EP0825636A2 - Hochdruckentladungslampe - Google Patents

Hochdruckentladungslampe Download PDF

Info

Publication number
EP0825636A2
EP0825636A2 EP97112617A EP97112617A EP0825636A2 EP 0825636 A2 EP0825636 A2 EP 0825636A2 EP 97112617 A EP97112617 A EP 97112617A EP 97112617 A EP97112617 A EP 97112617A EP 0825636 A2 EP0825636 A2 EP 0825636A2
Authority
EP
European Patent Office
Prior art keywords
discharge lamp
pressure discharge
lamp according
pinch
total width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97112617A
Other languages
English (en)
French (fr)
Other versions
EP0825636B1 (de
EP0825636A3 (de
Inventor
Hans-Werner Gölling
Thomas Dittrich
Dieter Franke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1996133732 external-priority patent/DE19633732A1/de
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0825636A2 publication Critical patent/EP0825636A2/de
Publication of EP0825636A3 publication Critical patent/EP0825636A3/de
Application granted granted Critical
Publication of EP0825636B1 publication Critical patent/EP0825636B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/366Seals for leading-in conductors
    • H01J61/368Pinched seals or analogous seals

Definitions

  • the invention relates to a high-pressure discharge lamp according to the Preamble of claim 1.
  • Such lamps are double-ended lamps with and without outer bulb.
  • the lamp is through on at least one side sealed a bruise.
  • It generally has a discharge vessel made of quartz glass.
  • they are metal halide lamps, which have a metal halide filling in addition to mercury, but also about high-pressure mercury discharge lamps or high-pressure xenon discharge lamps.
  • the lamps are preferably used for optical Systems, in particular photo-optical purposes, are used, for example in headlights, overhead projectors and effect lighting devices. you find especially used in lighting systems for stage, film and Watch TV.
  • Typical lamp powers are 400 to 2000 W.
  • Such a lamp is known from US Pat. No. 5,142,195
  • the broad and narrow sides of the bruises in cross section have typical double T-shape (also called I-shape). This corresponds to the total width w of the bruises (16 mm) about four times that Thickness d of the bruises (4 mm).
  • Thickness d of the bruises 4 mm
  • Such a width-thickness ratio w / d of about 4 is common.
  • These bruises whose length corresponds approximately to that of the discharge vessel primarily to bring the temperature of the end of the film near the base to a maximum Limit 350 ° C (see also US Pat. No. 5,138,227).
  • To be sufficient to ensure mechanical stability of these bruises according to US Pat. No. 5,142,195 at the starting point of the bruises on the discharge vessel Struts shaped. Through a special design of the Struts can further improve stability.
  • the object of the present invention is a high-pressure discharge lamp according to the preamble of claim 1 to provide a stable Crushed in the simplest possible way.
  • the high-pressure discharge lamp according to the invention consists of an elongate Discharge vessel with a central area that has a discharge volume encloses, and with at least one, preferably two, bruises, which are in diametrically opposite directions from the central area stretch away.
  • the bruise has two broad sides and two narrow sides on. In particular, the pinch is at least 18 mm long.
  • the length of the pinch is of the order of the longitudinal dimension of the Central area.
  • the dimensions of the pinch are chosen so that the Total width of the broadside less than or equal to 2.2 times the thickness this broadside is.
  • the stability of the lamp can be preferred by carefully choosing the thickness of the discharge vessel can be further improved.
  • the wall thickness of the discharge vessel is advantageously more than 1.5 mm. It is preferably included approx. 2 mm ⁇ 0.3 mm.
  • the broad sides of the bruises are known per se Equipped with ridges that widen the narrow sides. Thereby the stability is further improved. Particularly good results can be achieved if the total width of the narrow sides (including the marginal ridges) approximately (in particular to at least 20% exactly) corresponds to the total width of the broadsides.
  • the surface of the broad sides is advantageously cross-corrugated. This creates one larger surface, which due to its high thermal radiation Temperature load at the end of the film is also reduced and improved moreover, the stiffness of the bruise.
  • the length of the film is preferably about 60 to 70% of the length of the pinch.
  • the total width of the bruise reaches less than 50% of the maximum Width of the central area.
  • a hollow cylindrical tube extension is formed on the outer pinch end.
  • a base part can be held on this.
  • the outer diameter of the pipe socket the inner diameter of one on it fitted cylindrical base sleeve adapted.
  • the outside diameter of the pipe neck preferably corresponds approximately to the total width of the Broadside of the bruise. In this way, the two parts are ideal on top of each other coordinated and therefore easier to manufacture. Beyond that Center the lamp shaft (shown here as a pinch) and the base better axially than in the case of oval melting. In addition, the between Shaft and base remaining cavity well with suitable materials be shielded against air access.
  • Two electrodes extend from the bruises into the discharge volume. They are connected to external power supplies via metal foils, the metal foils being arranged in the bruises.
  • the electrodes are wrapped with rolls of molybdenum foil, as a result Jumps when squeezing and switching the lamp on and off prevented and the centering of the electrode is improved.
  • the roller acts as a flexible layer between the electrode and the surrounding quartz wall, which prevents the quartz glass from sticking to the electrode. Furthermore the molybdenum acts as a getter against filling impurities. All in all the life of the lamp is extended by the roller.
  • transition zone inserted to further increase the breaking strength. It is about 1 to 4 mm long.
  • the light-emitting fill in the discharge volume preferably contains Metal halides.
  • the discharge vessel is usually the lamp bulb itself.
  • the invention can also be used for lamps with a reflector or with an outer bulb.
  • FIG. 1 and 2 show a 575 W high-pressure discharge lamp 1 with a length of approximately 100 mm, which does not require an outer bulb. It is intended for use in a reflector, not shown here, in particular in an overhead projector in which it is used transversely. It has a discharge vessel 2, which consists of a central region 3, to which two diametrically opposed bruises 4 are attached.
  • the isothermal discharge vessel 2 made of quartz glass, which is a very good approximation, has a wall thickness of approximately 1.8 mm.
  • the central region 3 is designed as a spherical body with an outer diameter of approximately 22 mm, so that a discharge volume of approximately 3 cm 3 results.
  • the rod-shaped tungsten electrodes 5, the tips of which are 7 mm apart, are each held axially in the pinch 4. They are each surrounded by a molybdenum roller 6, at least in the area of the pinch. The central area has a bulge 7 in the vicinity of the electrodes, which defines the coldest point.
  • the bruises 4, which are about 28 mm long are on by means of a short transition zone 11 the central area 3 connected.
  • the transition zone 11 is approximately 2 mm long. In it there is a smooth transition between the curved wall the central area and the straight contours of the bruises instead of.
  • the radius of curvature in the area of the transition is typically about 2 mm.
  • molybdenum foils 12 with a length of 20 mm and a width of 3.5 mm arranged approximately in the middle. They are vacuum tight embedded in the bruise.
  • At the distal ends of the Squeezes are formed on cylindrical tube lugs 13 with an outer diameter of 8 mm and an inner diameter of 5 mm.
  • the Pipe lugs are each about 10 mm long.
  • the electrodes 5 are via the molybdenum foils 12 with external power supplies 14 connected, which is centered on the pipe lugs 13 to the outside extend.
  • the power supplies 14 are with metallic base sleeves 15 (see Figure 2) in contact via brazing.
  • the base sleeves 15 are direct pushed onto the glass tube lugs 13 and with these by means of putty 21 connected.
  • the base sleeve 15 is lid-like on the outside (reference number 16) completed.
  • On the cover 16 there is a threaded rod in a manner known per se 17 in front who carries a knurled nut 18.
  • a sealing medium 19 which further complicates the oxidation of the film. Can be beneficial the sealing medium 19 also fill the entire cavity.
  • Sealing medium can be, for example, ceramic paper or putty use.
  • a typical temperature at the end of the crush is 250 ° C.
  • the surfaces of the broad sides 8 of the bruises are cross corrugated 20 provided. They also point at the level of the electrodes and the elongated centering knobs on outer power supply lines (not shown).
  • the discharge volume contains a filling of an inert gas (argon) as Ignition gas and mercury as the main component as well as metal halides, consisting of the iodides and / or bromides of hafnium, dysprosium, Gadolinium, Cesium and Thallium. Overall, this filling results a color temperature of 6000 K with a color rendering index of greater 85.
  • argon inert gas
  • Ignition gas and mercury as the main component
  • metal halides consisting of the iodides and / or bromides of hafnium, dysprosium, Gadolinium, Cesium and Thallium.
  • Another embodiment is a 1200 W lamp with a metal halide filling, the structure of which is similar to that shown in FIGS. 1 and 2.
  • the lamp bulb has a total length of approx. 160 mm.
  • the dimensions of the Bruises and the other items are compared to the first Embodiment enlarged by about 50%.
  • the ratio w / d is too here about 2.0.
  • FIG. 3 An exemplary embodiment of a reflector lamp is shown in FIG. 3.
  • the reflector lamp 25 sits axially in a reflector 26, in the apex region of a reflector neck 30 is scheduled.
  • the central region 31 of the lamp is at its first end with a first approximately "square" in cross section Squeeze 27 closed, the additional at its outer end Has extension in the form of a hollow cylindrical tube extension 28.
  • This first pinch 27 together with the extension 28 sits in the reflector neck 30 and is there in a ceramic base part 32, since it is attached to the neck 30, supported by plaster 29.
  • the ratio w / d is about 1.8.
  • the first end of the reflector lamp instead, in a manner known per se, by melting be closed, which also has a hollow cylindrical tube extension.
  • the advantage of using a square squeeze over a meltdown, however, is that for the optical adjustment of the Lamp in the reflector neck remains significantly more space because of the cross-sectional area this bruise is smaller than with a meltdown. The adjustment is made considerably easier.
  • a power supply cable 33 is inserted laterally into the base part 32 and with the external power supply 34, which comes from the hollow cylindrical extension 28 stands out, connected.
  • the second end of the central region 31 of the lamp is in each of the two Embodiments of a reflector lamp by a (second) "Square" pinch 35 closed.
  • This bruising is beneficial kept so short (especially without a pipe neck) that the end of the pinch does not protrude beyond the reflector opening 36. That way a very compact and precisely adjusted reflector lamp can be provided.
  • the second power supply protruding from the second pinch 35 37 is by means of a curved cable 38 to a separate side Terminal 39 guided on the reflector.

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

Eine zweiseitig gequetschte Entladungslampe weist Quetschungen (4) mit einem Verhältnis der Gesamtbreite zur Dicke der Breitseiten von kleiner oder gleich 2,2 auf. Am äußeren Ende der Quetschungen befinden sich Rohransätze (13), die die Sockelhülsen (15) tragen. <IMAGE>

Description

Technisches Gebiet
Die Erfindung geht aus von einer Hochdruckentladungslampe gemäß dem Oberbegriff des Anspruchs 1.
Bei derartigen Lampen handelt es sich um zweiseitig verschlossene Lampen mit und ohne Außenkolben. Mindestens an einer Seite ist die Lampe durch eine Quetschung verschlossen. Sie weist im allgemeinen ein Entladungsgefäß aus Quarzglas auf. Insbesondere handelt es sich um Metallhalogenidlampen, die neben Quecksilber eine Metallhalogenidfüllung aufweisen, aber auch um Quecksilber-Hochdruckentladungslampen oder Xenon-Hochdruckentladungslampen. Die Lampen werden vorzugsweise für optische Systeme, insbesondere fotooptische Zwecke, verwendet, beispielsweise in Scheinwerfern, Overheadprojektoren und Effektlichtgeräten. Sie finden insbesondere Anwendung in Beleuchtungssystemen für Bühne, Film und Fernsehen. Typische Lampenleistungen liegen bei 400 bis 2000 W.
Stand der Technik
Aus der US-PS 5 142 195 ist eine derartige Lampe bekannt, wobei die aus Breitseiten und Schmalseiten bestehenden Quetschungen im Querschnitt die typische Doppel-T-Form (auch I-Form genannt) aufweisen. Dabei entspricht die Gesamtbreite w der Quetschungen (16 mm) etwa dem Vierfachen der Dicke d der Quetschungen (4 mm). Ein derartiges Breiten-Dicken-Verhältnis w/d von ca. 4 ist allgemein üblich. Am sockelfernen Ende der Quetschungen sind jeweils keramische Sockelhülsen mittels Kitt befestigt. Diese Quetschungen, deren Länge etwa der des Entladungsgefäßes entspricht, dienen in erster Linie dazu, die Temperatur des sockelnahen Folienendes auf höchstens 350 °C zu begrenzen (siehe hierzu auch US-PS 5 138 227). Um eine ausreichende mechanische Stabilität dieser Quetschungen sicherzustellen, werden gemäß US-PS 5 142 195 am Ansatzpunkt der Quetschungen am Entladungsgefäß Verstrebungen geformt. Durch eine besondere Gestaltung der Verstrebungen kann die Stabilität weiter verbessert werden.
Darstellung der Erfindung
Es ist Aufgabe der vorliegenden Erfindung, eine Hochdruckentladungslampe gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, die eine stabile Quetschung auf möglichst einfache Weise erzielt.
Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.
Die erfindungsgemäße Hochdruckentladungslampe besteht aus einem langgestreckten Entladungsgefäß mit einem Zentralbereich, der ein Entladungsvolumen umschließt, und mit mindestens einer, bevorzugt zwei Quetschungen, die sich in diametral entgegengesetzten Richtungen vom Zentralbereich weg erstrecken. Die Quetschung weist je zwei Breitseiten und Schmalseiten auf. Insbesondere ist die Quetschung mindestens 18 mm lang.
Die Länge der Quetschung hat die Größenordnung der Längsabmessung des Zentralbereichs. Die Abmessungen der Quetschung sind so gewählt, daß die Gesamtbreite der Breitseite kleiner oder gleich dem 2,2-fachen der Dicke dieser Breitseite ist.
Bisher wurden derartige Lampen mit einer zylindrischen Einschmelzung mit kreisförmigem oder ovalem Querschnitt abgedichtet, die trotz des langen Lampenschaftes (länger als 18 mm) eine hohe Stabilität vermittelt. Nachteilig ist jedoch, daß diese Einschmelzungen manuell gefertigt werden müssen.
Anfängliche Versuche, diese Einschmelzungen durch übliche Quetschungen mit bekannten Abmessungen zu ersetzen, scheiterten an der mangelnden Stabilität der Quetschungen. Die Bruchgefahr an den Breitseiten ist dabei erheblich größer als an den Schmalseiten. Es hat sich herausgestellt, daß diese üblichen, im Querschnitt deutlich rechteckförmig ausgeprägten Quetschungen mit w/d ≈ 4 sehr unterschiedliche axiale Biegemomente, die ein Maß für die Bruchfestigkeit darstellen, an Breitseiten und Schmalseiten besitzen. Bisher wurde versucht, die Bruchfestigkeit durch eine spezielle Formung des Ansatzes der rechteckigen Quetschung am Entladungsgefäß zu verbessern.
Durch die erfindungsgemäße Wahl der Geometrie der Quetschungen wird die mechanische Stabilität entscheidend verbessert, so daß jetzt die Bruchfestigkeit von Schmalseite und Breitseite etwa gleich gut ist und in etwa der einer Lampe mit Einschmelzungen entspricht.
Die Stabilität der Lampe kann bevorzugt durch sorgfältige Wahl der Dicke des Entladungsgefäßes weiter verbessert werden. Die Wandstärke des Entladungsgefäßes beträgt vorteilhaft mehr als 1,5 mm. Bevorzugt liegt sie bei ca. 2 mm ± 0,3 mm.
Insbesondere sind die Breitseiten der Quetschungen in an sich bekannter Weise mit Randwülsten ausgestattet, die die Schmalseiten verbreitern. Dadurch wird die Stabilität noch zusätzlich verbessert. Besonders gute Ergebnisse lassen sich erzielen, wenn die Gesamtbreite der Schmalseiten (einschließlich der Randwülste) in etwa (insbesondere auf mindestens 20% genau) gerade der Gesamtbreite der Breitseiten entspricht.
Die Oberfläche der Breitseiten ist vorteilhaft quergeriffelt. Dies schafft einen größere Oberfläche, die aufgrund ihrer hohen thermischen Abstrahlung die Temperaturbelastung am Folienende zusätzlich vermindert, und verbessert überdies die Steifheit der Quetschung.
Bevorzugt beträgt die Folienlänge etwa 60 bis 70 % der Länge der Quetschung.
Die Gesamtbreite der Quetschung erreicht weniger als 50 % der maximalen Breite des Zentralbereichs.
In einer besonders bevorzugten Ausführungsform, auch für Reflektorlampen, ist am äußeren Quetschungsende ein hohlzylindrischer Rohransatz angeformt. An diesem kann ein Sockelteil gehaltert werden. Beispielsweise ist der Außendurchmesser des Rohransatzes dem Innendurchmesser einer darauf aufgesetzten zylindrischen Sockelhülse angepaßt. Der Außendurchmesser des Rohransatzes entspricht bevorzugt in etwa der Gesamtbreite der Breitseite der Quetschung. Auf diese Weise sind beide Teile ideal aufeinander abgestimmt und daher leichter herzustellen. Darüber hinaus lassen sich Lampenschaft (hier als Quetschung ausgeführt) und Sockel besser axial zentrieren als im Falle einer ovalen Einschmelzung. Außerdem kann der zwischen Schaft und Sockel verbleibende Hohlraum gut mit geeigneten Materialien gegen Luftzutritt abgeschirmt werden.
Zwei Elektroden erstrecken sich von den Quetschungen in das Entladungsvolumen. Sie sind über Metallfolien mit äußeren Stromzuführungen verbunden, wobei die Metallfolien in den Quetschungen angeordnet sind.
Es hat sich in mehrfacher Hinsicht als günstig erwiesen, wenn die Elektroden jeweils mit Röllchen aus Molybdänfolie umwickelt sind, da dadurch Sprünge beim Quetschen und Ein- und Ausschalten der Lampe verhindert werden und die Zentrierung der Elektrode verbessert wird. Das Röllchen wirkt als flexible Schicht zwischen Elektrode und umgebender Quarzwand, die ein Anhaften des Quarzglases an der Elektrode verhindert. Außerdem wirkt das Molybdän als Getter gegenüber Füllungsverunreinigungen. Insgesamt wird die Lebensdauer der Lampe durch das Röllchen verlängert.
Zwischen Zentralbereich und Quetschung ist bevorzugt jeweils eine Übergangszone zur weiteren Erhöhung der Bruchfestigkeit eingefügt. Sie ist etwa 1 bis 4 mm lang.
Die lichtemittierende Füllung im Entladungsvolumen enthält bevorzugt Metallhalogenide.
Meist ist das Entladungsgefäß selbst der Lampenkolben. Die Erfindung kann auch bei Lampen mit Reflektor oder mit Außenkolben angewendet werden.
Im folgenden soll die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert werden. Es zeigen:
Figur 1
eine ungesockelte Metallhalogenidlampe, im Schnitt in Seitenansicht
Figur 2
die gleiche Metallhalogenidlampe in um 90° gedrehter Seitenansicht, jedoch mit Sockel
Figur 3
ein weiteres Ausführungsbeispiel einer Reflektorlampe
Beschreibung der Zeichnungen
In Figur 1 und 2 ist eine 575 W-Hochdruckentladungslampe 1 mit einer Länge von ca. 100 mm dargestellt, die keinen Außenkolben benötigt. Sie ist für den Einsatz in einem hier nicht dargestellten Reflektor gedacht, insbesondere in einem Overheadprojektor, in den sie querliegend eingesetzt wird. Sie besitzt ein Entladungsgefäß 2, das aus einem Zentralbereich 3 besteht, an dem zwei diametral gegenüberliegende Quetschungen 4 angesetzt sind. Das in sehr guter Näherung isotherme Entladungsgefäß 2 aus Quarzglas hat eine Wandstärke von ca. 1,8 mm. Der Zentralbereich 3 ist als Kugelkörper mit einem Außendurchmesser von ca. 22 mm ausgeführt, so daß sich ein Entladungsvolumen von ca. 3 cm3 ergibt. Die stabförmigen Wolframelektroden 5, deren Spitzen einen Abstand von 7 mm aufweisen, sind jeweils axial in der Quetschung 4 gehalten. Sie sind jeweils von einem Molybdänröllchen 6 umgeben, zumindest im Bereich der Quetschung. Der Zentralbereich besitzt in Elektrodennähe jeweils eine Ausbuchtung 7, die die kälteste Stelle definiert.
Die Quetschungen 4, die jeweils zwei Breitseiten 8 und Schmalseiten 9 aufweisen, haben eine Gesamtbreite w von etwa 8 mm und eine Dicke d von etwa 4 mm, so daß w/d = 2,0. Sie weisen entlang der Ränder der Breitseiten 8 verdickte Randwülste 10 auf, so daß die Schmalseiten einschließlich der Wülste eine effektive Breite b von etwa 6 mm erzielen. Die Quetschungen 4, die etwa 28 mm lang sind, sind mittels einer kurzen Übergangszone 11 an den Zentralbereich 3 angeschlossen. Die Übergangszone 11 ist etwa 2 mm lang. In ihr findet ein fließender Übergang zwischen der gebogenen Wand des Zentralbereichs und den geradlinig verlaufenden Konturen der Quetschungen statt. Der Krümmungsradius im Bereich des Übergangs beträgt typisch etwa 2 mm.
In den Quetschungen 4 sind jeweils Molybdänfolien 12 mit einer Länge von 20 mm und einer Breite von 3,5 mm etwa mittig angeordnet. Sie sind vakuumdicht in der Quetschung eingebettet. An den entladungsfernen Enden der Quetschungen sind zylindrische Rohransätze 13 angeformt, mit einem Außendurchmesser von 8 mm und einem Innendurchmesser von 5 mm. Die Rohransätze sind jeweils etwa 10 mm lang.
Die Elektroden 5 sind über die Molybdänfolien 12 mit äußeren Stromzuführungen 14 verbunden, die sich über die Rohransätze 13 mittig nach außen erstrecken. Die Stromzuführungen 14 stehen mit metallischen Sockelhülsen 15 (siehe Figur 2) über Hartlötung in Kontakt. Die Sockelhülsen 15 sind direkt auf die Glasrohransätze 13 aufgeschoben und mit diesen mittels Kitt 21 verbunden. Die Sockelhülse 15 ist nach außen deckelartig (Bezugsziffer 16) abgeschlossen. Am Deckel 16 steht in an sich bekannter Weise ein Gewindestab 17 vor, der eine Rändelmutter 18 trägt. In den Hohlraum zwischen Rohransatz 13 und Deckel 16 ist vorteilhaft ein Abdichtungsmedium 19 eingefügt, das die Oxidation der Folie zusätzlich erschwert. Vorteilhaft kann das Abdichtungsmedium 19 auch den gesamten Hohlraum ausfüllen. Als Abdichtungsmedium läßt sich beispielsweise Keramikpapier oder Kittmasse verwenden. Eine typische Temperatur am Quetschungsende ist 250 °C.
Die Oberflächen der Breitseiten 8 der Quetschungen sind mit einer Querriffelung 20 versehen. Sie weisen außerdem in Höhe der Elektroden und der äußeren Stromzuführungen langgestreckte Zentriernoppen auf (nicht dargestellt).
Das Entladungsvolumen enthält eine Füllung aus einem Edelgas (Argon) als Zündgas und Quecksilber als Hauptkomponente sowie Metallhalogenide, bestehend aus den Jodiden und/oder Bromiden von Hafnium, Dysprosium, Gadolinium, Cäsium und Thallium. Insgesamt ergibt sich mit dieser Füllung eine Farbtemperatur von 6000 K bei einem Farbwiedergabeindex von größer 85.
Bei einer Versorgungsspannung von 230 V und einem Lampenstrom von 6,7 A wird eine Brennspannung von 100 V erzielt. Die Entladung ist bogenstabilisiert, wobei der Elektrodenabstand 7 mm beträgt.
Ein weiteres Ausführungsbeispiel ist eine 1200 W Lampe mit Metallhalogenidfüllung, deren Aufbau dem in Fig. 1 und 2 gezeigten ähnelt. Der Lampenkolben besitzt eine Gesamtlänge von ca. 160 mm. Die Abmessungen der Quetschungen und der anderen Einzelteile sind im Vergleich zum ersten Ausführungsbeispiel um etwa 50 % vergrößert. Das Verhältnis w/d ist auch hier ca. 2,0.
Die Herstellung derartiger Lampen erfolgt im wesentlichen wie beim oben beschriebenen Stand der Technik, wobei die Quetschungen entsprechend anders geformt sein müssen.
Ein Ausführungsbeispiel einer Reflektorlampe zeigt Figur 3. Die Reflektorlampe 25 sitzt axial in einem Reflektor 26, in dessen Scheitelbereich ein Reflektorhals 30 angesetzt ist. Der Zentralbereich 31 der Lampe ist an seinem ersten Ende mit einer ersten im Querschnitt näherungsweise "quadratischen" Quetschung 27 verschlossen, die an ihrem äußeren Ende zusätzlich eine Verlängerung in Gestalt eines hohlzylindrischen Rohransatzes 28 besitzt. Diese erste Quetschung 27 samt Verlängerung 28 sitzt im Reflektorhals 30 und ist dort in einem keramischen Sockelteil 32, da am Hals 30 befestigt ist, mittels Sockelkitt 29 gehaltert. Bei der näherungsweise "quadratischen" Quetschung ist das Verhältnis w/d etwa 1,8.
In einem zweiten Ausführungsbeispiel kann das erste Ende der Reflektorlampe statt dessen in an sich bekannter Weise durch eine Einschmelzung verschlossen sein, die ebenfalls einen hohlzylindrischen Rohransatz besitzt. Der Vorteil der Verwendung einer quadratischen Quetschung gegenüber einer Einschmelzung ist jedoch, daß dadurch für die optische Justierung der Lampe im Reflektorhals deutlich mehr Platz bleibt, weil die Querschnittsfläche dieser Quetschung kleiner als bei einer Einschmelzung ist. Die Justierung wird dadurch erheblich erleichtert.
Ein Stromzuführungskabel 33 ist seitlich in das Sockelteil 32 eingeführt und mit der äußeren Stromzuführung 34, die aus der hohlzylindrischen Verlängerung 28 herausragt, verbunden.
Das zweite Ende des Zentralbereichs 31 der Lampe ist in jedem der beiden Ausführungsbeispiele einer Reflektorlampe durch eine (zweite) "quadratische" Quetschung 35 verschlossen. Diese Quetschung ist vorteilhaft so kurz gehalten (insbesondere ohne Rohransatz), daß das Ende der Quetschung nicht über die Reflektoröffnung 36 hinausragt. Auf diese Weise kann eine sehr kompakte und genau justierte Reflektorlampe bereitgestellt werden.
Die aus der zweiten Quetschung 35 hinausragende zweite Stromzuführung 37 ist mittels eines geschwungenen Kabels 38 zu einer separaten seitlichen Anschlußklemme 39 am Reflektor geführt.

Claims (14)

  1. Hochdruckentladungslampe, bestehend
    aus einem langgestreckten Entladungsgefäß (2) mit einem Zentralbereich (3), der ein Entladungsvolumen umschließt, und zwei Endbereiche, die sich in diametral entgegengesetzte Richtungen erstrecken und von denen mindestens einer von einer Quetschung (4) gebildet wird, die je zwei Breitseiten (8) und Schmalseiten (9) aufweist,
    einem Elektrodenpaar (5), das sich von den Quetschungen (4) in das Entladungsvolumen erstreckt, und das über Metallfolien (12) mit äußeren Stromzuführungen (14) verbunden ist, wobei die Metallfolien in den Quetschungen eingebettet sind,
    einer lichtemittierenden Füllung im Entladungsvolumen,
    wobei die Länge jeder Quetschung in etwa der Längsabmessung des Zentralbereichs entspricht,
    dadurch gekennzeichnet, daß die Abmessungen der Quetschung (4) so gewählt sind, daß die Gesamtbreite w jeder Breitseite (8) kleiner oder gleich dem 2,2-fachen der Dicke d dieser Breitseite ist.
  2. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die Folienlänge etwa 60 bis 70 % der Länge der Quetschung beträgt.
  3. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die Gesamtbreite der Quetschung weniger als 50 % der maximalen Breite des Zentralbereichs erreicht.
  4. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die Breitseiten (8) mit Randwülsten (10) ausgestattet sind, die die Schmalseiten (9) verbreitern.
  5. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die Oberfläche der Breitseiten quergeriffelt (20) ist.
  6. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß am Quetschungsende ein zylindrischer Rohransatz (13) angeformt ist.
  7. Hochdruckentladungslampe nach Anspruch 6, dadurch gekennzeichnet, daß der Außendurchmesser des Rohransatzes (13) dem Innendurchmesser einer darauf aufgesetzten Sockelhülse (15) angepaßt ist.
  8. Hochdruckentladungslampe nach Anspruch 6, dadurch gekennzeichnet, daß der Außendurchmesser des Rohransatzes in etwa der Gesamtbreite der Breitseite der Quetschung entspricht.
  9. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die Wandstärke des Entladungsgefäßes (einschließlich des Rohransatzes) ca. 2 mm beträgt.
  10. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die Elektroden jeweils mit Röllchen (6) aus Molybdän umwickelt sind.
  11. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß zwischen Zentralbereich (3) und Quetschung (4) jeweils eine Übergangszone (11) eingefügt ist.
  12. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß das Entladungsgefäß der einzige Lampenkolben ist.
  13. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die Füllung Metallhalogenide enthält.
  14. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die Gesamtbreite der Schmalseiten (9), einschließlich der Randwülste, in etwa (insbesondere auf mindestens 20% genau) gerade der Gesamtbreite der Breitseiten (8) entspricht.
EP97112617A 1996-08-21 1997-07-23 Hochdruckentladungslampe Expired - Lifetime EP0825636B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19633732 1996-08-21
DE1996133732 DE19633732A1 (de) 1996-08-21 1996-08-21 Hochdruckentladungslampe
DE19712776 1997-03-26
DE19712776A DE19712776A1 (de) 1996-08-21 1997-03-26 Hochdruckentladungslampe

Publications (3)

Publication Number Publication Date
EP0825636A2 true EP0825636A2 (de) 1998-02-25
EP0825636A3 EP0825636A3 (de) 1998-05-13
EP0825636B1 EP0825636B1 (de) 2001-04-25

Family

ID=26028607

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97112617A Expired - Lifetime EP0825636B1 (de) 1996-08-21 1997-07-23 Hochdruckentladungslampe

Country Status (6)

Country Link
US (1) US5847510A (de)
EP (1) EP0825636B1 (de)
JP (2) JPH1092384A (de)
CN (1) CN1118859C (de)
CA (1) CA2213189C (de)
DE (2) DE19712776A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009056163A1 (de) * 2007-10-29 2009-05-07 Osram Gesellschaft mit beschränkter Haftung Elektrische lampe mit einem lampenkolben und verfahren zum herstellen einer elektrischen lampe

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3218560B2 (ja) * 1997-02-07 2001-10-15 スタンレー電気株式会社 前照灯用メタルハライドランプ
DE69926445T2 (de) * 1998-05-12 2006-03-30 Ushiodenki K.K. Hochdruck-Entladungslampe
JP2001345069A (ja) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd 放電ランプおよびランプユニット、ならびにランプユニットの製造方法
JP3636654B2 (ja) * 2000-11-14 2005-04-06 株式会社小糸製作所 アークチューブ
US6501231B1 (en) 2001-07-09 2002-12-31 Amglo Kemlite Laboratories, Inc. Metal halide lightbulb strobe system
DE102004019185A1 (de) * 2004-04-16 2005-11-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Hochdruckentladungslampe
EP2041772B1 (de) * 2006-07-07 2018-12-19 Lumileds Holding B.V. Gasentladungslampe
WO2008145173A1 (de) * 2007-05-25 2008-12-04 Osram Gesellschaft mit beschränkter Haftung Elektrische lampe mit einem lampenkolben und verfahren zum herstellen einer elektrischen lampe
CN102456525A (zh) * 2010-10-18 2012-05-16 爱思普特殊光源(深圳)有限公司 一种有效降低短弧氙灯漏气失效概率的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3205395A (en) * 1962-04-13 1965-09-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh High-pressure discharge lamp inlead construction
GB1102646A (en) * 1965-11-18 1968-02-07 Sylvania Electric Prod Electric lamp with ribbon seal
EP0271140A2 (de) * 1986-11-28 1988-06-15 Koninklijke Philips Electronics N.V. Elektrische Glühlampe für Netzspannungsbetrieb
EP0397226A1 (de) * 1989-04-24 1990-11-14 Koninklijke Philips Electronics N.V. Elektrische Lampe und dazu geeignete Fassung
EP0451647A2 (de) * 1990-04-12 1991-10-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Hochdruckentladungslampe und Verfahren zu ihrer Herstellung
EP0639854A1 (de) * 1993-08-18 1995-02-22 Koninklijke Philips Electronics N.V. Elektrische Lampe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1317782A (de) * 1961-03-16 1963-05-08
NL183613B (nl) * 1978-03-15 1988-07-01 Philips Nv Elektrische lamp.
NL7901630A (nl) * 1978-09-18 1980-03-20 Philips Nv Elektrische lamp.
GB2120006B (en) * 1982-05-07 1985-10-09 Gen Electric Plc Diversion of heat and light from ribbon seals in high-power electric lamps
DE3638857A1 (de) * 1985-11-15 1987-05-21 Toshiba Kawasaki Kk Hochdruckentladungslampe
DE3923589A1 (de) * 1989-07-17 1991-01-24 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Hochdruckentladungslampe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3205395A (en) * 1962-04-13 1965-09-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh High-pressure discharge lamp inlead construction
GB1102646A (en) * 1965-11-18 1968-02-07 Sylvania Electric Prod Electric lamp with ribbon seal
EP0271140A2 (de) * 1986-11-28 1988-06-15 Koninklijke Philips Electronics N.V. Elektrische Glühlampe für Netzspannungsbetrieb
EP0397226A1 (de) * 1989-04-24 1990-11-14 Koninklijke Philips Electronics N.V. Elektrische Lampe und dazu geeignete Fassung
EP0451647A2 (de) * 1990-04-12 1991-10-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Hochdruckentladungslampe und Verfahren zu ihrer Herstellung
EP0639854A1 (de) * 1993-08-18 1995-02-22 Koninklijke Philips Electronics N.V. Elektrische Lampe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009056163A1 (de) * 2007-10-29 2009-05-07 Osram Gesellschaft mit beschränkter Haftung Elektrische lampe mit einem lampenkolben und verfahren zum herstellen einer elektrischen lampe

Also Published As

Publication number Publication date
JP2006245017A (ja) 2006-09-14
CN1175079A (zh) 1998-03-04
EP0825636B1 (de) 2001-04-25
CN1118859C (zh) 2003-08-20
DE19712776A1 (de) 1998-10-01
JPH1092384A (ja) 1998-04-10
EP0825636A3 (de) 1998-05-13
US5847510A (en) 1998-12-08
DE59703424D1 (de) 2001-05-31
CA2213189C (en) 2004-10-19
CA2213189A1 (en) 1998-02-21

Similar Documents

Publication Publication Date Title
DE69102791T2 (de) Niederleistungsmetallhalogenidlampe.
DE2951966C2 (de) Hochdruck-Metalldampfentladungslampe
EP0451647B1 (de) Hochdruckentladungslampe und Verfahren zu ihrer Herstellung
DE2815014C2 (de) Hochdrucknatriumdampfentladungslampe
DE69111799T2 (de) Kolbengeometrie für metallhalogenidentladungslampe mit geringer leistung.
DE69825700T2 (de) Metallhalogenidlampe
EP0825636B1 (de) Hochdruckentladungslampe
DE69502581T2 (de) Entladungslampe
DE102006024238A1 (de) Hochdruckentladungslampe
DE4008367A1 (de) Einseitig gequetschte halogengluehlampe
DE2627380C3 (de) Metalldampf-Hochdruckentladungslampe für horizontalen Betrieb
WO2008074361A1 (de) Elektrode für eine entladungslampe
DE69109101T2 (de) Metallhalogenidentladungslampe mit bestimmtem schaftlastfaktor.
EP1032022B1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäss
EP0479089A1 (de) Hochdruckentladungslampe und Verfahren zur Herstellung der Lampe
DE10356762B4 (de) Entladungslampe vom Kurzbogentyp
DE3641045A1 (de) Einseitig gequetschte hochdruckentladungslampe
DE4008375A1 (de) Hochdruckentladungslampe
DE10026802A1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäß
DE69825035T2 (de) Hochdruck-Entladungslampe
EP0591777A2 (de) Verfahren zur Herstellung einer einseitig gequetschten Hochdruckentladungslampe kleiner Leistung und Hochdruckentladungslampen
DE3640990A1 (de) Einseitig gequetschte hochdruckentladungslampe
DE19633732A1 (de) Hochdruckentladungslampe
DE1054575B (de) Einschmelzung und Halterung fuer Hochdruckentladungslampen
EP1138057A1 (de) Hochdruckentladungslampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19980608

AKX Designation fees paid

Free format text: BE DE FR GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB IT NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000731

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 59703424

Country of ref document: DE

Date of ref document: 20010531

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010713

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090722

Year of fee payment: 13

Ref country code: GB

Payment date: 20090713

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100723

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59703424

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59703424

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59703424

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160722

Year of fee payment: 20

Ref country code: IT

Payment date: 20160725

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160721

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20160720

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59703424

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20170723