EP0821460A2 - Current source - Google Patents

Current source Download PDF

Info

Publication number
EP0821460A2
EP0821460A2 EP97111124A EP97111124A EP0821460A2 EP 0821460 A2 EP0821460 A2 EP 0821460A2 EP 97111124 A EP97111124 A EP 97111124A EP 97111124 A EP97111124 A EP 97111124A EP 0821460 A2 EP0821460 A2 EP 0821460A2
Authority
EP
European Patent Office
Prior art keywords
transistor
current source
switch
constant current
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97111124A
Other languages
German (de)
French (fr)
Other versions
EP0821460A3 (en
EP0821460B1 (en
Inventor
Friedbert Riedel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Electrowatt Technology Innovation AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electrowatt Technology Innovation AG filed Critical Electrowatt Technology Innovation AG
Publication of EP0821460A2 publication Critical patent/EP0821460A2/en
Publication of EP0821460A3 publication Critical patent/EP0821460A3/en
Application granted granted Critical
Publication of EP0821460B1 publication Critical patent/EP0821460B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage

Definitions

  • the invention relates to a power source of the type mentioned in the preamble of claim 1.
  • Such current sources are suitable for example for the generation of highly constant currents by far Output control range. They are advantageous in operational amplifiers, slope amplifiers, Switched current mode techniques are used for sigma-delta modulators, A / D converters, etc.
  • a power source of the type mentioned in the preamble of claim 1 is known from the article "A High-Swing, High-Impedance MOS Cascode Circuit", IEEE J. Solid-State Circuits, vol. 25, no. 1, pp. 289-297, Feb. 1990 by the authors E. Sburginger and W. Guggenbühl. It is this power source a regulated MOS cascode constant current source.
  • the constant current source feeds a load.
  • a Switch either be supplied to the load or switched to ground (U. Tietze and Ch. Schenk, "Semiconductor Circuitry", Springer Verlag, 10th edition, p. 759).
  • the constant current source is therefore always in operation. This leads to a continuous consumption of power loss.
  • At the Switching naturally also changes the potential at the output of the current source from ground to one of the load-dependent value of the potential. This leads to undesirably large on or off current spikes, since when the potential changes, charge shifts in parasitic capacitances occur.
  • the invention has for its object a constant current source with very good switching properties to propose. Another task is to make the power dissipation one for comparatively large ones To keep currents designed constant current source as low as possible.
  • the constant current source 1 shows a constant current source 1 which has a current source transistor T1, a cascode transistor T2 operating as a follower, an amplifier transistor T3, an internal current source 2 and three switches S1, S2 and S3.
  • the transistors T1, T2 and T3 are PMOS transistors, the connections of which, as usual, are referred to as gate, drain or source and which are represented by the symbols customary in the specialist literature.
  • the constant current source 1 is supplied with the operating voltage V dd with respect to the ground m.
  • the transistors T1 and T2 and the load L to be switched are connected in series: the source of the transistor T1 is connected to V dd , the drain of the transistor T1 is connected to the source of the transistor T2.
  • the load L depends on the drain of the transistor T2 and the ground m.
  • the transistor T3 and the current source 2 are also connected in series between the operating voltage V dd and the ground m, the source of the transistor T3 being connected to V dd .
  • a constant voltage is applied to the gate of transistor T1.
  • the gate of the transistor T2 can be connected on the one hand via the switch S3 to the voltage V dd or on the other hand via the switch S1 to the drain of the transistor T3.
  • the drain of transistor T1 can be connected to the gate of transistor T3 via switch S2.
  • the switches S1 and S2 are closed and the switch S3 is open.
  • the amplifier transistor T3, the cascode transistor T2 and the current source 2 form a negative feedback loop in order to regulate the potential at the drain of the current source transistor T1 to a predetermined value that is as constant as possible.
  • a current I p is fed into the load L.
  • the switches S1 and S3 are used to switch the constant current source 1 on and off, during the Switch S2 shortens the settling time when switching on and off.
  • the two switches S1 and S2 are first opened, which breaks the negative feedback loop. Switch S3 is then slightly delayed closed. When the constant current source 1 is switched on, the Switch S3 opened and then switches S1 and S2 closed.
  • the transistor T3 also conducts the constant current source 1 when it is switched off, so that the current I 0 supplied by the internal current source 2 can continue to flow. Without the switch S2, ie with a direct connection between the drain of the transistor T1 and the gate of the transistor T3, the gate of the transistor T3 would be discharged via the transistor T1, so that the transistor T3 blocks and the current I 0 could no longer flow .
  • the non-overlapping switching method ensures that the drain of the transistor T3 is not briefly connected to the potential V dd via the switches S1 and S3.
  • the negative feedback loop stabilizes the potential at the drain of the current source transistor T1 very quickly when the constant current source 1 is switched on, so that the settling time and the switching spikes when the constant current source 1 is switched on become extremely short or small.
  • the gate charge of the transistor T3 is briefly increased by charge injection of its channel feedback capacitances, but this is compensated again due to the reactive effect of the gate-drain channel feedback capacitance of the transistor T3, since the current I 0 always flows through the transistor T3.
  • Constant current source 1 can be implemented using standard CMOS bulk technology.
  • Fig. 1 shows a constant current source 1 realized with PMOS transistors.
  • the Constant current source 1 but without switches S1, S2 and S3, in the version with NMOS Transistors revealed.
  • the switches S1, S2 and S3 can be analogously implemented in this version with NMOS transistors.
  • Such a constant current source 1 can be designed for a current I p , which can be, for example, 10 microamperes or one milliampere.
  • I p a current which can be, for example, 10 microamperes or one milliampere.
  • the power loss is noticeably reduced by switching off.
  • the switches S1 to S3 are analog components with a finite switching time ⁇ .
  • a "H” level is assigned to the "switched on” state of the switches S1 to S3 in FIG. 2, and a “L” level is assigned to the "switched off” state.
  • the switches S1 to S3 for non-overlapping switching are activated, for example, with the 3 shown in the circuit.
  • the circuit has a control input 3 and an output 4 Control of the switches S1 and S2 and an output 5 to control the switch S3.
  • This Circuitry with two NOR gates and one inverter is often used for switched capacitor circuits used and is e.g. from the article "Switched Capacitor Circuit Design", R. Gregorian, K.W. Martin and G.C. Temes, Proc. IEEE, vol. 71, pp. 941-966, Aug. 1983. With additional inverters Between the outputs of the NOR gates and outputs 4 and 5, the duration of the Extend non-overlap between switching.
  • FIG. 4 shows a special embodiment of the constant current source 1 shown in FIG. 1, in which MOS transistors are used as switches S1 to S3.
  • the constant current source 1 has the input 3, via which the switches S1 to S3 are controlled.
  • Switch S1 is an NMOS transistor with a body effect
  • switches S2 and S3 are PMOS switches without a body effect.
  • the switch S2 therefore has its own n-well or is integrated in the n-well of the transistor T2.
  • the gates of switches S1 and S3 are connected directly to input 3, the gate of switch S2 is connected to input 3 via an inverter 6.
  • the current source 2 consists of an NMOS transistor T4, which forms a current mirror with another NMOS transistor T5.
  • the constant voltage at the gate of transistor T1 is generated by means of a PMOS transistor T6.
  • the transistor T5 and the transistor T6 are in turn fed from further current sources 7 and 8 with currents I T5 and I T6 , respectively.
  • the current source 7 is, for example, a PMOS transistor, the gate of which is connected to the gate of the transistor T6.
  • the current I T6 and to a lesser extent the current I T5 influence the settling time of the constant current source 1. They must therefore be chosen large enough to keep the settling time as short as possible.
  • the load L is, for example, a capacitor that is charged as long as there is a pulse at input 3 is present.
  • the pulse lengths of a given number of pulses are simple in this way and add exactly and read out later with a correspondingly expanded circuit arrangement.
  • the constant current source 9 shows a further constant current source 9 with PMOS transistors, in which the current I p flowing to the load L is not switched off, but is redirected.
  • the constant current source 9 in turn has the current source transistor T1 and a negative feedback loop, which is formed by the one of two cascode transistors T2a and T2b arranged in parallel, the amplifier transistor T3 and the current source 2.
  • a first switch S4 connects either the gate of the first cascode transistor T2a or the gate of the second cascode transistor T2b to the potential V dd .
  • the gate of the other cascode transistor T2b or T2a is connected to the drain of transistor T3 by means of a second switch S5.
  • the switches S4 and S5 are switched simultaneously.
  • a load L1 is connected between the drain of the first cascode transistor T2a and the ground m, and a second load L2 is connected between the drain of the second cascode transistor T2b and the ground m.
  • the drain of the first cascode transistor T2a or the drain of the second cascode transistor T2b can also be connected directly to the ground m.
  • the constant current supplied by constant current source 9 thus feeds load L1 as current I pa or load L2 as current I pb .
  • the potential at the drain of the current source transistor T1 is thus permanently regulated to a constant value.
  • the potential at the drain of the current source transistor T1 can change briefly, since the diversity of the loads L1 and L2 generally causes different voltages at the drains of the cascode transistors T2a and T2b, which in turn causes the drain bulk Capacitance of the current source transistor T1 recharges.
  • the currents I pa and I pb therefore have switch-on and switch-off spikes , but these are lower than in the conventional type of switching, where instead of the transistors T2a and T2b only the transistor T2 is present and where a changeover switch either drains the transistor T2 connects to load L1 or to load L2.
  • the settling time of the currents I pa and I pb are roughly comparable to the settling time of the current I p of the constant current source 1 (FIG. 1).
  • the constant current source 9 can also be implemented in an analog manner with NMOS transistors.
  • the switched currents I p or I pa and I pb have current spikes when switching on and off, which are in the order of magnitude of the nominal value of the currents.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)
  • Control Of Electrical Variables (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The current source has a cascode transistor (T2) whose gate is connected via a first switch (S1) to the drain of an amplifier transistor (T3), whose gate is connected via a second switch (S2) to the drain of a current source transistor (T1). The cascode transistor gate is also connected via a third switch (S3), when a PMOS transistor is used, to an operating voltage (Vdd), or, when an NMOS, to earth. In the on state the first and second switches are closed and the third is open. In the off state the first and second switches are open and the third is closed.

Description

Die Erfindung betrifft eine Stromquelle der im Oberbegriff des Anspruchs 1 genannten Art.The invention relates to a power source of the type mentioned in the preamble of claim 1.

Solche Stromquellen eignen sich beispielsweise zur Erzeugung von hochkonstanten Strömen mit weitem Ausgangsaussteuerbereich. Sie werden vorteilhaft in Operationsverstärkern, Steilheitsverstärkern, Switched Current Mode-Techniken für Sigma-Delta-Modulatoren, A/D- Wandlern, usw. eingesetzt.Such current sources are suitable for example for the generation of highly constant currents by far Output control range. They are advantageous in operational amplifiers, slope amplifiers, Switched current mode techniques are used for sigma-delta modulators, A / D converters, etc.

Eine Stromquelle der im Oberbegriff des Anspruchs 1 genannten Art ist bekannt aus dem Artikel "A High-Swing, High-Impedance MOS Cascode Circuit", IEEE J. Solid-State Circuits, vol. 25, no. 1, pp. 289-297, Feb. 1990 der Autoren E. Säckinger und W. Guggenbühl. Es handelt sich bei dieser Stromquelle um eine geregelte MOS-Kaskode-Konstantstromquelle.A power source of the type mentioned in the preamble of claim 1 is known from the article "A High-Swing, High-Impedance MOS Cascode Circuit ", IEEE J. Solid-State Circuits, vol. 25, no. 1, pp. 289-297, Feb. 1990 by the authors E. Säckinger and W. Guggenbühl. It is this power source a regulated MOS cascode constant current source.

Die Konstantstromquelle speist eine Last. Um ein schnelles Ein- und/oder Ausschalten der Last zu erreichen, kann der von der Konstantstromquelle gelieferte Strom in bekannter Weise mittels eines Umschalters entweder der Last zugeführt oder gegen Masse geschaltet werden (U. Tietze und Ch. Schenk, "Halbleiterschaltungstechnik", Springer Verlag, 10. Auflage, S. 759). Die Konstantstromquelle ist somit immer in Betrieb. Dies führt zu einem kontinuierlichen Verbrauch an Verlustleistung. Beim Schalten wechselt natürlich auch das Potential am Ausgang der Stromquelle von Masse auf einen von der Last abhängigen Wert des Potentials. Dies führt zu unerwünscht grossen Ein- bzw. Auschaltstromspikes, da beim Potentialwechsel Ladungsverschiebungen parasitärer Kapazitäten auftreten.The constant current source feeds a load. To quickly switch the load on and / or off can achieve the current supplied by the constant current source in a known manner by means of a Switch either be supplied to the load or switched to ground (U. Tietze and Ch. Schenk, "Semiconductor Circuitry", Springer Verlag, 10th edition, p. 759). The constant current source is therefore always in operation. This leads to a continuous consumption of power loss. At the Switching naturally also changes the potential at the output of the current source from ground to one of the load-dependent value of the potential. This leads to undesirably large on or off current spikes, since when the potential changes, charge shifts in parasitic capacitances occur.

Der Erfindung liegt die Aufgabe zugrunde, eine Konstantstromquelle mit sehr guten Schalteigenschaften vorzuschlagen. Eine weitere Aufgabe besteht darin, die Verlustleistung einer für vergleichsweise grosse Ströme ausgelegten Konstantstromquelle möglichst tief zu halten.The invention has for its object a constant current source with very good switching properties to propose. Another task is to make the power dissipation one for comparatively large ones To keep currents designed constant current source as low as possible.

Die genannte Aufgabe wird erfindungsgemäss gelöst durch die Merkmale der Ansprüche 1 und 5.According to the invention, the stated object is achieved by the features of claims 1 and 5.

Nachfolgend werden Ausführungsbeispiele der Erfindung anhand der Zeichnung näher erläutert.Exemplary embodiments of the invention are explained in more detail below with reference to the drawing.

Es zeigen:

Fig. 1
eine mit PMOS Transistoren realisierte, ein- und ausschaltbare Konstantstromquelle,
Fig. 2
ein Zeitdiagramm zur Darstellung des Schaltvorganges,
Fig. 3
eine Schaltungsanordnung zum nichtüberlappenden Schalten von zwei Schaltern,
Fig. 4
die Konstantstromquelle mit als MOS Transistoren ausgebildeten Schaltern und
Fig. 5
eine umschaltbare Konstantstromquelle.
Show it:
Fig. 1
a constant current source realized with PMOS transistors that can be switched on and off,
Fig. 2
1 shows a time diagram to illustrate the switching process,
Fig. 3
a circuit arrangement for the non-overlapping switching of two switches,
Fig. 4
the constant current source with switches designed as MOS transistors and
Fig. 5
a switchable constant current source.

Die Fig. 1 zeigt eine Konstantstromquelle 1, die einen Stromquellentransistor T1, einen als Folger arbeitenden Kaskodetransistor T2, einen Verstärkertransistor T3, eine interne Stromquelle 2 und drei Schalter S1, S2 und S3 aufweist. Die Transistoren T1, T2 und T3 sind PMOS-Transistoren, deren Anschlüsse wie üblich als Gate, Drain bzw. Source bezeichnet sind und die mit den in der Fachliteratur üblichen Symbolen dargestellt sind. Die Konstantstromquelle 1 ist mit der Betriebsspannung Vdd gegenüber der Masse m gespeist.1 shows a constant current source 1 which has a current source transistor T1, a cascode transistor T2 operating as a follower, an amplifier transistor T3, an internal current source 2 and three switches S1, S2 and S3. The transistors T1, T2 and T3 are PMOS transistors, the connections of which, as usual, are referred to as gate, drain or source and which are represented by the symbols customary in the specialist literature. The constant current source 1 is supplied with the operating voltage V dd with respect to the ground m.

Die Transistoren T1 und T2 und die zu schaltende Last L sind in Reihe geschaltet: Das Source des Transistors T1 ist mit Vdd verbunden, das Drain des Transistors T1 ist mit dem Source des Transistors T2 verbunden. Die Last L hängt zwischen dem Drain des Transistors T2 und der Masse m. Der Transistor T3 und die Stromquelle 2 sind ebenfalls in Reihe zwischen der Betriebsspannung Vdd und der Masse m geschaltet, wobei das Source des Transistors T3 mit Vdd verbunden ist. An das Gate des Transistors T1 ist eine konstante Spannung angelegt. Das Gate des Transistors T2 ist einerseits über den Schalter S3 an die Spannung Vdd oder andererseits über den Schalter S1 an das Drain des Transistors T3 anschliessbar. Über den Schalter S2 ist das Drain des Transistors T1 mit dem Gate des Transistors T3 verbindbar.The transistors T1 and T2 and the load L to be switched are connected in series: the source of the transistor T1 is connected to V dd , the drain of the transistor T1 is connected to the source of the transistor T2. The load L depends on the drain of the transistor T2 and the ground m. The transistor T3 and the current source 2 are also connected in series between the operating voltage V dd and the ground m, the source of the transistor T3 being connected to V dd . A constant voltage is applied to the gate of transistor T1. The gate of the transistor T2 can be connected on the one hand via the switch S3 to the voltage V dd or on the other hand via the switch S1 to the drain of the transistor T3. The drain of transistor T1 can be connected to the gate of transistor T3 via switch S2.

Im eingeschalteten Zustand der Konstantstromquelle 1 sind die Schalter S1 und S2 geschlossen und der Schalter S3 geöffnet. In diesem Zustand bilden der Verstärkertransistor T3, der Kaskodetransistor T2 und die Stromquelle 2 eine Gegenkopplungsschleife, um das Potential am Drain des Stromquellentransistors T1 auf einen möglichst konstanten, vorbestimmten Wert zu regeln. In die Last L wird ein Strom Ip eingespeist.When the constant current source 1 is switched on, the switches S1 and S2 are closed and the switch S3 is open. In this state, the amplifier transistor T3, the cascode transistor T2 and the current source 2 form a negative feedback loop in order to regulate the potential at the drain of the current source transistor T1 to a predetermined value that is as constant as possible. A current I p is fed into the load L.

Im ausgeschalteten Zustand der Konstantstromquelle 1 sind die Schalter S1 und S2 geöffnet und der Schalter S3 geschlossen. Die Gate-Source Kapazität des Transistors T2 wird beim Schliessen des Schalters S3 sehr schnell entladen, so dass der Transistor T2 sofort sperrt. In die Last L wird kein Strom eingespeist.When the constant current source 1 is switched off, the switches S1 and S2 are open and the Switch S3 closed. The gate-source capacitance of the transistor T2 is when the Discharge switch S3 very quickly, so that transistor T2 blocks immediately. There is no current in the load L. fed.

Die Schalter S1 und S3 dienen zum Ein- und Ausschalten der Konstantstromquelle 1, während der Schalter S2 die Einschwingzeit beim Ein- und Ausschalten verkürzt.The switches S1 and S3 are used to switch the constant current source 1 on and off, during the Switch S2 shortens the settling time when switching on and off.

Um die Konstantstromquelle 1 auszuschalten, werden zuerst die beiden Schalter S1 und S2 geöffnet, wodurch die Gegenkopplungsschleife unterbrochen wird. Etwas verzögert wird dann der Schalter S3 geschlossen. Beim Einschalten der Konstantstromquelle 1 werden in umgekehrter Reihenfolge zuerst der Schalter S3 geöffnet und dann verzögert die Schalter S1 und S2 geschlossen.To switch off the constant current source 1, the two switches S1 and S2 are first opened, which breaks the negative feedback loop. Switch S3 is then slightly delayed closed. When the constant current source 1 is switched on, the Switch S3 opened and then switches S1 and S2 closed.

Der Transistor T3 leitet auch im ausgeschalteten Zustand der Konstantstromquelle 1, so dass der von der internen Stromquelle 2 gelieferte Strom I0 weiterhin fliessen kann. Ohne den Schalter S2, d.h. bei einer direkten Verbindung zwischen dem Drain des Transistors T1 und dem Gate des Transistors T3, würde das Gate des Transistors T3 über den Transistor T1 entladen, so dass der Transistor T3 sperrt und der Strom I0 nicht mehr fliessen könnte. Durch die nichtüberlappende Schaltweise ist sichergestellt, dass das Drain des Transistors T3 nicht kurzzeitig über die Schalter S1 und S3 mit dem Potential Vdd verbunden ist. Da somit der Arbeitspunkt des Transistors T3 beim Schalten nicht wesentlich ändert und der Strom I0 immer fliesst, stabilisiert die Gegenkopplungsschleife das Potential am Drain des Stromquellentransistors T1 beim Einschalten der Konstantstromquelle 1 sehr schnell, so dass die Einschwingzeit und die Schaltspikes beim Einschalten der Konstantstromquelle 1 äusserst kurz bzw. gering werden.The transistor T3 also conducts the constant current source 1 when it is switched off, so that the current I 0 supplied by the internal current source 2 can continue to flow. Without the switch S2, ie with a direct connection between the drain of the transistor T1 and the gate of the transistor T3, the gate of the transistor T3 would be discharged via the transistor T1, so that the transistor T3 blocks and the current I 0 could no longer flow . The non-overlapping switching method ensures that the drain of the transistor T3 is not briefly connected to the potential V dd via the switches S1 and S3. Since the operating point of the transistor T3 does not change significantly when switching and the current I 0 always flows, the negative feedback loop stabilizes the potential at the drain of the current source transistor T1 very quickly when the constant current source 1 is switched on, so that the settling time and the switching spikes when the constant current source 1 is switched on become extremely short or small.

Beim Öffnen des Schalters S2 wird durch Ladungsinjektion seiner Kanalrückwirkungskapazitäten die Gateladung des Transistors T3 kurzzeitig erhöht, die sich aber infolge der reaktiven Wirkung der Gate-Drain-Kanalrückwirkungskapazität des Transistors T3 wieder ausgleicht, da immer der Strom I0 durch den Transistor T3 fliesst.When the switch S2 is opened, the gate charge of the transistor T3 is briefly increased by charge injection of its channel feedback capacitances, but this is compensated again due to the reactive effect of the gate-drain channel feedback capacitance of the transistor T3, since the current I 0 always flows through the transistor T3.

Der Einsatz zusätzlicher kapazitiver Elemente zur Verkleinerung der Ladungsinjektion auf dem Gate des Transistors T3, z.B. in der Form von sogenannten Dummy-Transistoren, brachte keine Verkürzung der Einschwingzeit.The use of additional capacitive elements to reduce the charge injection on the gate of the Transistor T3, e.g. in the form of so-called dummy transistors, did not shorten the Settling time.

Beim Schliessen des Schalters S1 wird durch die Gate-Drain-Kanalrvckwirkungskapazitat innerhalb einer sehr kurzen Zeit von typisch einer Nanosekunde ein grösserer Stromspike in den gemeinsamen Knoten des Drains des Transistors T3 und der Stromquelle 2 injiziert, der aber in dieser Zeitspanne durch die Stromquelle 2 sofort wieder aufgehoben wird. Auch hier lohnt sich der Einsatz von Dummy-Transistoren zur rein kapazitiven Kompensation der Stromspikes nicht, da diese die Reaktionszeiten nicht verkürzen und der Einschwingvorgang bereits ohne Dummy-Transistoren wenig verlangsamt ist.When switch S1 is closed, the gate-drain channel feedback capacitance inside a very short time of typically one nanosecond a larger current spike in the common Node of the drain of the transistor T3 and the current source 2 injected, but in this period is immediately canceled by the current source 2. The use of dummy transistors is also worthwhile here not for the purely capacitive compensation of the current spikes, since these are the reaction times do not shorten and the settling process is slowed down even without dummy transistors.

Die Konstantstromquelle 1 lässt sich in einer Standard CMOS-Bulk Technologie realisieren. In der Fig. 1 ist eine mit PMOS Transistoren realisierte Konstantstromquelle 1 dargestellt. Bevorzugt ist die Verwendung einer n-Wannen Technologie, bei der der Source-Bulk Kurzschluss des Transistors T2 in einer separaten n-Wanne möglich ist, wodurch sich der Aussteuerbereich des Transistors T2 in positiver Richtung vergrössert. Im obengenannten Artikel der Autoren E. Säckinger und W. Guggenbühl ist die Konstantstromquelle 1, jedoch ohne die Schalter S1, S2 und S3, in der Ausführung mit NMOS Transistoren offenbart. Die Schalter S1, S2 und S3 lassen sich in analoger Weise in diese Ausführung mit NMOS Transistoren realisieren.Constant current source 1 can be implemented using standard CMOS bulk technology. In the Fig. 1 shows a constant current source 1 realized with PMOS transistors. The is preferred Use of an n-well technology, in which the source-bulk short-circuit of the transistor T2 in a separate n-well is possible, whereby the modulation range of transistor T2 is positive Direction increased. In the above-mentioned article by the authors E. Säckinger and W. Guggenbühl, the Constant current source 1, but without switches S1, S2 and S3, in the version with NMOS Transistors revealed. The switches S1, S2 and S3 can be analogously implemented in this version with NMOS transistors.

Eine solche Konstantstromquelle 1 lässt sich auslegen für einen Strom Ip, der z.B. 10 Mikroampère oder auch ein Milliampère betragen kann. Bei einer für vergleichsweise grosse Ströme ausgelegten Konstantstromquelle 1, bei der der Strom Ip markant grösser als der Strom I0 oder andere interne Ströme ist, reduziert sich die Verlustleistung durch das Ausschalten merklich.Such a constant current source 1 can be designed for a current I p , which can be, for example, 10 microamperes or one milliampere. In the case of a constant current source 1 designed for comparatively large currents, in which the current I p is significantly greater than the current I 0 or other internal currents, the power loss is noticeably reduced by switching off.

Die Fig. 2 zeigt die Stellung der Schalter S1 - S3 und den idealisierten Strom Ip in Funktion der Zeit t, wobei die Konstantstromquelle 1 zum Zeitpunkt t1 ausgeschaltet und zum Zeitpunkt t2 wieder eingeschaltet wird. Die Schalter S1 bis S3 sind analoge Bauelemente mit einer endlichen Schaltzeit τ. Dem Zustand "eingeschaltet" der Schalter S1 bis S3 ist in der Fig. 2 ein Pegel "H", dem Zustand "ausgeschaltet" ein Pegel "L" zugeordnet.2 shows the position of the switches S1-S3 and the idealized current I p as a function of the time t, the constant current source 1 being switched off at the time t 1 and switched on again at the time t 2 . The switches S1 to S3 are analog components with a finite switching time τ. A "H" level is assigned to the "switched on" state of the switches S1 to S3 in FIG. 2, and a "L" level is assigned to the "switched off" state.

Die Ansteuerung der Schalter S1 bis S3 zum nichtüberlappenden Schalten erfolgt zum Beispiel mit der in der Fig. 3 gezeigten Schaltung. Die Schaltung weist einen Steuereingang 3, einen Ausgang 4 zur Steuerung der Schalter S1 und S2 und einen Ausgang 5 zur Steuerung des Schalters S3 auf. Diese Schaltung mit zwei NOR-Gattern und einem Inverter wird vielfach für Switched Capacitor Schaltungen eingesetzt und ist z.B. aus dem Artikel "Switched Capacitor Circuit Design", R. Gregorian, K.W. Martin and G.C. Temes, Proc. IEEE, vol. 71, pp. 941-966, Aug. 1983 bekannt. Durch zusätzliche Inverter zwischen den Ausgängen der NOR-Gatter und den Ausgängen 4 und 5 lässt sich die Dauer der Nichtüberlappung zwischen dem Schalten verlängern.The switches S1 to S3 for non-overlapping switching are activated, for example, with the 3 shown in the circuit. The circuit has a control input 3 and an output 4 Control of the switches S1 and S2 and an output 5 to control the switch S3. This Circuitry with two NOR gates and one inverter is often used for switched capacitor circuits used and is e.g. from the article "Switched Capacitor Circuit Design", R. Gregorian, K.W. Martin and G.C. Temes, Proc. IEEE, vol. 71, pp. 941-966, Aug. 1983. With additional inverters Between the outputs of the NOR gates and outputs 4 and 5, the duration of the Extend non-overlap between switching.

Die Fig. 4 zeigt ein spezielles Ausführungsbeispiel der in der Fig. 1 dargestellten Konstantstromquelle 1, bei der als Schalter S1 bis S3 MOS Transistoren verwendet werden. Die Konstantstromquelle 1 weist den Eingang 3 auf, über den die Schalter S1 bis S3 gesteuert werden. Der Schalter S1 ist ein NMOS Transistor mit Bodyeffekt, die Schalter S2 und S3 sind PMOS Schalter ohne Bodyeffekt. Der Schalter S2 weist deshalb eine eigene n-Wanne auf oder ist in die n-Wanne des Transistors T2 integriert. Die Gates der Schalter S1 und S3 sind direkt mit dem Eingang 3 verbunden, das Gate des Schalters S2 ist über einen Inverter 6 mit dem Eingang 3 verbunden. Führt der Eingang 3 ein logisch hohes Potential, z.B. das Potential Vdd, dann ist die Konstantstromquelle 1 eingeschaltet, führt der Eingang 3 ein logisch tiefes Potential, z.B. das Potential der Masse m, dann ist die Konstantstromquelle 1 ausgeschaltet. Am Eingang 3 eintreffende Pulse der richtigen Polarität schalten somit mit ihrer positiven Flanke die Konstantstromquelle 1 ein und mit ihrer negativen Flanke wieder aus.FIG. 4 shows a special embodiment of the constant current source 1 shown in FIG. 1, in which MOS transistors are used as switches S1 to S3. The constant current source 1 has the input 3, via which the switches S1 to S3 are controlled. Switch S1 is an NMOS transistor with a body effect, switches S2 and S3 are PMOS switches without a body effect. The switch S2 therefore has its own n-well or is integrated in the n-well of the transistor T2. The gates of switches S1 and S3 are connected directly to input 3, the gate of switch S2 is connected to input 3 via an inverter 6. If input 3 has a logically high potential, for example potential V dd , then constant current source 1 is switched on, input 3 has a logically low potential, for example the potential of ground m, then constant current source 1 is switched off. Pulses of the correct polarity arriving at input 3 thus switch on constant current source 1 with their positive edge and switch off again with their negative edge.

Beim Einschalten der Konstantstromquelle 1 passiert folgendes: Zu Beginn liegt das Gate des Transistors T2 an Vdd, so dass der als Schalter S1 dienende NMOS Transistor sperrt. Erreicht die Spannung am Eingang 3 die Schwellspannung des Schalters S3, dann sperrt der Schalter S3, so dass die Spannung am Gate des Transistors T2 und an dem Source des Schalten S1 sinkt und schliesslich der Schalter S1 leitend wird, d.h. schliesst. Der Schalter S1 schaltet somit immer erst ein, wenn der Schalter S3 bereits geöffnet ist. Der Schalter S2 schliesst um eine sehr geringe Gatterverzögerung vor dem Schalter S1, da der Schalter S2 ohne Bodyeffekt wirkt. Mit Bodyeffekt des Schalten S2 wäre die Einschwingzeit des Stromes Ip grösser.When constant current source 1 is switched on, the following happens: At the beginning, the gate of transistor T2 is connected to V dd , so that the NMOS transistor serving as switch S1 blocks. If the voltage at input 3 reaches the threshold voltage of switch S3, then switch S3 blocks, so that the voltage at the gate of transistor T2 and at the source of switch S1 decreases, and finally switch S1 becomes conductive, ie closes. Switch S1 therefore only switches on when switch S3 is already open. Switch S2 closes by a very small gate delay before switch S1, since switch S2 acts without a body effect. With the body effect of switching S2, the settling time of the current I p would be longer.

Die Stromquelle 2 besteht aus einem NMOS Transistor T4, der mit einem weiteren NMOS Transistor T5 einen Stromspiegel bildet. Die konstante Spannung am Gate des Transistors T1 wird mittels eines PMOS Transistors T6 erzeugt. Der Transistor T5 und der Transistor T6 sind ihrerseits aus weiteren Stromquellen 7 bzw. 8 mit Strömen IT5 bzw. IT6 gespeist. Die Stromquelle 7 ist beispielsweise ein PMOS Transistor, dessen Gate mit dem Gate des Transistors T6 verbunden ist. Vor allem der Strom IT6 und in geringerem Mass der Strom IT5 beeinflussen die Einschwingzeit der Konstantstromquelle 1. Sie sind deshalb ausreichend gross zu wählen, um die Einschwingzeit möglichst kurz zu halten.The current source 2 consists of an NMOS transistor T4, which forms a current mirror with another NMOS transistor T5. The constant voltage at the gate of transistor T1 is generated by means of a PMOS transistor T6. The transistor T5 and the transistor T6 are in turn fed from further current sources 7 and 8 with currents I T5 and I T6 , respectively. The current source 7 is, for example, a PMOS transistor, the gate of which is connected to the gate of the transistor T6. Above all, the current I T6 and to a lesser extent the current I T5 influence the settling time of the constant current source 1. They must therefore be chosen large enough to keep the settling time as short as possible.

Die Last L ist beispielsweise ein Kondensator, der geladen wird, solange am Eingang 3 ein Impuls anliegt. Die Impulslängen einer vorgegebenen Anzahl von Impulsen lassen sich aufdiese Weise einfach und genau addieren und später mit einer entsprechend erweiterten Schaltungsanordnung auslesen. The load L is, for example, a capacitor that is charged as long as there is a pulse at input 3 is present. The pulse lengths of a given number of pulses are simple in this way and add exactly and read out later with a correspondingly expanded circuit arrangement.

Die Fig. 5 zeigt eine weitert Konstantstromquelle 9 mit PMOS Transistoren, bei der der zur Last L fliessende Strom Ip nicht abgeschaltet, sondern umgeleitet wird. Die Konstantstromquelle 9 weist wiederum den Stromquellentransistor T1 und eine Gegenkopplungsschleife auf, die durch den einen von zwei parallel angeordneten Kaskodetransistoren T2a und T2b, den Verstärkertransistor T3 und die Stromquelle 2 gebildet ist. Mittels eines ersten Umschalters S4 ist entweder das Gate des ersten Kaskodetransistors T2a oder das Gate des zweiten Kaskodetransistors T2b mit dem Potential Vdd verbunden. Mittels eines zweiten Umschalters S5 ist das Gate des anderen Kaskodetransistors T2b bzw. T2a mit dem Drain des Transistors T3 verbunden. Die Umschalter S4 und S5 werden gleichzeitig geschaltet. Zwischen dem Drain des ersten Kaskodetransistors T2a und der Masse m ist eine Last L1 geschaltet, zwischen dem Drain des zweiten Kaskodetransistors T2b und der Masse m ist eine zweite Last L2 geschaltet. Das Drain des ersten Kaskodetransistors T2a oder das Drain des zweiten Kaskodetransistors T2b kann aber auch direkt mit der Masse m verbunden sein. Der von der Konstantstromquelle 9 gelieferte Konstantstrom speist somit entweder als Strom Ipa die Last L1 oder als Strom Ipb die Last L2. Das Potential am Drain des Stromquellentransistors T1 ist somit permanent auf einen konstanten Wert geregelt.5 shows a further constant current source 9 with PMOS transistors, in which the current I p flowing to the load L is not switched off, but is redirected. The constant current source 9 in turn has the current source transistor T1 and a negative feedback loop, which is formed by the one of two cascode transistors T2a and T2b arranged in parallel, the amplifier transistor T3 and the current source 2. A first switch S4 connects either the gate of the first cascode transistor T2a or the gate of the second cascode transistor T2b to the potential V dd . The gate of the other cascode transistor T2b or T2a is connected to the drain of transistor T3 by means of a second switch S5. The switches S4 and S5 are switched simultaneously. A load L1 is connected between the drain of the first cascode transistor T2a and the ground m, and a second load L2 is connected between the drain of the second cascode transistor T2b and the ground m. However, the drain of the first cascode transistor T2a or the drain of the second cascode transistor T2b can also be connected directly to the ground m. The constant current supplied by constant current source 9 thus feeds load L1 as current I pa or load L2 as current I pb . The potential at the drain of the current source transistor T1 is thus permanently regulated to a constant value.

Während des Umschaltvorganges der beiden Umschalter S4 und S5 kann sich das Potential am Drain des Stromquellentransistors T1 kurzzeitig ändern, da die Verschiedenartigkeit der Lasten L1 und L2 in der Regel unterschiedliche Spannungen an den Drains der Kaskodetransistoren T2a und T2b bedingt, was wiederum die Drain-Bulk Kapazität des Stromquellentransistors T1 umlädt. Die Ströme Ipa und Ipb weisen deshalb Ein- und Ausschaltspikes auf, diese sind jedoch geringer als bei der konventionellen Art der Umschaltung, wo anstelle der Transistoren T2a und T2b nur der Transistor T2 vorhanden ist und wo ein Umschalter das Drain des Transistort T2 entweder mit der Last L1 oder mit der Last L2 verbindet. Die Einschwingzeit der Ströme Ipa und Ipb sind etwa vergleichbar mit der Einschwingzeit des Stromes Ip der Konstantstromquelle 1 (Fig. 1). Die Konstantstromquelle 9 lässt sich in analoger Weise auch mit NMOS Transistoren realisieren.During the switching process of the two switches S4 and S5, the potential at the drain of the current source transistor T1 can change briefly, since the diversity of the loads L1 and L2 generally causes different voltages at the drains of the cascode transistors T2a and T2b, which in turn causes the drain bulk Capacitance of the current source transistor T1 recharges. The currents I pa and I pb therefore have switch-on and switch-off spikes , but these are lower than in the conventional type of switching, where instead of the transistors T2a and T2b only the transistor T2 is present and where a changeover switch either drains the transistor T2 connects to load L1 or to load L2. The settling time of the currents I pa and I pb are roughly comparable to the settling time of the current I p of the constant current source 1 (FIG. 1). The constant current source 9 can also be implemented in an analog manner with NMOS transistors.

Mit den Konstantstromquellen 1 und 9 sind bei Realisierung in einer 2µm CMOS-Bulk Technologie Einschwingzeiten von ungefähr 50 Nanosekunden erreichbar. Dabei weisen die geschalteten Ströme Ip bzw. Ipa und Ipb Stromspikes beim Ein- und Ausschalten auf, die in der Grössenordnung des Nennwertes der Ströme liegen.With constant current sources 1 and 9, settling times of approximately 50 nanoseconds can be achieved when implemented in a 2 µm CMOS bulk technology. The switched currents I p or I pa and I pb have current spikes when switching on and off, which are in the order of magnitude of the nominal value of the currents.

Claims (6)

Konstantstromquelle (1) zur Speisung einer Last (L) mit einem Strom (Ip), wobei die Konstantstromquelle (1) einen Stromquellentransistor (T1), einen als Folger arbeitenden Kaskodetransistor (T2), einen Verstärkertransistor (T3) und eine interne Stromquelle (2) aufweist, wobei der Stromquellentransistor (T1), der Kaskodetransistor (T2) und der Verstärkertransistor (T3) entweder PMOS oder NMOS Transistoren mit einem Gate, einem Drain und einem Source sind, wobei der Stromquellentransistor (T1) und der Kaskodetransistor (T2) in Reihe geschaltet sind, wobei der Verstärkertransistor (T3) und die interne Stromquelle (2) in Reihe geschaltet sind, wobei die Konstantstromquelle (1) mit einer Betriebsspannung (Vdd) gegenüber Masse (m) gespeist ist und wobei die Last (L) im Falle von PMOS Transistoren zwischen dem Drain des Kaskodetransistors (T2) und der Masse (m), im Falle von NMOS Transistoren zwischen dem Drain des Kaskodetransistors (T2) und der Betriebsspannung (Vdd) angeordnet ist, dadurch gekennzeichnet, dass das Gate des Kaskodetransistors (T2) mittels eines ersten Schalters (S1) mit dem Drain des Verstärkertransistors (T3) verbindbar ist, dass das Gate des Verstärkertransistors (T3) mittels eines zweiten Schalters (S2) mit dem Drain des Stromquellentransistors (T1) verbindbar ist, dass das Gate des Kaskodetransistors (T2) mittels eines dritten Schalters (S3) im Falle von PMOS Transistoren mit der Betriebsspannung (Vdd) bzw. im Falle von NMOS Transistoren mit der Masse (m) verbindbar ist, dass im eingeschalteten Zustand der Konstantstromquelle (1) der erste und der zweite Schalter (S1; S2) geschlossen und der dritte Schalter (S3) geöffnet ist und dass im ausgeschalteten Zustand der erste und der zweite Schalter (S1; S2) geöffnet und der dritte Schalter (S3) geschlossen ist.Constant current source (1) for supplying a load (L) with a current (I p ), the constant current source (1) comprising a current source transistor (T1), a cascode transistor (T2) operating as a follower, an amplifier transistor (T3) and an internal current source ( 2), the current source transistor (T1), the cascode transistor (T2) and the amplifier transistor (T3) being either PMOS or NMOS transistors with a gate, a drain and a source, the current source transistor (T1) and the cascode transistor (T2) are connected in series, the amplifier transistor (T3) and the internal current source (2) being connected in series, the constant current source (1) being supplied with an operating voltage (V dd ) with respect to ground (m) and the load (L) in the case of PMOS transistors between the drain of the cascode transistor (T2) and the ground (m), in the case of NMOS transistors between the drain of the cascode transistor (T2) and the operating voltage (V dd ) t, characterized in that the gate of the cascode transistor (T2) by means of a first switch (S1) can be connected to the drain of the amplifier transistor (T3), that the gate of the amplifier transistor (T3) by means of a second switch (S2) to the drain of the Current source transistor (T1) can be connected such that the gate of the cascode transistor (T2) can be connected to the operating voltage (V dd ) in the case of PMOS transistors or to the ground (m) in the case of PMOS transistors by means of a third switch (S3), that when the constant current source (1) is switched on, the first and the second switch (S1; S2) is closed and the third switch (S3) is open and that in the switched-off state the first and second switches (S1; S2) are open and the third switch (S3) is closed. Konstantstromquelle (1) nach Anspruch 1, dadurch gekennzeichnet, dass beim Einschalten zuerst der dritte Schalter (S3) geöffnet und anschliessend der erste und der zweite Schalter (S1; S2) geschlossen werden und dass beim Ausschalten zuerst der dritte Schalter (S3) geschlossen und anschliessend der erste und der zweite Schalter (S1; S2) geöffnet werden.Constant current source (1) according to claim 1, characterized in that when switching on first the third switch (S3) is opened and then the first and second switches (S1; S2) are closed and that when switching off first the third switch (S3) is closed and then the first and the second switch (S1; S2) are opened. Konstantstromquelle (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Eingang (3) zur Steuerung der Schalter (S1; S2; S3) vorgesehen ist, dass der erste Schalter (S1) ein NMOS Transistor ist und der zweite und der dritte Schalter (S2; S3) PMOS Schalter sind, sofern die Transistoren (T1; T2; T3) PMOS Transistoren sind, bzw. dass der erste Schalter (S1) ein PMOS Transistor ist, der zweite und der dritte Schalter (S2; S3) NMOS Schalter sind, sofern die Transistoren (T1; T2; T3) NMOS Transistoren sind, dass die Gates des ersten und des dritten Schalters (S1; S3) direkt mit dem Eingang (3) verbunden sind und dass das Gate des zweiten Schalters (S2) über einen Inverter (6) mit dem Eingang (3) verbunden ist.Constant current source (1) according to claim 1 or 2, characterized in that an input (3) for controlling the switches (S1; S2; S3) is provided, that the first switch (S1) is an NMOS transistor and the second and third Switches (S2; S3) are PMOS switches, provided that the transistors (T1; T2; T3) are PMOS transistors, or that the first switch (S1) is a PMOS transistor, the second and third switches (S2; S3) are NMOS If the transistors (T1; T2; T3) are NMOS transistors, the gates of the first and third switches (S1; S3) are connected directly to the input (3) and the gate of the second switch (S2) is connected to the input (3) via an inverter (6). Konstantstromquelle (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der erste Schalter (S1) ein Transistor mit Bodyeffekt und dass der zweite und der dritte Schalter (S2; S3) Transistoren ohne Bodyeffekt sind. Constant current source (1) according to one of claims 1 to 3, characterized in that the first switch (S1) is a transistor with a body effect and that the second and third switches (S2; S3) are transistors without a body effect. Konstantstromquelle (9) zur Speisung einer Last (L1) mit einem Strom (Ipa), wobei die Konstantstromquelle (9) einen Stromquellentransistor (T1), einen als Folger arbeitenden ersten Kaskodetransistor (T2a), einen Verstärkertransistor (T3) und eine interne Stromquelle (2) aufweist, wobei der Stromquellentransistor (T1), der Kaskodetransistor (T2a) und der Verstärkertransistor (T3) entweder PMOS oder NMOS Transistoren mit einem Gate, einem Drain und einem Source sind, wobei der Stromquellentransistor (T1) und der Kaskodetransistor (T2a) in Reihe geschaltet sind, wobei der Verstärkertransistor (T3) und die interne Stromquelle (2) in Reihe geschaltet sind, wobei die Konstantstromquelle (1) mit einer Betriebsspannung (Vdd) gegenüber Masse (m) gespeist ist und wobei die Last (L1) im Falle von PMOS Transistoren zwischen dem Drain des Kaskodetransistors (T2a) und der Masse (m), im Falle von NMOS Transistoren zwischen dem Drain des Kaskodetransistors (T2a) und der Betriebsspannung (Vdd) angeordnet ist, dadurch gekennzeichnet, dass parallel zum ersten Kaskodetransistor (T2a) ein zweiter Kaskodetransistor (T2b) geschaltet ist, dessen Drain eine zweite Last (L2) speist, dass mittels eines ersten Umschalters (S4) entweder das Gate des einen Kaskodetransistors (T2a; T2b) mit der Betriebsspannung (Vdd) im Falle von PMOS Transistoren bzw. mit der Masse (m) im Falle von NMOS Transistoren verbunden ist und dass mittels eines zweiten Umschalters (S5) das Gate des anderen Kaskodetransistors (T2b; T2a) mit dem Drain des Verstärkertransistors (T3) verbunden ist.Constant current source (9) for supplying a load (L1) with a current (I pa ), the constant current source (9) comprising a current source transistor (T1), a first cascode transistor (T2a) operating as a follower, an amplifier transistor (T3) and an internal current source (2), wherein the current source transistor (T1), the cascode transistor (T2a) and the amplifier transistor (T3) are either PMOS or NMOS transistors with a gate, a drain and a source, the current source transistor (T1) and the cascode transistor (T2a ) are connected in series, the amplifier transistor (T3) and the internal current source (2) being connected in series, the constant current source (1) being supplied with an operating voltage (V dd ) to ground (m) and the load (L1 ) in the case of PMOS transistors between the drain of the cascode transistor (T2a) and the ground (m), in the case of NMOS transistors between the drain of the cascode transistor (T2a) and the operating voltage (V dd ) is arranged, characterized in that a second cascode transistor (T2b) is connected in parallel to the first cascode transistor (T2a), the drain of which feeds a second load (L2) that by means of a first switch (S4) either the gate of the one cascode transistor (T2a ; T2b) is connected to the operating voltage (V dd ) in the case of PMOS transistors or to ground (m) in the case of NMOS transistors and that the gate of the other cascode transistor (T2b; T2a) is connected to the by means of a second switch (S5) Drain of the amplifier transistor (T3) is connected. Konstantstromquelle (9) nach Anspruch 5, dadurch gekennzeichnet, dass die zweite Last (L2) ein Kurzschluss ist.Constant current source (9) according to claim 5, characterized in that the second load (L2) is a short circuit.
EP97111124A 1996-07-19 1997-07-03 Current source Expired - Lifetime EP0821460B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH181196 1996-07-19
CH181196 1996-07-19
CH1811/96 1996-07-19

Publications (3)

Publication Number Publication Date
EP0821460A2 true EP0821460A2 (en) 1998-01-28
EP0821460A3 EP0821460A3 (en) 1998-04-08
EP0821460B1 EP0821460B1 (en) 2002-06-19

Family

ID=4219161

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97111124A Expired - Lifetime EP0821460B1 (en) 1996-07-19 1997-07-03 Current source

Country Status (5)

Country Link
EP (1) EP0821460B1 (en)
AT (1) ATE219610T1 (en)
CZ (1) CZ223297A3 (en)
DE (1) DE59707548D1 (en)
PL (1) PL183356B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1303047A1 (en) * 2001-10-09 2003-04-16 Philips Corporate Intellectual Property GmbH Digital switchable current source

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637874A1 (en) * 1993-08-02 1995-02-08 Siemens Aktiengesellschaft MOS switching stage
EP0722221A2 (en) * 1995-01-13 1996-07-17 Nec Corporation Current switching circuit operable at high speed without externally supplied reference bias

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637874A1 (en) * 1993-08-02 1995-02-08 Siemens Aktiengesellschaft MOS switching stage
EP0722221A2 (en) * 1995-01-13 1996-07-17 Nec Corporation Current switching circuit operable at high speed without externally supplied reference bias

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S[CKINGER ET AL: "a high-swing, high-impedance mos cascode circuit" IEEE JOURNAL OF SOLID STATE CIRCUITS, Bd. 25, Nr. 1, Februar 1990, NEW-YORK, Seiten 289-298, XP000101879 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1303047A1 (en) * 2001-10-09 2003-04-16 Philips Corporate Intellectual Property GmbH Digital switchable current source

Also Published As

Publication number Publication date
ATE219610T1 (en) 2002-07-15
PL183356B1 (en) 2002-06-28
EP0821460A3 (en) 1998-04-08
PL320932A1 (en) 1998-02-02
DE59707548D1 (en) 2002-07-25
EP0821460B1 (en) 2002-06-19
CZ223297A3 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
DE69020295T2 (en) Time delay circuits with temperature compensation.
DE2555297C2 (en) Digital circuit with field effect transistors
DE69216142T2 (en) Simplified output buffer circuit with low interference voltage
DE3740571C2 (en) Circuit arrangement for power-on-reset of integrated logic circuits in MOS technology
DE69411406T2 (en) Electricity storage
DE3705140C2 (en) Power-on / reset circuit implemented in MOS technology for logic circuit arrangements, in particular for peripherals of microprocessors
EP0591750B1 (en) Method for adjusting the current in a monolithic integrated output driver
DE3887240T2 (en) Circuit arrangement for storing sampled electrical analog currents.
DE10128384A1 (en) Charge pump circuit
DE19637444C2 (en) Input circuit
DE69019665T2 (en) CMOS driver circuit.
DE3880239T2 (en) Amplifier circuit that contains a load circuit.
WO2007118540A1 (en) Fast cmos current mirror
DE102007055419A1 (en) transistor switch
DE69216663T2 (en) Circuit
DE10207802B4 (en) CMOS differential amplifier
DE60203039T2 (en) Switched level shift circuit in an analog switch
DE2802595C2 (en) Circuit arrangement with field effect transistors for voltage level conversion
DE3321553A1 (en) PULSE GENERATOR AS AN INTEGRATED CIRCUIT
EP1733475A1 (en) Pulse-generator circuit and circuit arrangement
DE19949144C1 (en) Digital driver circuit for IC device has input stages, delay stage, intermediate stage and output stage provided by chain of CMOS-inverters
EP0022931B1 (en) Voltage level conversion circuitry and purporting method
DE69430525T2 (en) Low power dissipation initialization circuit, especially for memory registers
DE2835692B2 (en) Binary logical OR element for programmed logical arrangements
DE3854155T2 (en) GaAs Mesfet logic circuits with push-pull output buffer circuits.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19981008

AKX Designation fees paid

Free format text: AT CH DE FR LI SE

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE FR LI SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20011004

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020619

REF Corresponds to:

Ref document number: 219610

Country of ref document: AT

Date of ref document: 20020715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59707548

Country of ref document: DE

Date of ref document: 20020725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020919

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040505

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040517

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: LANDIS+GYR GMBH

Free format text: SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#80333 MUENCHEN (DE) -TRANSFER TO- LANDIS+GYR GMBH#HUMBOLDTSTRASSE 64#90459 NUERNBERG (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: OK PAT AG PATENTE MARKEN LIZENZEN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH & PARTNER

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070919

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090203