 alanylaspartic acid Proteins 0.000 description 1
- 108010005233 alanylglutamic acid Proteins 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 238000012443 analytical study Methods 0.000 description 1
- 230000002788 anti-peptide Effects 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 108010013835 arginine glutamate Proteins 0.000 description 1
- 108010069926 arginyl-glycyl-serine Proteins 0.000 description 1
- 210000003567 ascitic fluid Anatomy 0.000 description 1
- 108010077245 asparaginyl-proline Proteins 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 108010040443 aspartyl-aspartic acid Proteins 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 108010058966 bacteriophage T7 induced DNA polymerase Proteins 0.000 description 1
- 238000002869 basic local alignment search tool Methods 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000000035 biogenic effect Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical group OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000005081 chemiluminescent agent Substances 0.000 description 1
- 239000002975 chemoattractant Substances 0.000 description 1
- 108700010039 chimeric receptor Proteins 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 238000003200 chromosome mapping Methods 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000004154 complement system Effects 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 238000007878 drug screening assay Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 108010052305 exodeoxyribonuclease III Proteins 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000002509 fluorescent in situ hybridization Methods 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 108010019832 glycyl-asparaginyl-glycine Proteins 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 108010025306 histidylleucine Proteins 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 210000004201 immune sera Anatomy 0.000 description 1
- 229940042743 immune sera Drugs 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000004068 intracellular signaling Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 231100000225 lethality Toxicity 0.000 description 1
- 230000029226 lipidation Effects 0.000 description 1
- 238000002865 local sequence alignment Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 108010016686 methionyl-alanyl-serine Proteins 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- ZAHQPTJLOCWVPG-UHFFFAOYSA-N mitoxantrone dihydrochloride Chemical compound Cl.Cl.O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO ZAHQPTJLOCWVPG-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000009054 pathological process Effects 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 108010064486 phenylalanyl-leucyl-valine Proteins 0.000 description 1
- 108010084572 phenylalanyl-valine Proteins 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108700042769 prolyl-leucyl-glycine Proteins 0.000 description 1
- 108010087846 prolyl-prolyl-glycine Proteins 0.000 description 1
- 108010031719 prolyl-serine Proteins 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 239000012268 protein inhibitor Substances 0.000 description 1
- 229940121649 protein inhibitor Drugs 0.000 description 1
- 238000000734 protein sequencing Methods 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 125000006853 reporter group Chemical group 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 108010026333 seryl-proline Proteins 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 210000001768 subcellular fraction Anatomy 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000010798 ubiquitination Methods 0.000 description 1
- 230000034512 ubiquitination Effects 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1096—Processes for the isolation, preparation or purification of DNA or RNA cDNA Synthesis; Subtracted cDNA library construction, e.g. RT, RT-PCR
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/64—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
- C12N9/6421—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
- C12N9/6472—Cysteine endopeptidases (3.4.22)
Definitions
- the present invention is in the field of molecular biology; more particularly, the present invention describes the nucleic acid and amino acid sequences of a C5a-like seven transmembrane receptor.
- Complement which is produced in the liver and circulates in the blood and extracellula fluid, stimulates cells and antibodies to fight infections.
- Complement 5 (C5) is proteolytically cleaved to produce C5a and C5b whenever the complement system is activated.
- C5a is one of 13 plasma proteins responsible for clearing foreign particles and organisms from the blood.
- human C5a a 74 amino acid peptide, functions as a chemoattractant for immune system cells.
- the C5a receptor is a G-protein coupled seven transmembrane receptor (T7G) which is present on neutrophils, macrophages, and mast cells and is believed to couple with a G q -/G-
- the receptor contains 350 amino acids and is glycosylated at Asn 5 to produce a protein of 52-55 kDa.
- a disulfide bond links Cys 109 in the first external loop with Cys 188 in the second external loop.
- the C5a receptor has been cloned (Boulay et al (1991) Biochem 30:2993-99; Gerard (1991) Nature 349:614-
- TK tachykinin
- fMLP formyl peptide
- GnRH an prostaglandin E receptors. They are large ligands, mostly peptides, which do not fit the bindin pocket of T7G.
- the N-termini and first extracellular loops have a common tachykinin motif recognition site while the second and third extracellular loops bind to hormone-specific sequences which differ among the receptors.
- the C-terminus which is common to all isoforms binds to transmembrane helices and activates the receptors.
- the third intracellular loop is quite short in this group; and in fMLP, it is only 15 amino acids in length. Many of these receptors have short C-termini, and GnRH completely lacks the C-terminal domain (Bolander FF (1994) Molecular Endocrinology, Academic Press, San Diego CA).
- the subject invention provides a unique nucleotide sequence which encodes a novel human C5a-like receptor homolog, herein designated CALR.
- CALR novel human C5a-like receptor homolog
- the invention also relates to the use of the nucleotide sequence or amino acid sequence o CALR or its variants in the diagnosis or treatemtn of conditions or diseases associated with CAL expression or signal transduction activity.
- aspects of the invention include the antisense DNA calr; cloning or expression vectors containing calr; host cells or organisms transformed with expression vectors containing calr; and a method for the production and recovery of purified CALR protein from host cells.
- Purified CALR can be used to produce antibodies, antagonists or inhibitors for diagnostic or therapeutic use.
- Figures 1A, 1B and 1C show the alignment between the nucleotide (SEQ ID NO:1) and amino acid (SEQ ID NO :2) sequences for CALR.
- Figure 2 displays the alignment of human CALR with CFOMC5AM, C5A anaphylatoxin receptor from dog; boxed residues are identical.
- CALR refers to a C5a-like receptor homolog in naturally occurring or synthetic form and active fragments thereof, which have the sequence shown in SEQ ID NO:2.
- the polypeptide designated by the upper case, CALR
- CALR is encoded by mRNAs transcribed from the cDNA (designated by the lower case, calr) of SEQ ID NO:1.
- Active refers to those forms of CALR which retain the biologic and/or immunologic activities of any naturally occurring CALR.
- Nonally occurring CALR refers to CALRs produced by human cells that have not bee genetically engineered and specifically contemplates various CALRs arising from post-translational modifications of the polypeptide including but not limited to acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation.
- Derivative refers to CALRs chemically modified by such techniques as ubiquitination labeling (eg, with radionuclides, various enzymes, etc.), pegylation (derivatization with polyethylene glycol), and insertion or substitution by chemical synthesis of amino acids such a ornithine which do not normally occur in human proteins.
- Recombinant variant refers to any polypeptide having the activity of the CALR protei and differing from naturally occurring CALRs by amino acid insertions, deletions, and substitutions created using recombinant DNA techniques. Guidance in determining which amino acid residues may be replaced, added or deleted without abolishing activities of interest, such a normal signal transduction, may be found by comparing the sequence of the particular CALR with that of homologous peptides and minimizing the number of amino acid sequence changes made in highly conserved regions.
- amino acid substitutions are the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, or a threonine with a serine, ie, conservative replacements.
- “Insertions” or “deletions” are typically in the range of about 1 to 5 amino acids. The variation allowed may be experimentall determined by producing the peptide synthetically or by systematically making insertions, deletions, or substitutions of nucleotides in a calr molecule using recombinant DNA techniques and assaying the expressed, recombinant variants for activity.
- a "signal or leader sequence” can direct the polypeptide through the membrane of a cell.
- a sequence may be naturally present on the polypeptides of the present invention or provided from heterologous sources by recombinant DNA techniques.
- a polypeptide "fragment,” “portion,” or “segment” is a stretch of amino acid residues of at least about 5 amino acids, often at least about 7 amino acids, typically at least about 9 to 13 amino acids, and, in various embodiments, at least about 17 or more amino acids. To be active, any CALR peptide must have sufficient length to display biologic and/or immunologic activity.
- An "oligonucleotide” or polynucleotide “fragment”, “portion”, “probe” or “segment” is a stretch of nucleotide residues which is long enough to use in polymerase chain reaction (PCR) or various hybridization procedures.
- Oligonucleotides are prepared based on the cDNA sequenc which encodes CALR provided by the present invention and are used to amplify, or simply revea the presence of, related RNA or DNA molecules. Oligonucleotides comprise portions of the DNA sequence having at least about 10 nucleotides and as many as about 35 nucleotides, preferably about 25 nucleotides. Nucleic acid probes comprise portions of calr sequence having fewer nucleotides than about 6 kb, preferably fewer than about 1 kb.
- both oligonucleotides and nucleic acid probes may be used to determine whether mRNAs encoding CALR are present in a cell or tissue or to isolate similar natural nucleic acid sequences from chromosomal DNA as described by Walsh PS et al (1992, PCR Methods Appl 1 :241-50).
- Probes may be derived from naturally occurring or recombinant single- or double-stranded nucleic acids or be chemically synthesized. They may be labeled by nick translation, Klenow fill-in reaction, PCR or other methods well known in the art. Probes of the present invention, their preparation and/or labeling are elaborated in Sambrook J et al (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor NY; or Ausubel FM et al (1989) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, both incorporated herein by reference. Recombinant variants encoding T7Gs may be synthesized or selected by making use of the
- “redundancy” in the genetic code Various codon substitutions, such as the silent changes which produce specific restriction sites, may be introduced to optimize cloning into a plasmid or viral vector or to increase expression in a particular prokaryotic or eukaryotic system. Codon usage-specific mutations may also be introduced or chimeras containing the domains of related peptides added to test or modify the properties of any part of the polypeptide, particularly to change ligand-binding affinities, interchain affinities, or degradation/turnover rate.
- the present invention provides a unique nucleotide sequence identifying a novel C5a-like receptor which was first identified in human mast cells.
- the sequence for calr is shown in SEQ ID NO:1 and is homologous to the GenBank sequence, CFCOMC5AM for canine C5a anaphylatoxin receptor.
- Incyte 8118 has 45% amino acid identity with the C5a receptor and differs from it in having only three carboxylate residues in the N-terminus, two of which are Glu rather than Asp.
- the N-terminus of Incyte 8118 is shorter than that of the published C5a receptor and would be expected to have different binding specificity.
- CALR is expressed in cells active in immunity
- the nucleic acid (calr), polypeptide (CALR) and antibodies to CALR are useful in investigations of and interventions in the normal and abnormal physiologic and pathologic processes associated with the mast cell's role in immunity. Therefore, an assay for upregulated expression of CALR can accelerate diagnosis and proper treatment of conditions caused by abnormal signal transduction events due to anaphylactic or hypersensitive responses, systemic and local infections, traumatic and othe tissue damage, hereditary or environmental diseases associated with hypertension, carcinomas and other physiologic or pathologic problems.
- nucleotide sequence encoding CALR (or its complement) has numerous other applications in techniques known to those skilled in the art of molecular biology. These techniques include use as hybridization probes for Southern or northern analysis, use as oligomers for PCR, use for chromosomal and gene mapping, use in the recombinant production of CALR, use in generation of antisense DNA or RNA, their chemical analogs and the like, and us in production of chimeric molecules for selecting agonists, inhibitors or antagonists for design of domain-specific therapeutic molecules. Uses of the nucleotides encoding CALR disclosed herein are exemplary of known techniques and are not intended to limit their use in any technique known to a person of ordinary skill in the art.
- nucleotide sequence disclosed herein may be used in molecular biology techniques that have not yet been developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, eg, the triplet genetic code, specific base pair interactions, etc.
- nucleotide sequences which encode CALR and its variants are preferably capabl of hybridizing to the nucleotide sequence of the naturally occurring CALR gene under stringent conditions, it may be advantageous to produce nucleotide sequences encoding CALR or its derivatives possessing a substantially different codon usage. Codons can be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic expression host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding CALR and its derivatives without altering the encoded amino acid sequence include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.
- nucleotide sequence encoding CALR may be joined to a variety of other nucleotide sequences by means of well established recombinant DNA techniques (Sambrook J et al, supra)
- Useful nucleotide sequences for joining to calr include an assortment of cloning vectors such as plasmids, cosmids, lambda phage derivatives, phagemids, and the like that are well known in th art and may be chosen for such characteristics as the size insert they can accommodate, their utility, their fidelity, etc.
- Other vectors of interest include expression vectors, replication vectors, probe generation vectors, sequencing vectors, YAC and BAC mapping vectors, and the like. In general, these vectors may contain an origin of replication functional in at least one organism, convenient restriction endonuclease sensitive sites, and selectable markers for recovering transformed host cells.
- Another aspect of the subject invention is to provide for calr-specific nucleic acid hybridization probes capable of hybridizing with naturally occurring nucleotide sequences encoding CALR. Such probes may also be used for the detection of CALR-encoding sequences and should preferably contain at least 50% of the nucleotides from any particular domain of interest from this calr encoding sequence.
- the hybridization probes of the subject invention may be derived from the nucleotide sequence of the SEQ ID NO:1 or from genomic sequence including promoter, enhancer elements and introns of the respective naturally occurring calrs.
- Hybridization probes may be labeled by a variety of reporter groups, including radionuclides such as 32 P or 35 S, or enzymatic labels such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.
- reporter groups including radionuclides such as 32 P or 35 S, or enzymatic labels such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.
- PCR as described in US Patent Nos. 4,683,195 and 4,965,188, provides additional uses for oligonucleotides based upon the nucleotide sequences which encode CALR.
- probes used in PCR may be of recombinant origin, may be chemically synthesized, or may be a mixture of both and comprise a discrete nucleotide sequence for diagnostic use or a degenerate pool of possible sequences for identification of closely related T7G sequences.
- Full length genes may be cloned from known sequence using a new method, disclosed in Patent Application Serial No 08/487,112, filed June 7, 1995 and hereby incorporated by reference, which employs XL-PCR (Perkin-Elmer, Foster City, CA) to amplify long pieces of DNA. This method was developed to allow a single researcher to process multiple genes (up to
- step 2 which can be performed in about two days, primers are designed and synthesized based on a known partial sequence.
- step 2 which takes about six to eight hours, the sequence is extended by PCR amplification of a selected library.
- Steps 3 and 4 which take about one day, are purification of the amplified cDNA and its ligation into an appropriate vector
- Step 5 which takes about one day, involves transforming and growing up host bacteria.
- Step 6 which takes approximately five hours, PCR is used to screen bacterial clones for extended sequence.
- the final steps which take about one day, involve the preparation and sequencing of selected clones. If the full length cDNA has not been obtained, the entire procedure is repeated using either the original library or some other preferred library.
- the preferred library may be one that has been size-selected to include only larger cDNAs or may consist of single or combined commercially available libraries, eg. lung, liver, heart and brain from Gibco/BRL (Gaithersburg MD).
- the cDNA library may have been prepared with oligo d(T) or random primers.
- random primed libraries are that they will have more sequence which contain 5' ends of genes.
- a randomly primed library may be particularly useful if an oligo d(T) library does not yield a complete gene. Obviously, the larger the protein, the less likely it is that the complete gene will be found in a single plasmid.
- hybridization probes for T7G DNAs include the cloning of nucleic acid sequences encoding CALR or its derivatives into vectors for the production of mRN probes.
- vectors are well known in the art, are commercially available, and may be used t synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerase as T7 or SP6 RNA polymerase and the appropriate labeled nucleotides. It is now possible to produce a DNA sequence, or portions thereof, encoding CALR and/or its derivatives entirely by synthetic chemistry. Such molecules can be inserted into any of the many available vectors using reagents and methods that are known in the art at the time of the filing of this application.
- the nucleotide sequence can be used to develop an assay to detect activation, inflammation, or disease associated with abnormal levels of CALR expression.
- the nucleotide sequence can be labeled by methods known in the art and added to a fluid or tissue sample from patient. After an incubation period sufficient to effect hybridization, the sample is washed wit a compatible fluid which contains a visible marker, a dye or other appropriate molecule(s), if the nucleotide has been labeled with an enzyme. After the compatible fluid is rinsed off, the dye is quantitated and compared with a standard. If the amount of dye is significantly elevated (or lowered, as the case may be), the nucleotide sequence has hybridized with the sample, and the assay indicates an abnormal condition such as inflammation or disease.
- the nucleotide sequence for calr can be used to construct hybridization probes for mapping the gene.
- the nucleotide sequence provided herein may be mapped to a chromosome or specific regions of a chromosome using well known genetic and/or chromosomal mapping techniques. These techniques include in situ hybridization, linkage analysis against known chromosomal markers, hybridization screening with libraries or flow-sorted chromosomal preparations specific to known chromosomes, and the like.
- the technique of fluorescent in situ hybridization of chromosome spreads has been described, among other places, in Verma et al
- Fluorescent in sjlu hybridization of chromosomal preparations and other physical chromosome mapping techniques may be correlated with additional genetic map data. Examples of genetic map data can be found in the 1994 Genome issue of Science (265:1981 f). Correlation between the location of: calr on a physical chromosomal map and a specific disease
- nucleotide sequence of the subject invention may be used to detect differences in the genetic sequence between normal and carrier or affected individuals.
- the nucleotide sequence encoding CALR may be used to produce purified CALR using well known methods of recombinant DNA technology.
- CAL may be expressed in a variety of host cells, either prokaryotic or eukaryotic.
- Host cells may b from the same species in which calr nucleotide sequences are endogenous or from a different species.
- Advantages of producing CALR by recombinant DNA technology include obtaining adequate amounts of the protein for purification and the availability of simplified purification procedures.
- CALR produced by a recombinant cell may be secreted or may be contained intracellularly depending on the particular genetic construction used. In general, it is more convenient to prepare recombinant proteins in secreted form. Purification steps vary with the production process and the particular protein produced.
- CALR polypeptide may be accomplished by procedures well known in the art.
- such a polypeptide may be purified by immunoaffinity chromatography by employing the antibodies provided by the present invention
- Various other methods of protein purification well known in the art include those described in Deutscher M (1990) Methods in Enzymology, Vol 182, Academic Press, San Diego CA; and in Scopes R (1982) Protein Purification: Principles and Practice, Springer- Verlag, New York City, both incorporated herein by reference.
- fragments of CALR may be produced by direct peptide synthesis using solid-phase techniques (cf Stewart et al (1969) Solid-Phase Peptide Synthesis, WH Freeman Co, San Francisco CA; Merrifield J (1963) J Am Chem Soc 85:2149-2154).
- In vitro protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be achieved, for example, using Applied Biosystems 431
- CALR for antibody induction does not require biological activity; however, the protein must be antigenic.
- Peptides used to induce specific antibodies may have an amino acid sequence consisting of at least five amino acids, preferably at least 10 amino acids. They should mimic an exposed structural portion of the amino acid sequence (an epitope) of the protein and may contain the entire amino acid sequence of a small domain of CALR. Short stretches of CALR amino acids may be fused with those of another protein such as keyhole limpet hemocyanin, and antibody produced against the fusion protein.
- Antibodies specific for CALR may be produced by inoculation of an appropriate animal with the polypeptide or an antigenic fragment.
- An antibody is specific for CALR if it is specific for an immunogenic epitope of the polypeptide and binds to at least part of the natural or recombinant protein.
- Antibody production includes not only the stimulation of an immune response by injection into animals, but also analogous steps in the production of synthetic antibodies or other specific-binding molecules such as the screening of recombinant immunoglobulin libraries (Orlandi R et al (1989) PNAS 86:3833-37, or Huse WD et al (1989) Science 256:1275-81) or the in vitro stimulation of lymphocyte populations.
- Current technology (Winter G and Milstein C (1991) Nature 349:293-99) provides for a number of highly specific binding reagents based on the principles of antibody formation. Thes techniques may be adapted to produce molecules specifically binding particular domains of CALR.
- An additional embodiment of the subject invention is the use of CALR specific antibodies or the like as bioactive agents to treat abnormal signal transduction events associated with anaphylactic or hypersensitive responses systemic and local infections, traumatic and other tissue damage, hereditary or environmental diseases associated with hypertension, carcinomas, and other physiologic/pathologic problems.
- Bioactive compositions comprising agonists, antagonists, or inhibitors of CALR may be administered in a suitable therapeutic dose determined by any of several methodologies including clinical studies on mammalian species to determine maximum tolerable dose and on normal human subjects to determine safe dosage. Additionally, the bioactive agent may be complexed with a variety of well established compounds or compositions which enhance stability or pharmacological properties such as half-life. It is contemplated that a therapeuti bioactive composition may be delivered by intravenous infusion into the bloodstream or any other effective means which could be used for treatment.
- the CALR sequence of this application was first identified in Incyte Clone 8118 (SEQ ID NO:1) among the sequences comprising the human mast cell library.
- the cells used to prepare the human mast cell library were obtained from a Mayo Clinic cancer patient.
- the mast cell cDNA library was prepared by purifying poly-A + mRNA and synthesizing double stranded complementary DNA enzymatically. Synthetic adapters were ligated to the blunt-ended cDNAs which were then ligated to the phage lambda-derived Uni-ZAPTM vector (Stratagene, La Jolla CA). This allowed high efficiency unidirectional (sense orientation) lambda library construction and the convenience of a plasmid system with blue/white color selection to detect clones with cDNA insertions.
- the quality of the cDNA library was screened using DNA probes, and then, the pBluescript® phagemid (Stratagene) was excised. This phagemid allows the use of a plasmid system for easy insert characterization, sequencing, site-directed mutagenesis, the creation of unidirectional deletions and expression of fusion polypeptides. Subsequently, the custom- constructed library phage particles were infected into £,. £011 host strain XL1-Blue®
- the phagemid forms of individual cDNA clones were obtained by the in vivo excision process, in which XL1-BLUE was coinfected with an f1 helper phage. Proteins derived from both lambda phage and f 1 helper phage initiate new DNA synthesis from defined sequences on th lambda target DNA and create a smaller, single-stranded circular phagemid DNA molecule that includes all DNA sequences of the pBluescript plasmid and the cDNA insert. The phagemid DNA was released from the cells and purified, then used to reinfect fresh bacterial host cells (SOLRTM Stratagene), where the double-stranded phagemid DNA was produced. Because the phagemid carries the gene for ⁇ -lactamase, the newly transformed bacteria were selected on medium containing ampicillin. Phagemid DNA was purified using the QIAWELL-8 Plasmid Purification System® from
- the cDNA inserts from random isolates of the mast cell library were sequenced in part.
- Methods for DNA sequencing are well known in the art.
- Conventional enzymatic methods employed DNA polymerase Klenow fragment, SEQUENASE® (US Biochemical Corp, Cleveland OH or Taq polymerase to extend DNA chains from an oligonucleotide primer annealed to the DNA template of interest. Methods have been developed for the use of both single- and double-stranded templates.
- the chain termination reaction products were electrophoresced on urea-acryiamide gels and detected either by autoradiography (for radionuclide-labeled precursors) or by fluorescence (for fluorescent-labeled precursors).
- Pattern Specification Language developed by TRW Inc., Lo Angeles CA
- TRW Inc. was used to determine regions of homoiogy.
- the three parameters that determine how the sequence comparisons run were window size, window offset, and error tolerance. Usin a combination of these three parameters, the DNA database was searched for sequences containing regions of homoiogy to the query sequence, and the appropriate sequences were scored with an initial value. Subsequently, these homologous regions were examined using dot matrix homoiogy plots to distinguish regions of homoiogy from chance matches. Smith-Waterman alignments were used to display the results of the homoiogy search.
- Peptide and protein sequence homologies were ascertained using the INHERITTM 670 Sequence Analysis System in a way similar to that used in DNA sequence homologies. Pattern Specification Language and parameter windows were used to search protein databases for sequences containing regions of homoiogy which were scored with an initial value. Dot-matrix homoiogy plots were examined to distinguish regions of significant homoiogy from chance matches. Alternatively, BLAST, which stands for Basic Local Alignment Search Tool, is used to search for local sequence alignments (Altschul SF (1993) J Mol Evol 36:290-300; Altschul, SF et al (1990) J Mol Biol 215:403-10).
- BLAST produces alignments of both nucleotide and amino acid sequences to determine sequence similarity. Because of the local nature of the alignments, BLAST is especially useful in determining exact matches or in identifying homologs Whereas it is ideal for matches which do not contain gaps, it is inappropriate for performing motif-style searching.
- the fundamental unit of BLAST algorithm output is the High-scoring Segment Pair (HSP).
- An HSP consists of two sequence fragments of arbitrary but equal lengths whose alignment is locally maximal and for which the alignment score meets or exceeds a threshold or cutoff score set by the user.
- the BLAST approach is to look for HSPs between a query sequence and a database sequence, to evaluate the statistical significance of any matches found, and to report only those matches which satisfy the user-selected threshold of significance.
- the parameter E establishes the statistically significant threshold for reporting database sequence matches. E is interpreted as the upper bound of the expected frequency of chance occurrence of an HSP (or set of HSPs) within the context of the entire database search. Any database sequence whose match satisfies E is reported in the program output.
- Incyte 8118 was identified as a homolog of the canine C5a receptor, CFOMC5AM (Perret et al, supra).
- the cDNA insert comprising Incyte 8118 was fully sequenced and used as the basis for cloning the full length cDNA.
- the cDNA of Incyte 8118 was extended to full length using a modified XL-PCR (Perkin Elmer) procedure disclosed in Patent Application Serial No 08/487,112, by Guegler et al. and filed June 7, 1995 and hereby incorporated by reference.
- the primers allowed the sequence to be extended "outward" from the known sequence. This generated amplicons containing new, unknown nucleotide sequence for the gene of interest.
- the primers were designed using Oligo 4.0 (National Biosciences Inc, Plymouth MN) to be 22-30 nucleotides in length, to have a GC content of 50% or more, and to anneal to the target sequence at temperatures of about 68°-72° C. Any stretches of nucleotide sequence which would result in hairpin structures and primer-primer dimerizations were avoided.
- the mast cell cDNA library was used as a template, and XLR and XLS primers were used to extend and amplify the 8118 sequence.
- XLR and XLS primers were used to extend and amplify the 8118 sequence.
- PCR was performed using the MJ PTC200 (MJ Research, Watertown).
- Step 1 94° C for 60 sec (initial denaturation)
- Step 2 94° C for 15 sec
- Step 4 68° C for 7 min
- Step 5 Repeat step 2-4 for 15 additional times
- Step 6 94° C for 15 sec
- Step 7 65° C for 1 min
- Step 8 68° C for 7 min + 15 sec/cycle
- Step 9 Repeat step 6-8 for 11 additional times
- Step 11 4° C (and holding) At the end of 28 cycles, 50 ⁇ l of the reaction mix was removed; and the remaining reaction mix was run for an additional 10 cycles as outlined below:
- Step 1 94° C for 15 sec
- Step 3 68° C for (10 min + 15 sec)/cycle Step 4 Repeat step 1-3 for 9 additional times
- reaction mixture A 5-10 ⁇ l aliquot of the reaction mixture was analyzed by electrophoresis on a low concentration, about 0.6-0.8%, agarose mini-gel to determine which reactions were successf in extending the sequence. Although all extensions potentially contained a full length gene, som of the largest products or bands were selected and cut out of the gel. Further purification involved using a commercial gel extraction method such as QIAQuickTM (QIAGEN). Following recovery of the DNA, Klenow enzyme was used to trim single-stranded, nucleotide overhangs creating blunt ends which facilitated religation and cloning.
- QIAQuickTM QIAGEN
- PCR amplification 15 ⁇ l of concentrated PCR mix (1.33X) containing 0.75 units o Taq polymerase, a vector primer and one or both of the gene specific primers used for the extension reaction were added to each well. Amplification was performed using the following conditions: Step 1 94° C for 60 sec
- Step 2 94° C for 20 sec
- Step 5 Repeat steps 2-4 for an additional 29 times Step 6 72° C for 180 sec
- This calr homolog also resembles various N-formyipeptide receptors generating BLAS scores ranging from 381 to 363 with probabilities of 7.4 -46 to 3.2 -43 .
- BLAS scores ranging from 381 to 363 with probabilities of 7.4 -46 to 3.2 -43 .
- Fig 2 shows the comparison of the human calr sequence with that of the dog C5a receptor CFOMC5AM.
- modifications of gene expression are obtained by designing antisense sequences intron regions, promoter/enhancer elements, or even to trans-acting regulatory genes.
- calr is accomplished by subcloning the cDNAs into appropriate expressio vectors and transfecting the vectors into analogous expression hosts.
- the cloning vector previously used for the generation of the cDNA library, pBluescript also provides for direct expression of calr sequences in E_.
- c_oJi- Upstream of the cloning site this vector contains a promoter for ⁇ -galactosidase, followed by sequence containing the amino-terminal Met and the subsequent 7 residues of ⁇ -galactosidase.
- an engineered bacteriophage promoter useful for artificial priming and transcription and a number of unique restriction sites, including Eco Rl, for cloning.
- Induction of the isolated, transfected bacterial strain with IPTG using standard methods produces a fusion protein corresponding to the first seven residues of ⁇ -galactosidase, about 1 residues of "linker", and the peptide encoded within the cDNA. Since cDNA clone inserts are generated by an essentially random process, there is one chance in three that the included cDN lies in the correct frame for proper translation. If the cDNA is not in the proper reading frame, it is obtained by deletion or insertion of the appropriate number of bases by well know methods including in vitro mutagenesis, digestion with exonuclease III or mung bean nuclease, or the inclusion of an oligonucleotide linker of appropriate length.
- the calr cDNA is shuttled into other vectors known to be useful for expression of protein in specific hosts.
- Oligonucleotide primers containing cloning sites as w as a segment of DNA (about 25 bases) sufficient to hybridize to stretches at both ends of the target cDNA is synthesized chemically by standard methods. These primers are then used to amplify the desired gene segment by PCR. The resulting gene segment is digested with appropriate restriction enzymes under standard conditions and isolated by gel electrophoresis. Alternately, similar gene segments are produced by digestion of the cDNA with appropriate restriction enzymes.
- Suitable expression hosts for such chimeric molecules include, but are not limited to, mammalian cells such as Chinese Hamster Ovary (CHO) and human 293 cells, insect cells suc as Sf9 cells, yeast cells such as Saccharomyces cerevisiae. and bacteria such as E ⁇ c ⁇ JL
- a useful expression vector includes an origin of replication to allow propagation in bacteria and a selectable marker such as the ⁇ -iactamase antibiotic resistance gene to allow plasmid selection in bacteria.
- the vector includes a second selectable marker such as the neomycin phosphotransferase gene to allow selection in transfected eukaryotic host cells.
- a second selectable marker such as the neomycin phosphotransferase gene to allow selection in transfected eukaryotic host cells.
- Vectors for use in eukaryotic expression hosts often require RNA processing elements such as 3' polyadenylation sequences if such are not part of the cDNA of interest.
- the vector contains promoters or enhancers which increase gene expression.
- promoters are host specific and include MMTV, SV40, and metallothionine promoters for CHO cells; trp, lac, tac and T7 promoters for bacterial hosts; and alpha factor, alcohol oxidase and PGH promoters for yeast.
- Transcription enhancers such as the rous sarcoma virus enhancer, are used in mammalian host cells. Once homogeneous cultures of recombinant cells are obtained through standard culture methods, large quantities of recombinantly produced CALR are recovered from the conditioned medium and analyzed using chromatographic methods known in the art.
- CALR is expressed as a chimeric protein with one or more additional polypeptide domains added to facilitate protein purification.
- purification facilitating domains include but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allo purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp, Seattle WA).
- the inclusion of a cleavable linker sequence such as Factor XA o enterokinase (Invitrogen, San Diego CA) between the purification domain and the calr sequence is useful to facilitate expression of CALR.
- Functional chimeric T7Gs are constructed by combining the extracellular receptive sequences of a new isoform with the transmembrane and intracellular segments of a known isoform. Such chimeric molecules are useful for testing purposes. This concept was demonstrated by Kobilka et al (1988, Science 240:1310-1316) who created a series of chimeric ⁇ 2-B2 adrenergic receptors (AR) by inserting progressively greater amounts of ⁇ AR transmembrane sequence into B2-AR. The binding activity of known agonists changed as the molecule shifted from having more oc2 than B2 conformation, and intermediate constructs demonstrated mixed specificity. The specificity for binding antagonists, however, correlated with the source of the domain VII.
- T7G domain VII for ligand recognition was also found in chimeras utilizing two yeast -factor receptors and is significant because the yeast receptors are classified as miscellaneous receptors. Thus, the functional role of specific domains appears to be preserved throughout the T7G family regardless of category. In parallel fashion, internal segments or cytoplasmic domains from a particular isoform are exchanged with the analogous domains of a known T7G and used to identify the structural determinants responsible for coupling the receptors to trimeric G-proteins (Dohlman et al (1991) Annu Rev Biochem 60:653-88).
- a chimeric receptor in which domains V, VI, and the intracellular connecting loop from B2-AR are substituted into ⁇ 2-AR are shown to bind ligands with ⁇ 2-AR specificity, but to stimulate adenylate cyclase in the manner of ⁇ 2-AR.
- the opposite situation was predicted and observed for a chimera in which the V->VI loop from ⁇ 1-AR replaced the corresponding domain on ⁇ 2-AR and the resulting receptor bound ligands with B2-AR specificity and activated G-protein-mediated phosphatidylinositol turnover in the ⁇ 1 -AR manner.
- chimeras constructed from muscarinic receptors also demonstrated that V- >VI loop is the major determinant for specificity of G-protein activity (Bolander FF, supra).
- Chimeric or modified T7Gs containing substitutions in the extracellular and transmembrane regions have shown that both portions of the receptor determine ligand binding specificity.
- two Ser residues are conserved in domain V of all adrenergic and D catecholamine receptors and are necessary for potent agonist activity. These serines are believed to be in the T7G binding site and to form hydrogen bonds with the catechol moiety of th agonists.
- an Asp residue present in domain III of all T7Gs which binds biogenic amines is believed to be in the T7G binding site and to form an ion pair with the ligand amine group.
- T7Gs are expressed in heterologous expression systems and their biological activity assessed (Marullo et al (1988) Proc Natl Acad Sci 85:7551-55; King et al (1990) Science 250:121-23).
- One heterologous system introduces genes for a mammalian T7G and a mammalian G-protein into yeast cells.
- the T7G was shown to have appropriate ligan specificity and affinity and trigger appropriate biological activation-growth arrest and morphological changes-of the yeast cells.
- Incyte sequences for T7G domains are tested in a similar manner.
- denatured protein fro reverse phase HPLC separation is obtained in quantities up to 75 mg. This denatured protein i used to immunize mice or rabbits using standard protocols; about 100 micrograms are adequat for immunization of a mouse, while up to 1 mg might be used to immunize a rabbit.
- the denatured protein is radioiodinated and used to screen potential murine B-cell hybridomas for those which produce antibody. This procedure requir only small quantities of protein, such that 20 mg would be sufficient for labeling and screenin of several thousand clones.
- the amino acid sequence of an appropriate CALR domain is analyzed to determine regions of high immunogenicity.
- Oligopeptides comprising appropriate hydrophilic regions are synthesized and used in suitable immunization protocols to raise antibodies. Analysis to select appropriate epitopes is described by Ausubel FM et al (supra).
- the optimal amino acid sequences for immunization are usually at the C-terminus, the N-terminus and those intervening, hydrophilic regions of the polypeptide which are likely to be exposed to the external environment when the protein is in its natural conformation.
- selected peptides are synthesized using an Applied Biosystems Peptide Synthesizer Model 431 A using fmoc-chemistry and coupled to keyhole limpet hemocyanin (KLH; Sigma, St Louis MO) by reaction with M- maleimidobenzoyl-N- hydroxysuccinimide ester (MBS; cf. Ausubel FM et al, supra). If necessary, a cysteine is introduced at the N-terminus of the peptide to permit coupling to KLH.
- KLH keyhole limpet hemocyanin
- MVS M- maleimidobenzoyl-N- hydroxysuccinimide ester
- Hybridomas are prepared and screened using standard techniques. Hybridomas of interest are detected by screening with labeled CALR to identify those fusions producing the monoclonal antibody with the desired specificity.
- wells of plates (FAST; Becton-Dickinson, Palo Alto CA) are coated during incubation with affinity purified, specific rabbit-anti-mouse (or suitable anti-species Ig) antibodies at 10 mg/ml.
- the coated wells are blocked with 1% BSA, washed and incubated with supernatants from hybridomas. After washin the wells are incubated with labeled CALR at 1 mg/ml.
- Supernatants with specific antibodies bind more labeled CALR than is detectable in the background. Then clones producing specific antibodies are expanded and subjected to two cycles of cloning at limiting dilution.
- Monoclonal antibodies with affinities of at least 10e8 Me-1 , preferably 10e9 to 10e10 or stronger, are typically produced by standard procedures as described in Harlow and Lane (1988) Antibodie A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; and in Goding (1986) Monoclonal Antibodies: Principles and Practice, Academic Press, New York NY, both incorporated herein by reference.
- CALR antibodies are useful for investigating signal transduction events and the diagnosis of infectious or hereditary conditions which are characterized by differences in the amount or distribution of CALR or downstream products of an active signaling cascade.
- Sin CALR was found in a human mast cell library, it appears to be upregulated in cell types mainl involved in immune protection or defense.
- Diagnostic tests for CALR include methods utilizing antibody and a label to detect CALR human body fluids, membranes, cells, tissues or extracts of such.
- the polypeptides and antibodies of the present invention are used with or without modification. Frequently, the polypeptides and antibodies are labeled by joining them, either covalently or noncovalently, with a substance which provides for a detectable signal.
- labels and conjugati techniques are known and have been reported extensively in both the scientific and patent literature. Suitable labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent agents, chemiluminescent agents, magnetic particles and the like. Patents teachin the use of such labels include US Patent Nos. 3,817,837; 3,850,752; 3,939,350;
- a variety of protocols for measuring soluble or membrane-bound CALR, using either polyclonal or monoclonal antibodies specific for the protein, are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA) and fluorescent activated cell sorting (FACS).
- ELISA enzyme-linked immunosorbent assay
- RIA radioimmunoassay
- FACS fluorescent activated cell sorting
- a two-site monoclonal-based immunoassay utilizin monoclonal antibodies reactive to two non-interfering epitopes on CALR is preferred, but a competitive binding assay may be employed. These assays are described, among other places, i Maddox, DE et al (1983, J Exp Med 158:1211f).
- CALR Native or recombinant CALR is purified by immunoaffinity chromatography using antibodies specific for CALR.
- an immunoaffinity column is constructed by covalently coupling the anti-CALR antibody to an activated chromatographic resin.
- Polyclonal immunoglobulins are prepared from immune sera either by precipitation with ammonium sulfate or by purification on immobilized Protein A (Pharmacia LKB
- monoclonal antibodies are prepared from mouse ascites fluid by ammonium sulfate precipitation or chromatography on immobilized Protein A. Partially purified immunoglobulin is covalently attached to a chromatographic resin such as CnBr-activated Sepharose (Pharmacia, Piscataway NJ). The antibody is coupled to the resin, the resin is blocked, and the derivative resin is washed according to the manufacturer's instructions.
- a chromatographic resin such as CnBr-activated Sepharose (Pharmacia, Piscataway NJ).
- Such immunoaffinity columns are utilized in the purification of CALR by preparing a fraction from cells containing CALR in a soluble form. This preparation is derived by solubilization of whole cells or of a subcellular fraction obtained via differential centrifugatio (with or without addition of detergent) or by other methods well known in the art.
- soluble CALR containing a signal sequence is secreted in useful quantity into the medium in which the cells are grown.
- a soluble CALR-containing preparation is passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of CALR (eg, hig ionic strength buffers in the presence of detergent). Then, the column is eluted under conditions that disrupt antibody/CALR binding (eg, a buffer of pH 2-3 or a high concentration of a chaotrope such as urea or thiocyanate ion), and CALR is collected.
- a chaotrope such as urea or thiocyanate ion
- This invention is particularly useful for screening therapeutic compounds by using CALR or binding fragments thereof in any of a variety of drug screening techniques.
- the polypeptide or fragment employed in such a test is either free in solution, affixed to a solid support, borne on a cell surface or located intracellularly.
- One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide, fragment or chimera as described above. Drugs are screened against such transformed cells in competitive binding assays. Such cells, either in viable or fixed form, are used for standard binding assays. The formation of complexes betwee CALR and the agent being tested are measured. Alternatively, one examines the diminution in complex formation between CALR and a receptor caused by the agent being tested.
- the present invention provides methods of screening for drugs or any other agent which affect signal transduction events. These methods, well known in the art, comprise contacting such an agent with CALR polypeptide or a fragment thereof and assaying (i) for the presence of a complex between the agent and the CALR polypeptide or fragment, or (ii) for the presence of a complex between the CALR polypeptide or fragment and the cell. In such competitive binding assays, the CALR polypeptide or fragment is typically labeled. After suitable incubation, free CALR polypeptide or fragment is separated from that present in boun form, and the amount of free or uncomplexed label is a measure of the ability of the particular agent to bind to CALR or to interfere with the formation of the CALR and agent complex.
- Another technique for drug screening provides high throughput screening for compoun having suitable binding affinity to the CALR polypeptides and is described in detail in European Patent Application 84/03564, published on September 13, 1984, incorporated herein by reference. Briefly stated, large numbers of different small peptide test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The peptide test compounds are reacted with CALR polypeptide and washed. Bound CALR polypeptide is then detected by methods well known in the art. Alternatively, purified CALR is coated directly onto plates for use in the aforementioned drug screening techniques. In addition, non-neutralizing antibodies are used to capture the peptide and immobilize it on the solid support.
- This invention also contemplates the use of competitive drug screening assays in which neutralizing antibodies capable of binding CALR specifically compete with a test compound for binding to CALR polypeptides or fragments thereof. In this manner, the antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with
- the goal of rational drug design is to produce structural analogs of biologically active polypeptides of interest or of small molecules with which they interact, eg, agonists, antagonists, or inhibitors. Any of these examples can be used to fashion drugs which are more active or stable forms of the polypeptide or which enhance or interfere with the function of a polypeptide in vivo (Hodgson J (1991) Bio/Technology 9:19-21 , incorporated herein by reference).
- the three-dimensional structure of a protein of interest, or of a protein-inhibitor complex is determined by x-ray crystallography, by computer modeling o most typically, by a combination of the two approaches. Both the shape and charges of the polypeptide must be ascertained to elucidate the structure and to determine active site(s) of th molecule. Less often, useful information regarding the structure of a polypeptide is gained by modeling based on the structure of homologous proteins. In both cases, relevant structural information is used to design efficient inhibitors.
- Useful examples of rational drug design include molecules which have improved activity or stability as shown by Braxton S and Wells JA (1992, Biochemistry 31:7796- 7801) or which act as inhibitors, agonists, or antagonist of native peptides as shown by Athauda SB et al (1993 J Biochem 113:742-46), incorporate herein by reference. It is also possible to isolate a target-specific antibody, selected by functional assay, as described above, and then to solve its crystal structure. This approach, in principle, yields a pharmacore upon which subsequent drug design is based. It is possible to bypass protein crystallography altogether by generating anti-idiotypic antibodies (anti-ids) to a functional, pharmacologically active antibody.
- anti-ids anti-idiotypic antibodies
- the binding site of th anti-ids is expected to be an analog of the original receptor.
- the anti-id is then used to identif and isolate peptides from banks of chemically or biologically produced peptides.
- the isolated peptides then act as the pharmacore.
- Purified CALR is a research tool for identification, characterization and purification of interacting G-proteins, phospholipase C, adenylate cyclase, or other signal transduction pathway proteins. Radioactive labels are incorporated into a selected CALR domain by various methods known in the art and used in vitro to capture interacting molecules. A preferred method involves labeling the primary amino groups in CALR with 125 l Bolton-Hunter reagent (Bolton, AE and Hunter, WM (1973) Biochem J 133: 529).
- Labeled CALR is useful as a reagent for the purification of molecules with which it interacts.
- membrane-bound CALR is covalently coupled to a chromatography column.
- Cell-free extract derived from mast cells or putative target cells is passed over the column, and molecules with appropriate affinity bind to CALR.
- the CALR-complex is recovered from the column, dissociated and the recovered molecule is subjected to N-terminal protein sequencing. This amino acid sequence is then used to identify the captured molecule or to design degenerate oligonucleotide probes for cloning the relevant gene from an appropriate DNA library.
- antibodies are raised against CALR, specifically monoclonal antibodies, as described above.
- the monoclonal antibodies are screened to identify those which inhibit the binding between ligands and CALR. These monoclonal antibodies are then used therapeutically.
- LSTs are formulated in a nontoxic, inert, pharmaceutically acceptable aqueous carrier medium preferably at a pH of about 5 to 8, more preferably 6 to 8, although pH varies according to the characteristics of the antibody, inhibitor, or antagonist being formulated and the condition to b treated. Characteristics of LSTs include solubility of the molecule, half-life and antigenicity/ immunogenicity; these and other characteristics aid in defining an effective carrier. Native human proteins are preferred as LSTs, but organic or synthetic molecules resulting from dru screens are equally effective in particular situations.
- LSTs are delivered by known routes of administration including but not limited to topic creams and gels; transmucosal spray and aerosol; transdermal patch and bandage; injectable, intravenous and lavage formulations; and orally administered liquids and pills particularly formulated to resist stomach acid and enzymes.
- routes of administration including but not limited to topic creams and gels; transmucosal spray and aerosol; transdermal patch and bandage; injectable, intravenous and lavage formulations; and orally administered liquids and pills particularly formulated to resist stomach acid and enzymes.
- the particular formulation, exact dosage, and route of administration is determined by the attending physician and varies according to each specific situation.
- Such determinations are made by considering multiple variables such as the condition t be treated, the LST to be administered, and the pharmacokinetic profile of the particular LST.
- LST formulations are administered every 3 to 4 days, every week, or once every two weeks depending on half-life an clearance rate of the particular LST.
- Normal dosage amounts vary from 0.1 to 100,000 micrograms, up to a total dose of about 1 g, depending upon the route of administration.
- Guidance as to particular dosages and methods of delivery is provided in the literature. See US Patent Nos. 4,657,760; 5,206,344 or 5,225,212.
- Those skilled in the art employ different formulations for different LSTs.
- Administration to cells such as nerve cells necessitates delivery in a manner different from th to other cells such as vascular endothelial cells.
- abnormal signal transduction in those conditions or diseases which trigger mast cell activity cause damage that is treatable with LSTs.
- Such conditions particularly anaphylactic or hypersensitive responses, are treated as discussed above.
- the LS is also used to treat other systemic and local infections, traumatic tissue damage, hereditary o environmental diseases associated with allergies, hypertension, carcinoma, and other physiologic/pathologic problems associated with abnormal signal transduction events.
- ATCATTGTCC TCAACATGTT TGGCAGTGTC TTCCTGCTTA CTGCCATTAG CCTGGATCGC 360
- GGCCAATTCA CAGATGACGA TCAAGTGCCA ACACCCCTCG TGGCAATAAC GATCACTAGG 1020
- CTAGTGGTGG GTTTCCTGCT GCCCTCTGTT ATCATGATAG CCTGTTACAG CTTCATTGTC 1080
- Cys lie Trp Val Val Ala Phe Val Leu Cys lie Pro Val Phe Val Tyr 145 150 155 160
- Glu Asn Arg Ser Leu Glu Asn lie Val Gin Pro Pro Gly Glu Met Asn 195 200 205 Asp Arg Leu Asp Pro Ser Ser Phe Gin Thr Asn Asp His Pro Trp Thr 210 215 220
- Phe Pro lie Glu Asp His Glu Thr Ser Pro Leu Asp Asn Ser Asp Ala 275 280 285
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Immunology (AREA)
- Toxicology (AREA)
- Microbiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Laminated Bodies (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US46235595A | 1995-06-05 | 1995-06-05 | |
| US462355 | 1995-06-05 | ||
| PCT/US1996/008596 WO1996039511A2 (en) | 1995-06-05 | 1996-06-03 | A C5a-LIKE SEVEN TRANSMEMBRANE RECEPTOR |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP0832231A2 true EP0832231A2 (de) | 1998-04-01 |
Family
ID=23836136
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP96922382A Ceased EP0832231A2 (de) | 1995-06-05 | 1996-06-03 | C5a-ÄHNLICHER SIEBEN TRANSMEMBRAN-REZEPTOR |
Country Status (6)
| Country | Link |
|---|---|
| EP (1) | EP0832231A2 (de) |
| JP (1) | JPH11507513A (de) |
| AU (1) | AU718311B2 (de) |
| CA (1) | CA2223038A1 (de) |
| MX (1) | MX9709338A (de) |
| WO (1) | WO1996039511A2 (de) |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU1921695A (en) * | 1995-02-17 | 1996-09-04 | Human Genome Sciences, Inc. | Human g-protein coupled receptor |
| ES2287951T3 (es) * | 1996-01-30 | 2007-12-16 | The Scripps Research Institute | Receptor asociado a proteina g con un dominio estracelular aumentado. |
| JPH1087700A (ja) * | 1996-06-17 | 1998-04-07 | Smithkline Beecham Corp | C3a受容体およびC3aを用いる治療およびスクリーニング方法 |
| US6063596A (en) * | 1997-12-11 | 2000-05-16 | Incyte Pharmaceuticals, Inc. | G-protein coupled receptors associated with immune response |
| WO2000008155A2 (en) * | 1998-08-07 | 2000-02-17 | Incyte Pharmaceuticals, Inc. | Human receptor-associated proteins |
| EP1304921A2 (de) * | 2000-06-29 | 2003-05-02 | Deltagen, Inc. | Transgene mäuse mit gezielten genunterbrechungen |
| CN1642983A (zh) | 2002-01-25 | 2005-07-20 | G2治疗有限公司 | 抗C5aR抗体及其应用 |
| CN104059149B (zh) | 2006-08-22 | 2017-04-12 | 诺沃诺蒂斯克股份有限公司 | 具有改进性能的抗‑C5aR抗体 |
| CN101970494B (zh) | 2008-02-20 | 2015-01-21 | G2炎症私人有限公司 | 人源化抗-C5aR抗体 |
| DK3424953T3 (en) | 2011-06-06 | 2020-11-02 | Novo Nordisk As | Terapeutiske antistoffer |
| JP2019517544A (ja) * | 2016-06-10 | 2019-06-24 | アイオー バイオテック エーピーエスIO Biotech ApS | Calr及びjak2ワクチン組成物 |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU4855393A (en) * | 1992-09-10 | 1994-03-29 | New York University | Polypeptides of g-coupled receptor proteins, and compositions and methods thereof |
| JPH07503145A (ja) * | 1992-11-17 | 1995-04-06 | イコス コーポレイション | 新規の7−トランスメンブランレセプター |
-
1996
- 1996-06-03 CA CA002223038A patent/CA2223038A1/en not_active Abandoned
- 1996-06-03 EP EP96922382A patent/EP0832231A2/de not_active Ceased
- 1996-06-03 JP JP9501136A patent/JPH11507513A/ja not_active Ceased
- 1996-06-03 AU AU63273/96A patent/AU718311B2/en not_active Ceased
- 1996-06-03 WO PCT/US1996/008596 patent/WO1996039511A2/en not_active Ceased
- 1996-06-03 MX MX9709338A patent/MX9709338A/es not_active Application Discontinuation
Non-Patent Citations (1)
| Title |
|---|
| See references of WO9639511A2 * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO1996039511A3 (en) | 1997-01-09 |
| MX9709338A (es) | 1998-02-28 |
| CA2223038A1 (en) | 1996-12-12 |
| AU6327396A (en) | 1996-12-24 |
| WO1996039511A2 (en) | 1996-12-12 |
| AU718311B2 (en) | 2000-04-13 |
| JPH11507513A (ja) | 1999-07-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU721194B2 (en) | Thrombin receptor homolog | |
| AU718269B2 (en) | A human EDG-2 receptor homolog | |
| AU718311B2 (en) | A C5a-like seven transmembrane receptor | |
| MXPA97009338A (en) | Transmembrane-seven type receiver | |
| US5587306A (en) | Phospholipase C homolog | |
| AU719811B2 (en) | Cellubrevin homologs | |
| AU719858B2 (en) | Hyaluronan receptor expressed in human umbilical vein endothelial cells | |
| US5840562A (en) | DNA encoding human cysteine protease | |
| US7179898B1 (en) | Human vanilloid receptor-like receptor | |
| CA2198729A1 (en) | A novel human map kinase homolog | |
| AU719815B2 (en) | A novel human purinergic P2U receptor | |
| CA2264542A1 (en) | Human gtp binding protein gamma-3 | |
| WO1997015592A1 (en) | Novel human cysteine protease | |
| MXPA97009337A (en) | Receptor p2u purinergico humano noved | |
| MXPA97009746A (en) | Homologo de receptor de tromb | |
| CA2224247A1 (en) | Human homolog of the mouse rab18 gene | |
| MXPA97010409A (en) | Homologo de receptor de edg-2 hum | |
| MXPA97005366A (en) | A novelty chemiocine expressed in fetal spleen, its production and a | |
| MXPA97007880A (en) | Novelty chemiocine expressed in eosinofi | |
| MXPA97007852A (en) | Homologo de fosfolipas |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19971229 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE DE ES FR GB IT NL |
|
| RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SEILHAMER, JEFFREY, J. Inventor name: BANDMAN, OLGA Inventor name: AU-YOUNG, JANICE Inventor name: COLEMAN, ROGER |
|
| 17Q | First examination report despatched |
Effective date: 20021209 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
| 18R | Application refused |
Effective date: 20040725 |