EP0819819B1 - Fräskopf, Bohrvorrichtung sowie Vorrichtung und Verfahren zum Meeresbodenbohren - Google Patents

Fräskopf, Bohrvorrichtung sowie Vorrichtung und Verfahren zum Meeresbodenbohren Download PDF

Info

Publication number
EP0819819B1
EP0819819B1 EP97112092A EP97112092A EP0819819B1 EP 0819819 B1 EP0819819 B1 EP 0819819B1 EP 97112092 A EP97112092 A EP 97112092A EP 97112092 A EP97112092 A EP 97112092A EP 0819819 B1 EP0819819 B1 EP 0819819B1
Authority
EP
European Patent Office
Prior art keywords
tube
cutter head
sea bottom
ship
boring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97112092A
Other languages
English (en)
French (fr)
Other versions
EP0819819A1 (de
Inventor
Leonhard Weixler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bauer Maschinen GmbH
Original Assignee
Bauer Maschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19635916A external-priority patent/DE19635916A1/de
Application filed by Bauer Maschinen GmbH filed Critical Bauer Maschinen GmbH
Publication of EP0819819A1 publication Critical patent/EP0819819A1/de
Application granted granted Critical
Publication of EP0819819B1 publication Critical patent/EP0819819B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/92Digging elements, e.g. suction heads
    • E02F3/9212Mechanical digging means, e.g. suction wheels, i.e. wheel with a suction inlet attached behind the wheel
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/905Manipulating or supporting suction pipes or ladders; Mechanical supports or floaters therefor; pipe joints for suction pipes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/08Roller bits
    • E21B10/12Roller bits with discs cutters
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/08Roller bits
    • E21B10/16Roller bits characterised by tooth form or arrangement
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/002Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables specially adapted for underwater drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/02Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil
    • E21B49/025Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil of underwater soil, e.g. with grab devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/12Underwater drilling
    • E21B7/128Underwater drilling from floating support with independent underwater anchored guide base

Definitions

  • the invention relates to a milling head for earth bores the preamble of claim 1, a drilling device for Soil exploration with such a milling head, as well as a Seabed drilling apparatus and method for drilling the seabed, which are used in soil exploration, for soil samples from a defined depth below the Collect drilling surface.
  • Trench wall cutters are known for earth drilling, which have two offset cutting wheel pairs parallel to the axis, which rotate in opposite directions on horizontal axes, so that the loosened soil in the space between the two Wheels is conveyed where there is a suction device is transported upwards.
  • Such a trench cutter is known for example from EP 0 167 090 A2.
  • These trench wall cutters have a large volume Frame construction and are very heavy.
  • the drilling cross section is rectangular.
  • a support liquid for example those under the name bentonite is known to be filled into the borehole.
  • Such trench cutters are not suitable for exploring the ground very suitable, since the support fluid to the bottom of the drill is present and there with the drilled soil mixed. A neat analysis of the composition of the Drilled soil is no longer possible. moreover the drill cross sections are unnecessarily large and the rectangular ones Drill cross-sectional shape has only moderate inherent stability of depth.
  • Trench wall cutters of this type are also used by one Supply vessel for ground exploration below sea level used.
  • the maximum achievable Limited drilling depth Seabed exploration such as diamond mining or finding other rare Materials are therefore often used with scrapers carried out.
  • this procedure is very imprecise and not particularly powerful.
  • the milling head for drilling Boreholes with a round cross-section known.
  • the milling head has a total of four identically designed, rotatable driven cutting wheels, the end faces of which are each conical converge.
  • a total of four milling wheel axles of the four milling wheels are equidistant from the drilling axis the milling head positioned, two of each Milling wheel axes lie in a common plane and parallel arranged mutually on both sides of the drilling axis are.
  • the milling wheel axes lying in a common plane are in turn offset by 90 ° to the two arranged in the other plane milling wheel axes.
  • the cutting wheels, the cutting wheel axes in a common Layers are driven in opposite directions.
  • a disadvantage of this known milling head is in particular the comparatively complicated structure. That's what every milling wheel is like is stored and is stored independently by an independent gear arrangement or by a independent drive actuated. Because the milling head when drilling is exposed to extreme mechanical loads at any time the risk that one of the bearings or one the gear arrangement fails. When using standalone Drives for each cutter wheel must be on top of each other be regulated to ensure a constant To ensure drilling feed.
  • EP 0 159 801 A1 describes a spherical, rolling Drill bits for earth drilling described.
  • This drill bit includes two swivel-mounted hemispheres with cutting elements are arranged.
  • One drive is the hemispheres not provided.
  • the invention has for its object to provide a milling head, a drilling device and a seabed drilling device, and to provide a method for drilling the seabed, which enable efficient soil exploration to great depths and even with hard base material without great effort.
  • the task is characterized by the characteristics of the Part of claim 1 with respect to the milling head, the Claim 7 with respect to the drilling device, the claim 11 regarding the seabed drilling device and claim 16 with respect to the method for Seabed drilling solved.
  • Advantageous embodiments are described in the subclaims.
  • the drilling device according to the invention provides a drilling sample which accurately reproduces the depth and the amount of the individual material work.
  • An approximately round drilling cross-section achieves very stable conditions in the borehole.
  • the borehole wall area is minimal in relation to the borehole volume. Accordingly, a high level of performance, ie a high yield of conveyed milling material, is achieved in the borehole shape according to the invention.
  • the drilling device can also be used on land, it is particularly suitable for use as a seabed drilling device.
  • a very good drilling result is achieved when the milling head is designed as a full cut milling head.
  • the milling head is advantageously made of rotating in opposite directions frustoconical cutting wheels formed. Through this A circular drilling cross-section can very well be used for construction can be achieved. At the same time, the drill head has a very high drilling capacity.
  • the comminuted milling material is suitably separated by a Suction box can be extracted via a suction line.
  • a drilling device has a Milling head a tube with a roughly the same cross section corresponding cross section.
  • seabed drilling device An advantageous use of the seabed drilling device is by mounting on a ship with one over one work tower arranged amidships arranged opening guaranteed.
  • the lowerable part of the seabed drilling device which mainly comes from the milling head, the worktable and the pipe is through that Opening retractable and extendable.
  • the work tower it can hoisted pipe securely attached in a vertical orientation become.
  • a good drilling operation is achieved by going through from the ship the upper opening of the pipe to the milling head for operating the ocean floor drilling rig Deflection devices are guided at the work table. Thereby it is possible to use these lines relatively strongly at minimal Tension length as well as hustle and bustle in the ocean current avoid without an undesirable through these lines Force is exerted on the drill head and the pipe becomes.
  • the lines only practice on the work table Force upwards, which is due to its high weight, however, generally no impairment experiences its orientation.
  • the vertical alignment can be carried out in a particularly advantageous manner of the pipe are taken over by the guide part, if the rope is held steadily with a relatively high tension becomes.
  • the work table due to its high weight, relatively high exposed to upward forces without in its alignment to be affected.
  • unneeded material can be cut via the bypass valve removed from the suction line at the top of the pipe without being pumped up to the supply ship have to.
  • the drill head is secured by the pipe with large amounts of trailing sea water as rinse water supplied for milling operation.
  • FIG. 1 shows a milling head 1 with an approximately round drilling cross section.
  • the milling head 1 is made of four pairs in opposite directions revolving frustoconical cutting wheels 2 formed, which are stored in pairs on two gear shields 6 are.
  • the radii of the truncated cones are from the axial center of the milling head 1 starting smaller in the axial direction.
  • the axially outer milling wheels 2 have a smaller one Diameter than the inner cutting wheels 2.
  • the drive motors (not shown) are located above the cutting wheels 2.
  • the gear shields 6 are on one Frame 7 attached, which at the end of a tube 12 (Fig. 3) are attached.
  • the milling wheels 2 run in pairs in opposite directions, since each two cutter wheels 2 driven by a gear are, as shown in EP 0 167 090.
  • An emerging torque around the drilling axis is caused by the firm locking of the tube 12 in the circumferential direction in the Depth compensated.
  • On the circumference of the cutting wheels 2 are in the circumferential direction evenly spaced Milling teeth 5 formed, which the area of effect of Milling head 1 except for the boundary line dashed in Figure 1 8 enlarge.
  • FIG. 2 also shows a scraper plate 4, which crushes the milled material to a defined maximum grain size.
  • the milled material is through a suction box 3 and Suction line 28 aspirated.
  • a ship 11 is used as an overwater operations control device provided that a work tower amidships 16 carries, which over an opening 18 in Longstrip is arranged. Through this opening 18 can the lowerable portion of the ocean floor drilling rig, which mainly from the milling head 1 (not shown), the tube 12 and a work table 13, on one Rope 26 can be lowered.
  • Figure 3 shows this part in Rest position and in working position, namely both in the raised position Position, the tube 12 in a vertical orientation is fixed in the work tower 16, as well as in lowered Position, the tube 12 through a follow-up system 14 relative to the work table 13 to the maximum drilling depth is pushed down.
  • the follow-up system 14 consists of hydraulically driven and in the radial direction and in the axial direction of the tube 12 adjustable brackets. These grip the circumference of the tube 12 and move it in the axial direction.
  • the brackets are counteracted with the hydraulic drive in the radial direction the tube 12 pressed so that it is displaceable on the circumference of the tube 12 abut.
  • the brackets are about evenly distributed over the pipe circumference, so that no resulting Radial moment on tube 12 acts.
  • the clamps are used to move the tube 12 hydraulically driven in the axial direction of the tube 12, taking the tube 12 with it and relative to it Move work table 13.
  • the brackets loosen when reaching the maximum stroke in the axial direction of the Tube 12 will then be in the opposite direction retracted and then take the tube 12 again by moving in a radial direction. Then take the clamps the tube 12 in turn in the desired direction of movement With.
  • the tube 12 has a the drilling diameter of the milling head 1 corresponding diameter. Serves during drilling operations via the follow-up system from the work table 13 to the pipe 12 transmitted force in the axial direction of the tube 12 as Feeding force for the milling head 1. Especially when drilling the seabed leads the pipe 12 to improved drilling conditions, because the depth is due to the highly flowable components of the sea floor always exposed to danger is to be buried. Since the tube 12 has no protrusions has and is relatively smooth-walled, its introduction into the depths with relatively little effort possible. Through the tube 12, the milling head 1 is on a kept straight drilling direction. This makes it possible test drilling in precisely defined areas. The milling head 1 and the tube 12 are firmly connected. The tube 12 thus also fulfills a supporting function for the milling head 1.
  • the pipe cross-section is about circular drilling cross section of the milling head 1 adapted. This cross-sectional shape ensures the stability of the pipe 12 very high against indentation or bending.
  • a bypass valve 15 through which unneeded milled material from the suction line 28 can be pumped out.
  • this bypass valve 15 it is possible, for example, to cut the milled material the first section of the hole has been drilled out and only the milled material from a greater drilling depth comes to convey up to ship 11.
  • the tube 12 with the milling head 1 through Follow-up system 14 pulled up relative to the work table 13 again.
  • Typical withdrawal forces correspond to the order of magnitude from 500 to 1000 tons. However, these are not included in the Rope 26 initiated between ship 11 and work table 13. Only after the tube 12 is completely relative to the work table 13 has been pulled up, the rope 26 by one recovery winch 25 on the ship side (see FIG. 6) rolled up.
  • Figures 4 and 5 show the tube 12, on the lower End of the milling head 1 is (not shown).
  • the Tube 12 is via the follow-up system 14 with the work table 13 connected.
  • the pipe diameter is typically around 2 Meters, the pipe length a maximum of about 30 meters.
  • the weight the work table 13 is 120 tons. However, there are larger dimensions can also be implemented.
  • the work table 13 and the tube 12 are via a gimbal 27 connected to one another even with sloping seabed to be able to drill vertically.
  • a hydraulic line 20 and the suction line 28 run from the milling head 1 from upwards inside the tube 12, at the upper end of the tube 12 out of this, then parallel to the tube 12 down to deflection devices, which are off at the work table 13 attached pulleys 17 exist, and then further up to the ship 11.
  • the tube 12 also forms one Flushing water line for the flushing water supply to the milling head 1.
  • Inside the tube 12 and on the semicircular Deflection parts at the top of the pipe are the hydraulic line 20 and the suction line 28 as metal pipes, because they do not have to be twistable there.
  • the rope 26 runs from the ship's side Recovery thread 25 on a role on a ship side Work tower upper part 23 through an opening of the guide part 24 to two rolls on the work table 13, then again through the guide part 24 to the ship's side Work tower upper part 23, then again to the work table 13 and finally back to the upper part of the work tower 23, on which the rope end is fixed.
  • the distance between the ship-side work tower upper part 23 and the guide part 24 strongly compared to the situation shown in Figure 6 increased.
  • the device in FIG a water depth of up to about 200 to 300 meters this The distance then corresponds approximately to the distance between the ship-side work tower upper part 23 and the guide part 24th
  • the guide part 24 is relative in its height setting adjustable to the tube 12 by means of the height adjustment 30.
  • the height adjustment 30 serves to guide the guide part 24 tube 12 completely raised into the work tower 16 lower.
  • the tube 12 protrudes in a fully raised position Condition the height of the work tower 16 and thus also the height of the ship-side upper part of the tower 23, so that the guide member 24 is no longer at the upper end of the Tube 12 can be located.
  • the height adjustment 30 consists of two diametrically oppositely arranged deflection rollers 31 on the upper Edge of the tube 12.
  • the ship 11 drives over a part of the seabed that explores shall be.
  • the seabed drilling device is in motion pulled up and is in work tower 16.
  • the work table 13 is located during this process at the lower end of the tube 12. He arrives first on the sea floor and takes due to its high weight, a stable alignment on.
  • the rope 26 runs on the tube 12 through the Guide part 24, which after the tube 12 the work tower 16 left had moved to the top of the tube 12 has been. This is due to the relatively tight rope 26 a vertical orientation of the tube 12 through the Guide part 24 guaranteed.
  • the rope 26 can be relative be very excited without the heavy work table 13 takes off. An uneven seabed can be sloping despite overlying work table 13 a vertical orientation of the Tube 12 can be maintained because these two parts with the gimbal 27 are connected.
  • the Milling wheels 2 rotate in pairs against each other.
  • the Milled material is gripped by the milling teeth 5 and by the Scraper plates 4 crushed.
  • the shredded milled material is sucked through the suction box 3 and through the suction line 28 and transported up to the ship 11. It is caught there and analyzed.
  • the drilling feed of the milling head 1 is through the follow-up system 14 accomplished on the work table 13, which the tube 12 downwards according to the drilling rate shifts.
  • the hydraulic line 20 drive energy to the milling head 1 and Sea water supplied for rinsing through the tube 12.
  • optional can part of the milled material through the bypass valve 15 on removed the upper end of the tube 12 from the suction line 28 without having to be carried up to ship 11.
  • the maximum drilling depth is due to the length of the tube 12 established.
  • the tube 12 from the Nachfricksystem 14 on his detected at the upper end, the maximum drilling depth is reached and the tube 12 is moved upwards again by the follow-up system 14. Thereafter, the lowerable portion of the ocean floor drilling rig from the rope 26 back to the ship 11 in the Work tower 16 pulled up.
  • the drilling process is finished and the ship 11 can leave the drilling site again.

Description

Die Erfindung betrifft einen Fräskopf für Erdbohrungen nach dem Oberbegriff des Anspruchs 1, eine Bohrvorrichtung für Bodenerkundungen mit einem derartigen Fräskopf, sowie eine Meeresboden-Bohrvorrichtung und ein Verfahren zum Meeresbodenbohren, welche bei Bodenerkundungen eingesetzt werden, um Bodenproben aus einer definierten Tiefe unterhalb der Bohroberfläche zu sammeln.
Für Erdbohrungen sind Schlitzwandfräsen bekannt, welche achsparallel zwei versetzte Schneidräderpaare aufweisen, die auf horizontalen Achsen gegensinnig rotieren, so daß das gelöste Erdreich in den Zwischenraum zwischen den beiden Rädern gefördert wird, wo es von einer Absaugeinrichtung nach oben transportiert wird. Eine solche Schlitzwandfräse ist beispielsweise aus der EP 0 167 090 A2 bekannt. Diese Schlitzwandfräsen haben einen großvolumigen Rahmenaufbau und sind sehr schwer. Der Bohrquerschnitt ist rechteckig. Zum Stützen des Bohrloches muß eine Stützflüssigkeit, beispielsweise jene welche unter dem Namen Bentonit bekannt ist, in das Bohrloch eingefüllt werden.
Für Bodenerkundungen sind derartige Schlitzwandfräsen nicht sehr geeignet, da die Stützflüssigkeit bis zur Bohrsohle vorhanden ist und sich dort mit dem aufgebohrten Erdreich vermischt. Eine saubere Analyse der Zusammensetzung der aufgebohrten Erdschicht ist somit nicht mehr möglich. Zudem sind die Bohrquerschnitte unnötig groß und die rechteckige Bohrquerschnittsform hat eine nur mäßige Eigenstabilität der Teufe zur Folge.
Schlitzwandfräsen dieses Typs werden zwar auch von einem Versorgungsschiff für die Bodenerkundung unter dem Meeresspiegel eingesetzt. Allerdings ist die maximal erreichbare Bohrtiefe begrenzt. Meeresbodenerkundungen wie beispielsweise das Diamant Schürfen oder die Suche nach anderen seltenen Materialien werden daher häufig mit Schürfkübeln durchgeführt. Dieses Verfahren ist jedoch sehr ungenau und nicht besonders leistungsfähig.
Weiterhin ist es bekannt, den Meeresboden mit verrohrten Schnecken zu erkunden. Mit diesem Verfahren lassen sich zwar größere Bohrtiefen erreichen, andererseits erlaubt eine Bohrschnecke prinzipbedingt nur ein Bohren in relativ weichem Grund.
Aus der US-A-4 682 660 ist ein Fräskopf zum Bohren von Bohrlöchern mit rundem Bohrquerschnitt bekannt. Der Fräskopf weist insgesamt vier identisch ausgebildete, drehbar angetriebene Fräsräder auf, deren Stirnseiten jeweils kegelförmig zusammenlaufen. Die insgesamt vier Fräsradachsen der vier Fräsräder sind mit gleichem Abstand um die Bohrachse des Fräskopfes positioniert, wobei jeweils zwei der Fräsradachsen in einer gemeinsamen Ebene liegen und parallel zueinander verlaufend beiderseits der Bohrachse angeordnet sind. Die in einer gemeinsamen Ebene liegenden Fräsradachsen sind wiederum um 90° versetzt zu den beiden in der anderen Ebene liegenden Fräsradachsen angeordnet. Die Fräsräder, deren Fräsradachsen in einer gemeinsamen Ebene liegen, werden gegensinnig angetrieben.
Nachteilig an diesem bekannten Fräskopf ist insbesondere der vergleichsweise komplizierte Aufbau. So ist jedes Fräsrad durch eine eigenständige Lagerung gelagert und wird durch eine eigenständige Getriebeanordnung oder durch einen eigenständigen Antrieb betätigt. Da der Fräskopf beim Bohren extremen mechanischen Belastungen ausgesetzt ist, besteht jederzeit die Gefahr, daß eines der Lager oder eine der Getriebeanordnungen ausfällt. Bei der Verwendung eigenständiger Antriebe für jedes Fräsrad müssen diese aufeinander abgestimmt geregelt werden, um einen konstanten Bohrvorschub zu gewährleisten.
In der EP 0 159 801 A1 wird ein kugelförmiger, abrollender Bohrmeißel zum Erdbohren beschrieben. Dieser Bohrmeißel umfaßt zwei drehbar gelagerte Halbkugeln, an denen Schneideelemente angeordnet sind. Ein Antrieb der Halbkugeln ist nicht vorgesehen.
Aus der US-A-1 749 344 ist ein abrollender Scheibenmeißel bekannt, wobei die Scheiben ebenfalls keinen Antrieb aufweisen.
Der Erfindung liegt die Aufgabe zugrunde, einen Fräskopf, eine Bohrvorrichtung und eine Meeresboden-Bohrvorrichtung zu schaffen, sowie ein Verfahren zum Meeresbodenbohren anzugeben, welche eine leistungsfähige Bodenerkundung bis in große Bohrtiefen und auch bei hartem Grundmaterial ohne großen Aufwand ermöglichen.
Die Aufgabe wird durch die Merkmale des kennzeichnenden Teils des Anspruchs 1 hinsichtlich des Fräskopfes, des Anspruchs 7 hinsichtlich der Bohrvorrichtung, des Anspruchs 11 hinsichtlich der Meeresboden-Bohrvorrichtung und des Anspruchs 16 hinsichtlich des Verfahrens zum Meeresbodenbohren gelöst. Vorteilhafte Ausführungsformen sind in den Unteransprüchen beschrieben.
Indem man einen Fräskopf mit mindestens zwei gegenläufig, rotierenden koaxialen Fräsrädern, deren Durchmesser sich zur Bildung eines etwa runden Bohrquerschnitts nach einer Seite verjüngen, vorsieht, erhält man einen an die besonderen Bedingungen der Bodenerkundung sehr gut angepaßtes Bohrwerkzeug.
Die erfindungsgemäße Bohrvorrichtung liefert eine Bohrprobe, welche die Tiefenlage und die Menge der einzelnen Materialarbeiten genau wiedergibt. Durch einen etwa runden Bohrquerschnitt werden sehr stabile Verhältnisse im Bohrloch erzielt. Die Bohrlochwandfläche ist im Verhältnis zum Bohrlochvolumen minimal. Dementsprechend wird bei der erfindungsgemäßen Bohrlochform eine hohe Leistungsfähigkeit, d.h. eine hohe Ergiebigkeit an gefördertem Fräsgut erreicht.
Obwohl die Bohrvorrichtung auch an Land eingesetzt werden kann, ist sie besonders für den Einsatz als Meeresboden-Bohrvorrichtung geeignet.
Ein sehr gutes Bohrergebnis wird erreicht, wenn der Fräskopf als Vollschnittfräskopf ausgeführt ist.
Vorteilhafterweise ist der Fräskopf aus gegensinnig umlaufenden kegelstumpfförmigen Fräsrädern gebildet. Durch diesen Aufbau kann sehr gut ein kreisförmiger Bohrquerschnitt erreicht werden. Gleichzeitig weist der Bohrkopf eine sehr hohe Bohrleistung auf.
Es ist zweckmäßig, daß vier Fräsräder paarweise an Getriebeschilden gelagert sind und hydraulische Antriebsmotoren oberhalb der Getriebeschilde angeordnet sind.
Gute Förderleistungen werden auch durch Räumerplatten am Fräskopf erzielt, durch die das Fräsgut von Fräszähnen auf definierte maximale Korngröße zerkleinerbar ist.
Geeigneterweise ist das zerkleinerte Fräsgut durch einen Saugkasten über eine Absaugleitung absaugbar.
Eine erfindungsgemäße Bohrvorrichtung weist über einem Fräskopf ein Rohr mit einem etwa dem Bohrquerschnitt entsprechenden Querschnitt auf.
Dadurch ist eine Sicherung der gesamten Teufe gegeben. Die Teufe kann nicht einstürzen oder durch nachrutschendes Material wieder zugeschüttet werden, so daß ein genau vorgebbarer Bodenbereich mit definiertem Volumen gefördert werden kann. Die Auswertung einer derartigen Probebohrung ist daher besonders zuverlässig. Außerdem ist es auf diese Weise leicht möglich, den Fräsenvorschub zu erzeugen.
Besonders gute Ergebnisse werden erzielt, wenn ein erfindungsgemäßer Fräskopf verwendet wird und wenn ein sich auf der Bohroberfläche abstützender Arbeitstisch, welcher das Rohr mit einem Nachfaßsystem erfaßt und in Rohrlängsrichtung verschiebt, verwendet wird. Insbesondere übt der Arbeitstisch mit dem Nachfaßsystem eine Vorschubkraft auf den Fräskopf aus. Durch diese Anordnung ist eine einfach anzubringende und sichere Stabilisierung der Bohrvorrichtung möglich. Weiterhin werden beim Herausziehen des Bohrkopfes und des Rohres die dabei auftretenden Kräfte direkt auf die Bodenoberfläche umgeleitet, ohne weitere Bauteile der Vorrichtung zu belasten.
Zur Erzielung eines leistungsfähigen Betriebes werden zur Ent- und Versorgung des Fräskopfes je eine massive Saugleitung und Hydraulikleitung fest im Rohr angeordnet und dem Fräskopf Spülwasser durch das Rohr zugeführt. Mit dieser vorteilhaften Ausführungsform des den Bohrkopf umgebenden Bereiches ist ein schnelles und zuverlässiges Abführen des Fräsgutes gewährleistet. Weiterhin ist eine nachhaltige Erleichterung der Fräsbedingungen durch den guten Abfluß von gelöstem Boden gegeben. Die Ausbildung als massives Rohr, beispielsweise aus Stahl oder Kunststoff, schützt gegen Beschädigungen durch den Kontakt mit scharfkantigen Vorsprüngen des aufgebohrten Bodens.
Da der interessierende Bereich bei Bodenerkundungen häufig nicht direkt unter der Oberfläche liegt, ist eine vorteilhafte Vereinfachung des Bohrbetriebes dadurch gegeben, daß ein Bypaßventil am oberen Ende des Rohres vorgesehen ist, durch welches nicht benötigtes Fräsgut aus der Absaugleitung ausgepumpt werden kann. Dadurch erspart man sich den Aufwand zum Pumpen des nicht benötigten Fräsgutes durch die gesamte Absaugleitung bis an das Versorgungsschiff.
Ein vorteilhafter Einsatz der Meeresboden-Bohrvorrichtung wird durch die Montage auf einem Schiff mit einem über einer mittschiffs angeordneten Öffnung angeordneten Arbeitsturm gewährleistet. Der herablassbare Teil der Meeresbodenbohrvorrichtung, welcher hauptsächlich aus dem Fräskopf, dem Arbeitstisch und dem Rohr besteht, ist durch die Öffnung ein- und ausfahrbar. In dem Arbeitsturm kann das hochgezogene Rohr sicher in vertikaler Ausrichtung befestigt werden.
Ein guter Bohrbetrieb wird erzielt, indem vom Schiff durch die obere Öffnung des Rohres zum Fräskopf verlaufende Leitungen für den Betrieb der Meeresboden-Bohrvorrichtung über Umlenkeinrichtungen am Arbeitstisch geführt sind. Dadurch ist es möglich, diese Leitungen relativ stark bei minimaler Länge zu spannen sowie Treiben in der Meeresströmung zu vermeiden, ohne daß durch diese Leitungen eine unerwünschte Kraft nach oben auf den Bohrkopf und das Rohr ausgeübt wird. Die Leitungen üben lediglich auf den Arbeitstisch eine Kraft nach oben aus, welcher dadurch auf Grund seines hohen Gewichtes jedoch im allgemeinen keine Beeinträchtigung seiner Ausrichtung erfährt.
Weiterhin ist ein vorteilhafter Betrieb ermöglicht, indem ein über Rollen geführtes Seil, welches das Schiff, den Arbeitsturm, ein das Rohr umschließendes verschiebbares Führungsteil und den Arbeitstisch miteinander verbindet, zum Herablassen und Heraufziehen des herablaßbaren Teils der Meeresboden-Bohrvorrichtung vorgesehen ist. Dadurch wird ein schnelles und zielgenaues Arbeiten gewährleistet.
Auf besonders vorteilhafte Weise kann die Vertikalausrichtung des Rohres durch das Führungsteil übernommen werden, falls das Seil stetig mit einer relativ hohen Spannung gehalten wird. Wie bereits oben beschrieben, kann der Arbeitstisch aufgrund seines hohen Gewichtes relativ hohen nach oben gerichteten Kräften ausgesetzt werden, ohne in seiner Ausrichtung beeinträchtigt zu werden.
Verfahrensmäßig wird die Aufgabe durch folgende Schritte gelöst:
  • der herablaßbare Teil der Meeresboden-Bohrvorrichtung, welcher hauptsächlich aus dem Fräskopf, dem Arbeitstisch und dem Rohr besteht, wird durch die Öffnung an dem Seil von der schiffseitigen Bergewinde auf den Meeresboden herabgelassen, wobei sich der Arbeitstisch am unteren Ende des Rohres befindet;
  • der Fräskopf beginnt damit, in den Meeresboden zu bohren, wobei das Nachfaßsystem seinem Vortrieb entsprechend das Rohr nach unten nachschiebt;
  • das Fräsgut wird über eine Absaugleitung zum Schiff hoch befördert;
  • nach Beenden des Bohrvorganges zieht das Nachfaßsystem das Rohr aus dem Bohrloch wieder hoch;
  • der herablaßbare Teil der Meeresboden-Bohrvorrichtung wird über das Seil von der schiffseitigen Bergewinde wieder auf das Schiff hochgezogen;
Es wird somit eine Meeresbodenerkundung ermöglicht, welche auf einfache umd schnelle Weise große Meeresbodenprobenvolumina fördern kann. Verfahrensbedingt sind relativ große Bohrtiefen möglich, insbesondere da die Teufe durch das Rohr gesichert wird und eine sichere Ausrichtung durch den schweren, sich auf den Meeresboden abstützenden Arbeitstisch gegeben ist.
Optional kann nicht benötigtes Fräsgut über das Bypaßventil am oberen Ende des Rohres aus der Absaugleitung entfernt werden, ohne zum Versorgungsschiff hochgepumpt werden zu müssen.
Im gesamten Betrieb wird der Bohrkopf durch das Rohr sicher mit großen Mengen von nachlaufendem Meerwasser als Spülwasser für den Fräsbetrieb versorgt.
In folgendem wird die Erfindung beispielhaft anhand der Figuren weiter erläutert. Es zeigen schematisch:
Fig. 1
eine Seitenqueransicht eines erfindungsgemäßen Bohrkopfes;
Fig. 2
eine Seitenlängsansicht eines erfindungsgemäßen Bohrkopfes entlang der Linie a-a aus Fig. 1;
Fig. 3
eine Seitenansicht eines Versorgungsschiffes mit darauf angebrachten Arbeitsturm und hochgezogenem herablassbaren Teil der erfindungsgemäßen Meeresboden-Bohrvorrichtung sowie zusätzlich auch der Seitenansicht mit quergeschnittenem Meeresboden des im Bohrbetrieb befindlichen herablassbaren Teils der erfindungsgemäßen Meeresboden-Bohrvorrichtung;
Fig. 4
eine Seitenansicht des herablassbaren Teils einer erfindungsgemäßen Meeresboden-Bohrvorrichtung;
Fig. 5
eine Draufsicht auf den herablassbaren Teil der erfindungsgemäßen Meeresboden-Bohrvorrichtung;
Fig. 6
eine perspektivische Ansicht eines Teils der erfindungsgemäßen Meeresboden-Bohrvorrichtung mit der Darstellung des Verlaufes eines Seiles.
Figur 1 zeigt einen Fräskopf 1 mit einem etwa runden Bohrquerschnitt. Der Fräskopf 1 ist aus vier paarweise gegensinnig umlaufenden kegelstumpfförmigen Fräsrädern 2 gebildet, welche über zwei Getriebeschilde 6 paarweise gelagert sind. Die Radien der Kegelstümpfe werden vom axialen Zentrum des Fräskopfes 1 ausgehend in axialer Richtung kleiner. Die axial äußeren Fräsräder 2 weisen einen kleineren Durchmesser als die inneren Fräsräder 2 auf. Sie sind zusammengesetzt aus einem axial innenliegenden, größeren Stumpf eines Kegels, der flacher ist als der Kegel, aus dem die Stümpfe der inneren Fräsräder 2 abgeleitet sind, und einem axial außenliegenden, kleineren Stumpf eines noch flacheren Kegels, dessen den axialen Abschluß bildende kleine Fläche wesentlich kleiner als der größte Durchmesser des Fräskopfes 1 ist.
Die Antriebsmotoren (nicht dargestellt) befinden sich oberhalb der Fräsräder 2. Die Getriebeschilde 6 sind an einem Rahmen 7 befestigt, welcher am Ende eines Rohres 12 (Fig. 3) angebracht sind. Die Fräsräder 2 laufen paarweise gegensinnig, da jeweils zwei Fräsräder 2 über ein Getriebe angetrieben werden, so wie in der EP 0 167 090 dargestellt. Ein entstehendes Drehmoment um die Bohrachse wird durch die feste Arretierung des Rohres 12 in Umfangsrichtung in der Teufe kompensiert. Am Umfang der Fräsräder 2 sind in Umfangsrichtung gleichmäßig voneinander beabstandete Fräszähne 5 ausgebildet, welche den Wirkungsbereich des Fräskopfes 1 bis auf die in Figur 1 gestrichelte Begrenzungslinie 8 vergrößern.
Beispielhaft ist ein Fräszahn 5 in den Figuren 1 und 2 eingezeichnet. Figur 2 zeigt weiterhin eine Räumerplatte 4, welche das Fräsgut auf definierte maximale Korngröße zerkleinert. Das Fräsgut wird durch einen Saugkasten 3 und eine Absaugleitung 28 abgesaugt.
Wie Figur 3 zeigt, ist ein Schiff 11 als Überwasser-Betriebsleiteinrichtung vorgesehen, das mittschiffs einen Arbeitsturm 16 trägt, welcher über einer Öffnung 18 im Schiffsboden angeordnet ist. Durch diese Öffnung 18 kann der herablaßbare Teil der Meeresboden-Bohrvorrichtung, welcher hauptsächlich aus dem Fräskopf 1 (nicht dargestellt), dem Rohr 12 und einem Arbeitstisch 13 besteht, an einem Seil 26 herabgelassen werden. Figur 3 zeigt diesen Teil in Ruhestellung und in Arbeitsstellung, nämlich sowohl in heraufgezogener Stellung, wobei das Rohr 12 in vertikaler Ausrichtung im Arbeitsturm 16 fixiert ist, als auch in herabgelassener Stellung, wobei das Rohr 12 durch ein Nachfaßsystem 14 relativ zum Arbeitstisch 13 auf die maximale Bohrtiefe heruntergeschoben ist.
Das Nachfaßsystem 14 besteht aus hydraulisch angetriebenen und in Radialrichtung sowie in Axialrichtung des Rohres 12 verstellbaren Klammern. Diese greifen am Umfang des Rohres 12 an und verschieben es in Axialrichtung. Die Klammern werden mit dem hydraulischen Antrieb in Radialrichtung gegen das Rohr 12 gedrückt, so daß sie verschiebfest am Umfang des Rohres 12 anliegen. Die Klammern sind etwa gleichmäßig über den Rohrumfang verteilt, so daß kein resultierendes Moment in Radialrichtung auf das Rohr 12 wirkt. Zum Verschieben des Rohres 12 werden die Klammern hydraulisch angetrieben in Axialrichtung des Rohres 12 bewegt, wobei sie das Rohr 12 mitnehmen und es relativ zum Arbeitstisch 13 verschieben. Soll das Rohr 12 relativ zum Arbeitstisch 13 weiter verschoben werden, als der Maximalhub der Klammern in Axialrichtung, lösen sich die Klammern beim Erreichen des Maximalhubes in Axialrichtung von dem Rohr 12, werden dann in entgegengesetzter Richtung zurückgefahren und ergreifen daraufhin das Rohr 12 wieder durch eine Bewegung in radialer Richtung. Daraufhin nehmen die Klammern das Rohr 12 wiederum in der gewünschten Bewegungsrichtung mit.
Das Rohr 12 weist einen dem Bohrdurchmesser des Fräskopfes 1 entsprechenden Durchmesser auf. Beim Bohrbetrieb dient die über das Nachfaßsystem vom Arbeitstisch 13 auf das Rohr 12 übertragene Kraft in Axialrichtung des Rohres 12 als Vorschubkraft für den Fräskopf 1. Insbesondere beim Meeresbodenbohren führt das Rohr 12 zu verbesserten Bohrbedingungen, da die Teufe durch die hochgradig fließfähigen Bestandteile des Meeresbodens immer der Gefahr ausgesetzt ist, zugeschüttet zu werden. Da das Rohr 12 keine Vorsprünge aufweist und relativ glattwandig ist, ist seine Einbringung in die Teufe mit relativ geringem Kraftaufwand möglich. Durch das Rohr 12 wird der Fräskopf 1 auf einer geradlinigen Bohrrichtung gehalten. Dadurch ist es möglich, in genau definierten Bereichen Probebohrungen vorzunehmen. Der Fräskopf 1 und das Rohr 12 sind fest miteinander verbunden. Das Rohr 12 erfüllt somit auch eine Stützfunktion für den Fräskopf 1. Der Rohrquerschnitt ist dem etwa kreisförmigen Bohrquerschnitt des Fräskopfes 1 angepaßt. Durch diese Querschnittsform ist die Stabilität des Rohres 12 gegen Eindrücken oder Verbiegen sehr hoch.
Am oberen Ende des Rohres 12 befindet sich ein Bypaßventil 15, durch welches nicht benötigtes Fräsgut aus der Absaugleitung 28 ausgepumpt werden kann. Mit diesem Bypaßventil 15 ist es beispielweise möglich, das Fräsgut, welches auf dem ersten Abschnitt der Bohrung ausgebohrt wurde, abzulassen und nur das Fräsgut welches aus einer größeren Bohrtiefe stammt, zum Schiff 11 hochzubefördern. Nach beendetem Bohrvorgang wird das Rohr 12 mit dem Fräskopf 1 durch das Nachfaßsystem 14 relativ zum Arbeitstisch 13 wieder hochgezogen. Typische Rückzugkräfte entsprechen der Größenordnung von 500 bis 1000 Tonnen. Diese werden jedoch nicht in das Seil 26 zwischen Schiff 11 und Arbeitstisch 13 eingeleitet. Erst nachdem das Rohr 12 vollständig relativ zum Arbeitstisch 13 hochgezogen wurde, wird das Seil 26 von einer schiffsseitigen Bergewinde 25 (siehe Figur 6) eingerollt.
Die Figuren 4 und 5 zeigen das Rohr 12, an dessen unterem Ende sich der Fräskopf 1 befindet (nicht dargestellt). Das Rohr 12 ist über das Nachfaßsystem 14 mit dem Arbeitstisch 13 verbunden. Der Rohrdurchmesser beträgt typisch circa 2 Meter, die Rohrlänge maximal circa 30 Meter. Das Gewicht des Arbeitstisches 13 beträgt 120 Tonnen. Es sind jedoch auch größere Dimensionen ausführbar. Der Arbeitstisch 13 und das Rohr 12 sind über eine kardanische Aufhängung 27 miteinander verbunden, um auch bei schrägem Meeresboden eine senkrechte Bohrung vornehmen zu können. Eine Hydraulikleitung 20 und die Absaugleitung 28 verlaufen vom Fräskopf 1 aus nach oben im Inneren des Rohres 12, am oberen Ende des Rohres 12 aus diesem heraus,dann parallel zum Rohr 12 nach unten zu Umlenkeinrichtungen, welche aus am Arbeitstisch 13 befestigten Umlenkrollen 17 bestehen, und dann weiter hoch zum Schiff 11. Das Rohr 12 bildet auch eine Spülwasserleitung für die Spülwasserversorgung des Fräskopfes 1. Innerhalb des Rohres 12 und an den halkreisförmigen Umlenkteilen am oberen Rohrende sind die Hydraulikleitung 20 und die Absaugleitung 28 als Metallrohre ausgeführt, da sie dort keine Verwindbarkeit aufweisen müssen.
Innerhalb des oberen Teils des Rohres 12 befindet sich auch eine Höhenverstellung 30 für ein Führungsteil 24, welches das Rohr 12 umschließt.
Wie Figur 6 zeigt, verläuft das Seil 26 von der schiffsseitigen Bergewinde 25 über eine Rolle an einem schiffsseitigen Arbeitsturmoberteil 23 durch eine Öffnung des Führungsteils 24 zu zwei Rollen auf dem Arbeitstisch 13, danach noch einmal durch das Führungsteil 24 zum schiffseitigen Arbeitsturmoberteil 23, daraufhin nochmals zum Arbeitstisch 13 und schließlich wieder zurück zum schiffseitigen Arbeitsturmoberteil 23, an dem das Seilende fixiert ist. Beim Bohrbetrieb auf dem Meeresboden ist der Abstand zwischen dem schiffseitigem Arbeitsturmoberteil 23 und dem Führungsteil 24 stark gegenüber der in Figur 6 dargestellten Situation vergrößert. Beispielsweise arbeitet die Vorrichtung in einer Wassertiefe von bis zu etwa 200 bis 300 Metern Dieser Abstand entspricht dann etwa auch dem Abstand zwischen dem schiffseitigen Arbeitsturmoberteil 23 und dem Führungsteil 24.
Das Führungsteil 24 ist in seiner Höheneinstellung relativ zum Rohr 12 mittels der Höhenverstellung 30 verstellbar. Die Höhenverstellung 30 dient dazu, das Führungsteil 24 bei vollständig in den Arbeitsturm 16 hochgefahrenem Rohr 12 abzusenken. Das Rohr 12 überragt in vollständig hochgefahrenem Zustand die Höhe des Arbeitsturms 16 und damit auch die Höhe des schiffseitigen Arbeitsturmoberteils 23, so daß sich das Führungsteil 24 nicht mehr am oberen Ende des Rohres 12 befinden kann. Bei herabgelassenem Rohr 12 ist das Führungsteil 24 im allgemeinen möglichst weit oben am Rohr 12, um mit dem unter relativ hoher Spannung stehenden Seil 26 eine gute Vertikalführung für das Rohr 12 zu erreichen. Die Höhenverstellung 30 besteht aus zwei diametral gegenüberliegend angeordneten Umlenkrollen 31 am oberen Rand des Rohres 12. Innerhalb des Rohres 12 sind nahe dem oberen Rand unter den beiden Umlenkrollen angetriebene Winden 32 (nur eine Winde 32 ist dargestellt) angeordnet. Von diesen aus geht jeweils ein Seil über die Umlenkrolle 31 an der Außenseite des Rohres 12 herab bis zu jeweils einem nächst dem Rohr 12 liegenden Befestigungspunkt auf dem Führungsteil 24. Das Führungsteil 24 wird durch das Aufund Abrollen der Seile der Höhenverstellung 30 in Axialrichtung relativ zum Rohr 12 verschoben.
Nachfolgend wird die Funktion der Meeresboden-Bohrvorrichtung anhand eines Beispiels beschrieben. Das Schiff 11 fährt über eine Stelle des Meeresbodens, welche erkundet werden soll. Während der Fahrt ist die Meeresboden-Bohrvorrichtung hochgezogen und befindet sich im Arbeitsturm 16. Bei stillstehendem und ausgerichtetem Schiff 11 wird der herablaßbare Teil der Meeresboden-Bohrvorrichtung durch die Öffnung 18 vom Arbeitsturm 16 ins Wasser bis auf den Meeresboden herabgelassen. Der Arbeitstisch 13 befindet sich während dieses Vorgangs am unteren Ende des Rohres 12. Er kommt somit als erstes auf dem Meeresboden an und nimmt aufgrund seines hohen Gewichtes eine stabile Ausrichtung ein.
Zwischen dem Schiff 11 und dem herablaßbaren Teil sind nun das Seil 26, die Hydraulikleitung 20 und die Absaugleitung 28 gespannt. Das Seil 26 verläuft am Rohr 12 durch das Führungsteil 24, welches nachdem das Rohr 12 den Arbeitsturm 16 verlassen hatte ans obere Ende des Rohres 12 bewegt wurde. Dadurch wird durch das relativ stark gespannte Seil 26 eine vertikale Ausrichtung des Rohres 12 durch das Führungsteil 24 gewährleistet. Das Seil 26 kann relativ stark gespannt sein, ohne daß der schwere Arbeitstisch 13 abhebt. Bei einem unebenen Meeresboden kann trotz schräg aufliegendem Arbeitstisch 13 eine Vertikalausrichtung des Rohres 12 beibehalten werden, da diese beiden Teile mit der kardanischen Aufhängung 27 verbunden sind.
Als nächstes wird der eigentliche Bohrbetrieb aufgenommen, indem die Fräsräder 2 in Drehbewegung versetzt werden. Die Fräsräder 2 drehen sich dabei paarweise gegeneinander. Das Fräsgut wird von den Fräszähnen 5 erfaßt und von den Räumerplatten 4 zerkleinert. Das zerkleinerte Fräsgut wird durch den Saugkasten 3 und durch die Absaugleitung 28 abgesaugt und zum Schiff 11 hochbefördert. Dort wird es aufgefangen und analysiert.
Der Bohrvorschub des Fräskopfes 1 wird durch das Nachfaßsystem 14 am Arbeitstisch 13 bewerkstelligt, welches das Rohr 12 der Bohrvortriebsgeschwindigkeit entsprechend nach unten verschiebt. Während des Bohrvorgangs wird über die Hydraulikleitung 20 Antriebsenergie zum Fräskopf 1 übertragen und Meerwasser zum Spülen durch das Rohr 12 zugeführt. Optional kann ein Teil des Fräsgutes durch das Bypaßventil 15 am oberen Ende des Rohres 12 aus der Absaugleitung 28 entfernt werden, ohne zum Schiff 11 hochbefördert werden zu müssen. Die maximale Bohrtiefe ist durch die Länge des Rohres 12 festgelegt. Wird das Rohr 12 vom Nachfaßsystem 14 an seinem oberen Ende erfaßt, ist die maximale Bohrtiefe erreicht und das Rohr 12 wird vom Nachfaßsystem 14 wieder nach oben verschoben. Danach wird der herablaßbare Teil der Meeresboden-Bohrvorrichtung vom Seil 26 wieder auf das Schiff 11 in den Arbeitsturm 16 hochgezogen. Der Bohrvorgang ist beendet und das Schiff 11 kann die Bohrstelle wieder verlassen.

Claims (18)

  1. Fräskopf mit mindestens zwei beiderseits einer Bohrachse des Fräskopfes (1) angeordneten Fräsrädern (2), die jeweils um eine Fräsradachse drehbar sind und sich in ihren Durchmessern nach außen hin verjüngen und einen Antrieb zum drehenden Antreiben der Fräsräder (2),
    dadurch gekennzeichnet, daß vier Fräsräder (2) um eine gemeinsame Fräsradachse drehbar angeordnet sind, welche radial zur Bohrachse gerichtet ist,
    daß sich die Durchmesser der Fräsräder (2) vom koaxialen Zentrum des Fräskopfes (1) ausgehend in axialer Richtung der Fräsradachse zur Bildung eines runden Bohrquerschnitts verjüngen, und
    daß die Fräsräder (2) zum Fräsen gegenläufig antreibbar sind.
  2. Fräskopf nach Anspruch 1,
    dadurch gekennzeichnet, daß er als Vollschnittfräskopf ausgeführt ist.
  3. Fräskopf nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß er aus gegensinnig umlaufenden kegelstumpfförmigen Fräsrädern (2) gebildet ist.
  4. Fräskopf nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß die vier Fräsräder (2) paarweise an Getriebeschilden (6) gelagert sind und Antriebsmotoren oberhalb der Getriebeschilde (6) angeordnet sind.
  5. Fräskopf nach einem der vorhergehenden Ansprüche, gekennzeichnet durch
    Räumerplatten (4) am Fräskopf (1), durch die das Fräsgut im Zusammenwirken mit Fräszähnen (5) auf den Fräsrädern (2) auf definierte maximale Korngröße zerkleinerbar ist.
  6. Fräskopf nach einem der vorhergehenden Ansprüche, gekennzeichnet durch
    einen Saugkasten (3), durch den zerkleinertes Fräsgut über eine Absaugleitung (28) absaugbar ist.
  7. Bohrvorrichtung mit einem Fräskopf nach einem der Ansprüche 1 bis 6,
    gekennzeichnet durch
    ein über dem Fräskopf (1) angeordnetes Rohr (12) mit einem etwa dem Bohrquerschnitt entsprechenden Querschnitt, welches die gesamte Teufe sichert und über welches der Vorschub für den Fräskopf (1) erzeugt wird.
  8. Bohrvorrichtung nach Anspruch 7, gekennzeichnet durch
    einen Fräskopf (1) nach einem der Ansprüche 1 bis 6 und einen sich auf der Bohrfläche abstützenden Arbeitstisch (13), welcher das Rohr (12) mit einem Nachfaßsystem (14) erfaßt und in Bohrrichtung verschiebbar lagert.
  9. Bohrvorrichtung nach einem der Ansprüche 7 oder 8,
    dadurch gekennzeichnet, daß durch das Rohr (12) eine Absaugleitung (28) und Hydraulikleitung (20), die den Fräskopf (1) mit Antriebsenergie versorgen bzw. das Fräsgut absaugen, verlaufen und daß dem Fräskopf (1) durch das Rohr (12) Spülwasser zuführbar ist.
  10. Bohrvorrichtung nach einem der Ansprüche 8 oder 9, gekennzeichnet durch
    ein Bypaßventil (15) am oberen Ende des Rohres (12) durch welches nicht benötigtes Fräsgut aus der Absaugleitung (28) ausgepumpt werden kann.
  11. Bohrvorrichtung nach Anspruch 10, gekennzeichnet durch
    die Verwendung zum Meeresboden-Bohren.
  12. Meeresboden-Bohrvorrichtung nach Anspruch 11, gekennzeichnet durch
    die Montage auf einem Schiff (11) mit einem über einer mittschiffs angeordneten Öffnung (18) angeordneten Arbeitsturm (16), wobei der herablaßbare Teil der Meeresboden-Bohrvorrichtung durch die Öffnung (18) herablaßbar ist.
  13. Meeresboden-Bohrvorrichtung nach Anspruch 12,
    dadurch gekennzeichnet, daß vom Schiff (11) durch die obere Öffnung des Rohres (12) zum Fräskopf (1) verlaufende Leitungen (20, 28) für den Betrieb der Meeresboden-Bohrvorrichtung über auf dem Arbeitstisch (13) befestigte Umlenkeinrichtungen (17) geführt sind.
  14. Meeresboden-Bohrvorrichtung nach einem der Ansprüche 12 oder 13,
    gekennzeichnet durch
    ein über Rollen geführtes Seil (26), welches das Schiff (11), den Arbeitsturm (16), ein das Rohr (12) umschließendes verschiebbares Führungsteil (24) und den Arbeitstisch (13) miteinander verbindet.
  15. Meeresboden-Bohrvorrichtung nach Anspruch 14,
    dadurch gekennzeichnet, daß das Seil (26) unter Spannung gehalten ist, um das Rohr (1) mit dem Führungsteil (24) zu führen.
  16. Verfahren zum Meeresbodenbohren mit einer Meeresboden-Bohrvorrichtung nach einem der Ansprüche 11 bis 15, gekennzeichnet durch
    die folgenden Schritte:
    der herablaßbare Teil der Meeresboden-Bohrvorrichtung welcher hauptsächlich aus dem Fräskopf (1), dem Arbeitstisch (13) und dem Rohr (12) besteht, wird durch die Öffnung (18) an dem Seil (26) von der schiffseitigen Bergewinde (25) auf den Meeresboden herabgelassen, wobei sich der Arbeitstisch (13) am unteren Ende des Rohres (12) befindet;
    der Fräskopf (1) beginnt in den Meeresboden zu bohren, wobei das Nachfaßsystem (14) seinem Vortrieb entsprechend das Rohr (12) nach unten nachschiebt;
    das Fräsgut wird über eine Absaugleitung (28) zum Schiff (11) hoch befördert;
    nach Beenden des Bohrvorganges zieht das Nachfaßsystem (14) das Rohr (12) aus dem Bohrloch wieder hoch;
    der herablaßbare Teil der Meeresboden-Bohrvorrichtung wird über das Seil (26) von der schiffseitigen Bergewinde (25) wieder auf das Schiff (11) hochgezogen.
  17. Verfahren zum Meeresbodenbohren nach Anspruch 16,
    dadurch gekennzeichnet, daß nicht benötigtes Fräsgut über ein Bypaßventil (15) am oberen Ende des Rohres (12) aus der Absaugleitung (28) entfernt wird, ohne zum Schiff (11) hochgepumpt werden zu müssen.
  18. Verfahren zum Meeresbodenbohren nach einem der Ansprüche 16 oder 17,
    dadurch gekennzeichnet, daß dem Fräskopf (1) während des Bohrens durch das Rohr (12) nachlaufendes Meerwasser als Spülwasser zugeführt wird.
EP97112092A 1996-07-16 1997-07-15 Fräskopf, Bohrvorrichtung sowie Vorrichtung und Verfahren zum Meeresbodenbohren Expired - Lifetime EP0819819B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19628661 1996-07-16
DE19628661 1996-07-16
DE19635916 1996-09-04
DE19635916A DE19635916A1 (de) 1996-07-16 1996-09-04 Fräskopf, Bohrvorrichtung sowie Vorrichtung und Verfahren zum Meeresbodenbohren

Publications (2)

Publication Number Publication Date
EP0819819A1 EP0819819A1 (de) 1998-01-21
EP0819819B1 true EP0819819B1 (de) 2003-10-01

Family

ID=26027571

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97112092A Expired - Lifetime EP0819819B1 (de) 1996-07-16 1997-07-15 Fräskopf, Bohrvorrichtung sowie Vorrichtung und Verfahren zum Meeresbodenbohren

Country Status (4)

Country Link
US (1) US5931235A (de)
EP (1) EP0819819B1 (de)
AU (1) AU2868497A (de)
CA (1) CA2210442C (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1626127A1 (de) 2004-08-10 2006-02-15 BAUER Maschinen GmbH Fräsvorrichtung und Verfahren zum Erstellen eines Fräslochs
EP2251491A1 (de) 2009-05-15 2010-11-17 BAUER Maschinen GmbH Fräsvorrichtung und Verfahren zum Abtragen von Bodenmaterial

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10243747B4 (de) * 2002-09-20 2004-07-29 Bauer Maschinen Gmbh Verfahren und Vorrichtung zum Abbau von Bodenmaterial
US20060016621A1 (en) * 2004-06-09 2006-01-26 Placer Dome Technical Services Limited Method and system for deep sea drilling
DE102005017093B4 (de) 2004-08-12 2008-07-24 Bauer Maschinen Gmbh Fräse und Verfahren zur Bearbeitung des Erdbodens
EP1630301B1 (de) * 2004-08-12 2007-10-17 BAUER Maschinen GmbH Verfahren und Vorrichtung zur Bodenbearbeitung
SG187841A1 (en) 2010-08-13 2013-03-28 Deep Reach Technology Inc Subsea excavation systems and methods
CN102220841B (zh) * 2011-05-23 2012-12-26 中国地质大学(武汉) 一种海底取样钻机
US9044812B2 (en) 2011-08-03 2015-06-02 General Electric Company Jig and method for modifying casing in turbine system
CN107063741B (zh) * 2017-03-31 2023-06-06 中国地质调查局南京地质调查中心 一种原状土壤取样装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1391626A (en) * 1920-04-27 1921-09-20 Richard J Bequette Drill-head for well-driling apparatus
US1747908A (en) * 1923-08-11 1930-02-18 Universal Rotary Bit Company Rotary drill bit
US1524776A (en) * 1923-10-08 1925-02-03 Frederick W Boland Deep-well rotary drill
US1749344A (en) * 1926-12-15 1930-03-04 Frederic W Hild Disk bit
US1826059A (en) * 1927-09-07 1931-10-06 Dunn William Tracy Drilling head
US2021219A (en) * 1931-06-29 1935-11-19 United Shoe Machinery Corp Clicking machine
US2049543A (en) * 1935-07-12 1936-08-04 Archer W Kammerer Well bit
FR1304215A (fr) * 1961-09-08 1962-09-21 California Research Corp Procédé et appareil de forage des exploitations de puits en mer
FR1597431A (de) * 1968-08-07 1970-06-29
GB1278986A (en) * 1969-09-10 1972-06-21 Shell Int Research A method of installing a platform carried by a floating vessel at a substantially constant distance above the water-bed
US4049067A (en) * 1975-11-05 1977-09-20 Ingersoll-Rand Company Cutter mounting extension apparatus
FR2444787A1 (fr) * 1978-12-22 1980-07-18 Inst Francais Du Petrole Dispositif a conduite flexible permettant d'effectuer des operations de forage, de carottage et des mesures in situ dans les fonds sous-marins
US4273471A (en) * 1979-06-13 1981-06-16 Chevron Research Company Marine-drilling sub-base assembly for a soft-bottom foundation
CH653742A5 (en) * 1981-06-17 1986-01-15 Hannelore Bechem Unit for drilling rock, with a drilling head having percussive, radially vibrating drilling tools
CA1234096A (en) * 1984-03-19 1988-03-15 Inco Limited Spherical bit
GB2208673B (en) * 1984-06-29 1989-10-11 Spiral Drilling Systems Inc Drill bit with full offset cutter bodies
DE3424999C2 (de) 1984-07-06 1994-01-13 Bauer Spezialtiefbau Schlitzwandfräse
FR2574847B1 (fr) * 1984-12-13 1987-01-16 Soletanche Dispositif pour effectuer des forages circulaires de grand diametre dans le sol
US4718504A (en) * 1985-03-15 1988-01-12 Tone Boring Co., Ltd. Trench excavator
DE3920392A1 (de) * 1989-06-22 1991-01-10 Bilfinger Berger Bau Verfahren zum abbau und zur foerderung einer unter wasser lagernden bodenschicht und vorrichtung zur durchfuehrung des verfahrens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1626127A1 (de) 2004-08-10 2006-02-15 BAUER Maschinen GmbH Fräsvorrichtung und Verfahren zum Erstellen eines Fräslochs
US7363990B2 (en) 2004-08-10 2008-04-29 Bauer Maschinen Gmbh Cutting device and method for producing a cut hole
EP2251491A1 (de) 2009-05-15 2010-11-17 BAUER Maschinen GmbH Fräsvorrichtung und Verfahren zum Abtragen von Bodenmaterial

Also Published As

Publication number Publication date
US5931235A (en) 1999-08-03
AU2868497A (en) 1998-01-22
EP0819819A1 (de) 1998-01-21
CA2210442C (en) 2004-05-04
CA2210442A1 (en) 1998-01-16

Similar Documents

Publication Publication Date Title
EP2322724B1 (de) Unterwasserbohranordnung und Verfahren zum Einbringen eines rohrförmigen Gründungselements in den Gewässergrund
EP2562310B1 (de) Unterwasser-Bohranordnung und Verfahren zum Erstellen einer Bohrung in einem Gewässergrund
EP2562348B1 (de) Unterwasser-Bohranordnung und Verfahren zum Erstellen einer Bohrung
EP2295646B1 (de) Bohrvorrichtung und Bohrverfahren
EP2527539A1 (de) Unterwasser-Bohranordnung und Verfahren zum Einbringen eines Gründungselementes in einen Gewässergrund
DE3014990A1 (de) Erdbohrgeraet
EP1310600A1 (de) Bohrvorrichtung und Bohrverfahren
EP0900319B1 (de) Verfahren und vorrichtung zum abtrennen von im boden verankerten rohren oder pfeilern
EP0819819B1 (de) Fräskopf, Bohrvorrichtung sowie Vorrichtung und Verfahren zum Meeresbodenbohren
EP1580398B1 (de) Verfahren und Vorrichtung zum Tiefbau
EP0958446B1 (de) Verfahren und vorrichtung zum niederbringen von bohrlöchern, insbesondere für schürf- und gewinnungsbohrungen
DE69720262T2 (de) Vorrichtung und verfahren zur handhabung von rohren
EP0825326B1 (de) Verfahren und Vorrichtung zum Horizontalbohren und zum Handhaben von Bohrstangen
DE3446900C2 (de) Verfahren und Vorrichtung zum Reinigen der Wendel eines Schneckenbohrers
EP1640507A1 (de) Pfahlbohrwerkzeug
DE2815149C3 (de) Verfahren und Vorrichtung zum Hochbrechen eines Schachtes durch Aufwärtsbohren aus dem Vollen
DE3729561C2 (de)
DE60011244T2 (de) Bohrer zur herstellung von weitdurchmesser und grosstiefen bohrlöchern sowie verfahren zur durchführung von solchen bohrlöchern
EP0956424B1 (de) Verfahren und vorrichtung zum niederbringen von bohrlöchern in den meeresboden durch anwendung eines gegenspülverfahrens
EP1167635A1 (de) Anordnung zum Einbringen einer Leitung
DE2829834A1 (de) Steinbohrmeissel und verfahren zu seiner anwendung
DE3423789C2 (de) Bohreinrichtung für Gesteinsbohrungen
DE3601713A1 (de) Fahrbare bohr- und rammanlage
DE19635916A1 (de) Fräskopf, Bohrvorrichtung sowie Vorrichtung und Verfahren zum Meeresbodenbohren
DE3525595C2 (de) Einrichtung zum Abteufen von Schächten, insbesondere von Blindschächten und Gefrierschächten, aus dem Vollen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

17P Request for examination filed

Effective date: 19971215

AKX Designation fees paid

Free format text: DE FR IT

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 20010802

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAUER MASCHINEN GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 59710797

Country of ref document: DE

Date of ref document: 20031106

Kind code of ref document: P

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040730

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080728

Year of fee payment: 12

Ref country code: FR

Payment date: 20080728

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090715