EP0819819B1 - Tête de fraisage, dispositif de forage et procédé de forage sous-marin - Google Patents
Tête de fraisage, dispositif de forage et procédé de forage sous-marin Download PDFInfo
- Publication number
- EP0819819B1 EP0819819B1 EP97112092A EP97112092A EP0819819B1 EP 0819819 B1 EP0819819 B1 EP 0819819B1 EP 97112092 A EP97112092 A EP 97112092A EP 97112092 A EP97112092 A EP 97112092A EP 0819819 B1 EP0819819 B1 EP 0819819B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tube
- cutter head
- sea bottom
- ship
- boring device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005553 drilling Methods 0.000 title claims description 77
- 238000003801 milling Methods 0.000 title claims description 64
- 238000000034 method Methods 0.000 title claims description 16
- 239000000463 material Substances 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 238000011010 flushing procedure Methods 0.000 claims description 5
- 238000011084 recovery Methods 0.000 claims description 4
- 239000013535 sea water Substances 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims 1
- 239000002245 particle Substances 0.000 claims 1
- 230000036346 tooth eruption Effects 0.000 claims 1
- 239000002689 soil Substances 0.000 description 9
- 244000089486 Phragmites australis subsp australis Species 0.000 description 4
- 238000010276 construction Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 241000237858 Gastropoda Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/88—Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
- E02F3/90—Component parts, e.g. arrangement or adaptation of pumps
- E02F3/92—Digging elements, e.g. suction heads
- E02F3/9212—Mechanical digging means, e.g. suction wheels, i.e. wheel with a suction inlet attached behind the wheel
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/88—Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
- E02F3/90—Component parts, e.g. arrangement or adaptation of pumps
- E02F3/905—Manipulating or supporting suction pipes or ladders; Mechanical supports or floaters therefor; pipe joints for suction pipes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B10/00—Drill bits
- E21B10/08—Roller bits
- E21B10/12—Roller bits with discs cutters
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B10/00—Drill bits
- E21B10/08—Roller bits
- E21B10/16—Roller bits characterised by tooth form or arrangement
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B19/00—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
- E21B19/002—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables specially adapted for underwater drilling
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/02—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil
- E21B49/025—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil of underwater soil, e.g. with grab devices
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/12—Underwater drilling
- E21B7/128—Underwater drilling from floating support with independent underwater anchored guide base
Definitions
- the invention relates to a milling head for earth bores the preamble of claim 1, a drilling device for Soil exploration with such a milling head, as well as a Seabed drilling apparatus and method for drilling the seabed, which are used in soil exploration, for soil samples from a defined depth below the Collect drilling surface.
- Trench wall cutters are known for earth drilling, which have two offset cutting wheel pairs parallel to the axis, which rotate in opposite directions on horizontal axes, so that the loosened soil in the space between the two Wheels is conveyed where there is a suction device is transported upwards.
- Such a trench cutter is known for example from EP 0 167 090 A2.
- These trench wall cutters have a large volume Frame construction and are very heavy.
- the drilling cross section is rectangular.
- a support liquid for example those under the name bentonite is known to be filled into the borehole.
- Such trench cutters are not suitable for exploring the ground very suitable, since the support fluid to the bottom of the drill is present and there with the drilled soil mixed. A neat analysis of the composition of the Drilled soil is no longer possible. moreover the drill cross sections are unnecessarily large and the rectangular ones Drill cross-sectional shape has only moderate inherent stability of depth.
- Trench wall cutters of this type are also used by one Supply vessel for ground exploration below sea level used.
- the maximum achievable Limited drilling depth Seabed exploration such as diamond mining or finding other rare Materials are therefore often used with scrapers carried out.
- this procedure is very imprecise and not particularly powerful.
- the milling head for drilling Boreholes with a round cross-section known.
- the milling head has a total of four identically designed, rotatable driven cutting wheels, the end faces of which are each conical converge.
- a total of four milling wheel axles of the four milling wheels are equidistant from the drilling axis the milling head positioned, two of each Milling wheel axes lie in a common plane and parallel arranged mutually on both sides of the drilling axis are.
- the milling wheel axes lying in a common plane are in turn offset by 90 ° to the two arranged in the other plane milling wheel axes.
- the cutting wheels, the cutting wheel axes in a common Layers are driven in opposite directions.
- a disadvantage of this known milling head is in particular the comparatively complicated structure. That's what every milling wheel is like is stored and is stored independently by an independent gear arrangement or by a independent drive actuated. Because the milling head when drilling is exposed to extreme mechanical loads at any time the risk that one of the bearings or one the gear arrangement fails. When using standalone Drives for each cutter wheel must be on top of each other be regulated to ensure a constant To ensure drilling feed.
- EP 0 159 801 A1 describes a spherical, rolling Drill bits for earth drilling described.
- This drill bit includes two swivel-mounted hemispheres with cutting elements are arranged.
- One drive is the hemispheres not provided.
- the invention has for its object to provide a milling head, a drilling device and a seabed drilling device, and to provide a method for drilling the seabed, which enable efficient soil exploration to great depths and even with hard base material without great effort.
- the task is characterized by the characteristics of the Part of claim 1 with respect to the milling head, the Claim 7 with respect to the drilling device, the claim 11 regarding the seabed drilling device and claim 16 with respect to the method for Seabed drilling solved.
- Advantageous embodiments are described in the subclaims.
- the drilling device according to the invention provides a drilling sample which accurately reproduces the depth and the amount of the individual material work.
- An approximately round drilling cross-section achieves very stable conditions in the borehole.
- the borehole wall area is minimal in relation to the borehole volume. Accordingly, a high level of performance, ie a high yield of conveyed milling material, is achieved in the borehole shape according to the invention.
- the drilling device can also be used on land, it is particularly suitable for use as a seabed drilling device.
- a very good drilling result is achieved when the milling head is designed as a full cut milling head.
- the milling head is advantageously made of rotating in opposite directions frustoconical cutting wheels formed. Through this A circular drilling cross-section can very well be used for construction can be achieved. At the same time, the drill head has a very high drilling capacity.
- the comminuted milling material is suitably separated by a Suction box can be extracted via a suction line.
- a drilling device has a Milling head a tube with a roughly the same cross section corresponding cross section.
- seabed drilling device An advantageous use of the seabed drilling device is by mounting on a ship with one over one work tower arranged amidships arranged opening guaranteed.
- the lowerable part of the seabed drilling device which mainly comes from the milling head, the worktable and the pipe is through that Opening retractable and extendable.
- the work tower it can hoisted pipe securely attached in a vertical orientation become.
- a good drilling operation is achieved by going through from the ship the upper opening of the pipe to the milling head for operating the ocean floor drilling rig Deflection devices are guided at the work table. Thereby it is possible to use these lines relatively strongly at minimal Tension length as well as hustle and bustle in the ocean current avoid without an undesirable through these lines Force is exerted on the drill head and the pipe becomes.
- the lines only practice on the work table Force upwards, which is due to its high weight, however, generally no impairment experiences its orientation.
- the vertical alignment can be carried out in a particularly advantageous manner of the pipe are taken over by the guide part, if the rope is held steadily with a relatively high tension becomes.
- the work table due to its high weight, relatively high exposed to upward forces without in its alignment to be affected.
- unneeded material can be cut via the bypass valve removed from the suction line at the top of the pipe without being pumped up to the supply ship have to.
- the drill head is secured by the pipe with large amounts of trailing sea water as rinse water supplied for milling operation.
- FIG. 1 shows a milling head 1 with an approximately round drilling cross section.
- the milling head 1 is made of four pairs in opposite directions revolving frustoconical cutting wheels 2 formed, which are stored in pairs on two gear shields 6 are.
- the radii of the truncated cones are from the axial center of the milling head 1 starting smaller in the axial direction.
- the axially outer milling wheels 2 have a smaller one Diameter than the inner cutting wheels 2.
- the drive motors (not shown) are located above the cutting wheels 2.
- the gear shields 6 are on one Frame 7 attached, which at the end of a tube 12 (Fig. 3) are attached.
- the milling wheels 2 run in pairs in opposite directions, since each two cutter wheels 2 driven by a gear are, as shown in EP 0 167 090.
- An emerging torque around the drilling axis is caused by the firm locking of the tube 12 in the circumferential direction in the Depth compensated.
- On the circumference of the cutting wheels 2 are in the circumferential direction evenly spaced Milling teeth 5 formed, which the area of effect of Milling head 1 except for the boundary line dashed in Figure 1 8 enlarge.
- FIG. 2 also shows a scraper plate 4, which crushes the milled material to a defined maximum grain size.
- the milled material is through a suction box 3 and Suction line 28 aspirated.
- a ship 11 is used as an overwater operations control device provided that a work tower amidships 16 carries, which over an opening 18 in Longstrip is arranged. Through this opening 18 can the lowerable portion of the ocean floor drilling rig, which mainly from the milling head 1 (not shown), the tube 12 and a work table 13, on one Rope 26 can be lowered.
- Figure 3 shows this part in Rest position and in working position, namely both in the raised position Position, the tube 12 in a vertical orientation is fixed in the work tower 16, as well as in lowered Position, the tube 12 through a follow-up system 14 relative to the work table 13 to the maximum drilling depth is pushed down.
- the follow-up system 14 consists of hydraulically driven and in the radial direction and in the axial direction of the tube 12 adjustable brackets. These grip the circumference of the tube 12 and move it in the axial direction.
- the brackets are counteracted with the hydraulic drive in the radial direction the tube 12 pressed so that it is displaceable on the circumference of the tube 12 abut.
- the brackets are about evenly distributed over the pipe circumference, so that no resulting Radial moment on tube 12 acts.
- the clamps are used to move the tube 12 hydraulically driven in the axial direction of the tube 12, taking the tube 12 with it and relative to it Move work table 13.
- the brackets loosen when reaching the maximum stroke in the axial direction of the Tube 12 will then be in the opposite direction retracted and then take the tube 12 again by moving in a radial direction. Then take the clamps the tube 12 in turn in the desired direction of movement With.
- the tube 12 has a the drilling diameter of the milling head 1 corresponding diameter. Serves during drilling operations via the follow-up system from the work table 13 to the pipe 12 transmitted force in the axial direction of the tube 12 as Feeding force for the milling head 1. Especially when drilling the seabed leads the pipe 12 to improved drilling conditions, because the depth is due to the highly flowable components of the sea floor always exposed to danger is to be buried. Since the tube 12 has no protrusions has and is relatively smooth-walled, its introduction into the depths with relatively little effort possible. Through the tube 12, the milling head 1 is on a kept straight drilling direction. This makes it possible test drilling in precisely defined areas. The milling head 1 and the tube 12 are firmly connected. The tube 12 thus also fulfills a supporting function for the milling head 1.
- the pipe cross-section is about circular drilling cross section of the milling head 1 adapted. This cross-sectional shape ensures the stability of the pipe 12 very high against indentation or bending.
- a bypass valve 15 through which unneeded milled material from the suction line 28 can be pumped out.
- this bypass valve 15 it is possible, for example, to cut the milled material the first section of the hole has been drilled out and only the milled material from a greater drilling depth comes to convey up to ship 11.
- the tube 12 with the milling head 1 through Follow-up system 14 pulled up relative to the work table 13 again.
- Typical withdrawal forces correspond to the order of magnitude from 500 to 1000 tons. However, these are not included in the Rope 26 initiated between ship 11 and work table 13. Only after the tube 12 is completely relative to the work table 13 has been pulled up, the rope 26 by one recovery winch 25 on the ship side (see FIG. 6) rolled up.
- Figures 4 and 5 show the tube 12, on the lower End of the milling head 1 is (not shown).
- the Tube 12 is via the follow-up system 14 with the work table 13 connected.
- the pipe diameter is typically around 2 Meters, the pipe length a maximum of about 30 meters.
- the weight the work table 13 is 120 tons. However, there are larger dimensions can also be implemented.
- the work table 13 and the tube 12 are via a gimbal 27 connected to one another even with sloping seabed to be able to drill vertically.
- a hydraulic line 20 and the suction line 28 run from the milling head 1 from upwards inside the tube 12, at the upper end of the tube 12 out of this, then parallel to the tube 12 down to deflection devices, which are off at the work table 13 attached pulleys 17 exist, and then further up to the ship 11.
- the tube 12 also forms one Flushing water line for the flushing water supply to the milling head 1.
- Inside the tube 12 and on the semicircular Deflection parts at the top of the pipe are the hydraulic line 20 and the suction line 28 as metal pipes, because they do not have to be twistable there.
- the rope 26 runs from the ship's side Recovery thread 25 on a role on a ship side Work tower upper part 23 through an opening of the guide part 24 to two rolls on the work table 13, then again through the guide part 24 to the ship's side Work tower upper part 23, then again to the work table 13 and finally back to the upper part of the work tower 23, on which the rope end is fixed.
- the distance between the ship-side work tower upper part 23 and the guide part 24 strongly compared to the situation shown in Figure 6 increased.
- the device in FIG a water depth of up to about 200 to 300 meters this The distance then corresponds approximately to the distance between the ship-side work tower upper part 23 and the guide part 24th
- the guide part 24 is relative in its height setting adjustable to the tube 12 by means of the height adjustment 30.
- the height adjustment 30 serves to guide the guide part 24 tube 12 completely raised into the work tower 16 lower.
- the tube 12 protrudes in a fully raised position Condition the height of the work tower 16 and thus also the height of the ship-side upper part of the tower 23, so that the guide member 24 is no longer at the upper end of the Tube 12 can be located.
- the height adjustment 30 consists of two diametrically oppositely arranged deflection rollers 31 on the upper Edge of the tube 12.
- the ship 11 drives over a part of the seabed that explores shall be.
- the seabed drilling device is in motion pulled up and is in work tower 16.
- the work table 13 is located during this process at the lower end of the tube 12. He arrives first on the sea floor and takes due to its high weight, a stable alignment on.
- the rope 26 runs on the tube 12 through the Guide part 24, which after the tube 12 the work tower 16 left had moved to the top of the tube 12 has been. This is due to the relatively tight rope 26 a vertical orientation of the tube 12 through the Guide part 24 guaranteed.
- the rope 26 can be relative be very excited without the heavy work table 13 takes off. An uneven seabed can be sloping despite overlying work table 13 a vertical orientation of the Tube 12 can be maintained because these two parts with the gimbal 27 are connected.
- the Milling wheels 2 rotate in pairs against each other.
- the Milled material is gripped by the milling teeth 5 and by the Scraper plates 4 crushed.
- the shredded milled material is sucked through the suction box 3 and through the suction line 28 and transported up to the ship 11. It is caught there and analyzed.
- the drilling feed of the milling head 1 is through the follow-up system 14 accomplished on the work table 13, which the tube 12 downwards according to the drilling rate shifts.
- the hydraulic line 20 drive energy to the milling head 1 and Sea water supplied for rinsing through the tube 12.
- optional can part of the milled material through the bypass valve 15 on removed the upper end of the tube 12 from the suction line 28 without having to be carried up to ship 11.
- the maximum drilling depth is due to the length of the tube 12 established.
- the tube 12 from the Nachfricksystem 14 on his detected at the upper end, the maximum drilling depth is reached and the tube 12 is moved upwards again by the follow-up system 14. Thereafter, the lowerable portion of the ocean floor drilling rig from the rope 26 back to the ship 11 in the Work tower 16 pulled up.
- the drilling process is finished and the ship 11 can leave the drilling site again.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Soil Sciences (AREA)
- Earth Drilling (AREA)
Claims (18)
- Tête de fraisage avec au moins deux roues de fraisage (2) placées de chaque côté d'un axe de forage de la tête de fraisage (1), roues qui peuvent tourner chacune autour d'un axe de roue de fraisage et qui présentent un diamètre diminuant en direction de l'extérieur, et avec un entraínement pour entraíner en rotation les roues de fraisage (2),
caractérisée en ce que quatre roues de fraisage (2) sont placées rotatives autour d'un axe de roue de fraisage commun qui est orienté radialement à l'axe de forage,
en ce que les diamètres des roues de fraisage (2) diminuent dans la direction axiale de l'axe de roue de fraisage en partant du centre coaxial de la tête de fraisage (1) afin de former une section de forage ronde, et
en ce que les roues de fraisage (2) peuvent être entraínées en sens inverse pour le fraisage. - Tête de fraisage selon la revendication 1, caractérisée en ce qu' elle est conformée en tête de fraisage en section complète.
- Tête de fraisage selon l'une quelconque des revendications précédentes, caractérisée en ce qu' elle est formée de roues de fraisage (2) tronconiques tournant en sens inverse.
- Tête de fraisage selon l'une quelconque des revendications précédentes, caractérisée en ce que les quatre roues de fraisage (2) sont montées par paires sur des flasques (6) de mécanisme et les moteurs d'entraínement sont placés au-dessus des flasques (6) de mécanisme.
- Tête de fraisage selon l'une quelconque des revendications précédentes, caractérisée par des plaques de cure (4) sur la tête de fraisage (1), par lesquelles la matière fraisée peut être fragmentée à une granulométrie maximale définie en interaction avec des dents de fraisage (5) présentes sur les roues de fraisage (2).
- Tête de fraisage selon l'une quelconque des revendications précédentes, caractérisée par un caisson d'aspiration (3) à travers lequel la matière fraisée fragmentée peut être aspirée par l'intermédiaire d'une conduite d'aspiration (28).
- Dispositif de forage avec une tête de fraisage selon l'une quelconque des revendications 1 à 6, caractérisé par un tube (12) placé au-dessus de la tête de fraisage (1), de section correspondant approximativement à la section de forage, qui sécurise toute la profondeur de creusement et par l'intermédiaire duquel est produite la progression de la tête de fraisage (1).
- Dispositif de forage selon la revendication 7, caractérisé par une tête de fraisage (1) selon l'une quelconque des revendications 1 à 6 et par un plateau de travail (13) s'appuyant sur la surface de forage, plateau qui saisit le tube (12) avec un système (14) de post-saisie et le porte de manière mobile dans la direction de forage.
- Dispositif de forage selon l'une quelconque des revendications 7 ou 8, caractérisé en ce que le tube (12) est parcouru par une conduite d'aspiration (28) et une conduite hydraulique (20) qui alimentent la tête de fraisage (1) en énergie motrice ou bien aspirent les matières fraisées, et en ce que de l'eau de rinçage peut être envoyée à la tête de fraisage (1) à travers le tube (12).
- Dispositif de forage selon l'une quelconque des revendications 8 ou 9, caractérisé par une vanne de dérivation (15) à l'extrémité supérieure du tube (12), par laquelle les matières fraisées dont on n'a pas besoin peuvent être pompées depuis la conduite d'aspiration (28).
- Dispositif selon la revendication 10, caractérisé par une utilisation pour des forages sous-marins.
- Dispositif de forage sous-marin selon la revendication 11, caractérisé par le montage sur un navire (11) avec une tour de travail (16) placée au-dessus d'une ouverture (18) au milieu du navire, la partie de descente du dispositif de forage sous-marin pouvant descendre à travers l'ouverture (18).
- Dispositif de forage sous-marin selon la revendication 12, caractérisé en ce que des conduites (20, 28) allant du navire (11) à la tête de fraisage (1) à travers l'ouverture supérieure du tube (12) pour faire fonctionner le dispositif de forage sous-marin passent sur des dispositifs de renvoi (17) fixés sur le plateau de travail (13).
- Dispositif de forage sous-marin selon l'une quelconque des revendications 12 ou 13, caractérisé par un câble (26) passant sur des rouleaux, câble qui relie le navire (11), la tour de travail (16), un élément de guidage mobile (24) entourant le tube (12) et le plateau de travail (13).
- Dispositif de forage sous-marin selon la revendication 14, caractérisé en ce que le câble (26) est maintenu sous tension afin de guider le tube (1) avec l'élément de guidage (24).
- Procédé de forage sous-marin avec un dispositif de forage sous-marin selon l'une quelconque des revendications 11 à 15, caractérisé par les étapes suivantes :la partie de descente du dispositif de forage sous-marin, qui est composée principalement de la tête de fraisage (1), du plateau de travail (13) et du tube (12), est descendue sur le fond de la mer à travers l'ouverture (18) sur le câble (26) depuis le treuil (25) situé sur le navire, le plateau de travail (13) se trouvant à l'extrémité inférieure du tube (12) ;la tête de fraisage (1) commence à forer au fond de la mer, le système de post-saisie (14) poussant le tube (12) vers le bas d'une manière correspondant à sa progression ;les matières fraisées sont transportées vers le haut jusqu'au navire (11) par une conduite d'aspiration (28) ;à la fin de l'opération de forage, le système de post-saisie (14) remonte le tube (12) depuis le trou de forage ;la partie de descente du dispositif de forage au fond de la mer est remontée sur le navire (11) par l'intermédiaire du câble (26) du treuil (25) situé sur le navire.
- Procédé de forage sous-marin selon la revendication 16, caractérisé en ce que les matières de fraisage dont on n'a pas besoin sont retirées de la conduite d'aspiration (28) par l'intermédiaire d'une vanne de dérivation (15) à l'extrémité supérieure du tube (12), sans devoir les pomper jusqu'au navire (11).
- Procédé de forage sous-marin selon l'une quelconque des revendications 16 ou 17, caractérisé en ce que de l'eau de mer traversant le tube (12) est envoyée comme eau de rinçage à la tête de fraisage (1) pendant le forage.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19628661 | 1996-07-16 | ||
DE19628661 | 1996-07-16 | ||
DE19635916A DE19635916A1 (de) | 1996-07-16 | 1996-09-04 | Fräskopf, Bohrvorrichtung sowie Vorrichtung und Verfahren zum Meeresbodenbohren |
DE19635916 | 1996-09-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0819819A1 EP0819819A1 (fr) | 1998-01-21 |
EP0819819B1 true EP0819819B1 (fr) | 2003-10-01 |
Family
ID=26027571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97112092A Expired - Lifetime EP0819819B1 (fr) | 1996-07-16 | 1997-07-15 | Tête de fraisage, dispositif de forage et procédé de forage sous-marin |
Country Status (4)
Country | Link |
---|---|
US (1) | US5931235A (fr) |
EP (1) | EP0819819B1 (fr) |
AU (1) | AU2868497A (fr) |
CA (1) | CA2210442C (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1626127A1 (fr) | 2004-08-10 | 2006-02-15 | BAUER Maschinen GmbH | Appareil de fraisage et méthode d'obtention d'un trou fraisé |
EP2251491A1 (fr) | 2009-05-15 | 2010-11-17 | BAUER Maschinen GmbH | Dispositif de fraisage et procédé de dépôt de matériau de sol |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10243747B4 (de) * | 2002-09-20 | 2004-07-29 | Bauer Maschinen Gmbh | Verfahren und Vorrichtung zum Abbau von Bodenmaterial |
US20060016621A1 (en) * | 2004-06-09 | 2006-01-26 | Placer Dome Technical Services Limited | Method and system for deep sea drilling |
EP1630301B1 (fr) * | 2004-08-12 | 2007-10-17 | BAUER Maschinen GmbH | Procédé et dispositif pour le travail du sol |
DE102005017093B4 (de) * | 2004-08-12 | 2008-07-24 | Bauer Maschinen Gmbh | Fräse und Verfahren zur Bearbeitung des Erdbodens |
WO2012021813A1 (fr) | 2010-08-13 | 2012-02-16 | Deep Reach Technology Inc. | Systèmes et procédés d'excavation sous-marine |
CN102220841B (zh) * | 2011-05-23 | 2012-12-26 | 中国地质大学(武汉) | 一种海底取样钻机 |
US9044812B2 (en) | 2011-08-03 | 2015-06-02 | General Electric Company | Jig and method for modifying casing in turbine system |
CN107063741B (zh) * | 2017-03-31 | 2023-06-06 | 中国地质调查局南京地质调查中心 | 一种原状土壤取样装置 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1391626A (en) * | 1920-04-27 | 1921-09-20 | Richard J Bequette | Drill-head for well-driling apparatus |
US1747908A (en) * | 1923-08-11 | 1930-02-18 | Universal Rotary Bit Company | Rotary drill bit |
US1524776A (en) * | 1923-10-08 | 1925-02-03 | Frederick W Boland | Deep-well rotary drill |
US1749344A (en) * | 1926-12-15 | 1930-03-04 | Frederic W Hild | Disk bit |
US1826059A (en) * | 1927-09-07 | 1931-10-06 | Dunn William Tracy | Drilling head |
US2021219A (en) * | 1931-06-29 | 1935-11-19 | United Shoe Machinery Corp | Clicking machine |
US2049543A (en) * | 1935-07-12 | 1936-08-04 | Archer W Kammerer | Well bit |
FR1304215A (fr) * | 1961-09-08 | 1962-09-21 | California Research Corp | Procédé et appareil de forage des exploitations de puits en mer |
FR1597431A (fr) * | 1968-08-07 | 1970-06-29 | ||
GB1278986A (en) * | 1969-09-10 | 1972-06-21 | Shell Int Research | A method of installing a platform carried by a floating vessel at a substantially constant distance above the water-bed |
US4049067A (en) * | 1975-11-05 | 1977-09-20 | Ingersoll-Rand Company | Cutter mounting extension apparatus |
FR2444787A1 (fr) * | 1978-12-22 | 1980-07-18 | Inst Francais Du Petrole | Dispositif a conduite flexible permettant d'effectuer des operations de forage, de carottage et des mesures in situ dans les fonds sous-marins |
US4273471A (en) * | 1979-06-13 | 1981-06-16 | Chevron Research Company | Marine-drilling sub-base assembly for a soft-bottom foundation |
CH653742A5 (en) * | 1981-06-17 | 1986-01-15 | Hannelore Bechem | Unit for drilling rock, with a drilling head having percussive, radially vibrating drilling tools |
CA1234096A (fr) * | 1984-03-19 | 1988-03-15 | Inco Limited | Outil de coupe spherique |
GB2208673B (en) * | 1984-06-29 | 1989-10-11 | Spiral Drilling Systems Inc | Drill bit with full offset cutter bodies |
DE3424999C2 (de) | 1984-07-06 | 1994-01-13 | Bauer Spezialtiefbau | Schlitzwandfräse |
FR2574847B1 (fr) * | 1984-12-13 | 1987-01-16 | Soletanche | Dispositif pour effectuer des forages circulaires de grand diametre dans le sol |
US4718504A (en) * | 1985-03-15 | 1988-01-12 | Tone Boring Co., Ltd. | Trench excavator |
DE3920392A1 (de) * | 1989-06-22 | 1991-01-10 | Bilfinger Berger Bau | Verfahren zum abbau und zur foerderung einer unter wasser lagernden bodenschicht und vorrichtung zur durchfuehrung des verfahrens |
-
1997
- 1997-07-15 EP EP97112092A patent/EP0819819B1/fr not_active Expired - Lifetime
- 1997-07-15 CA CA002210442A patent/CA2210442C/fr not_active Expired - Fee Related
- 1997-07-16 US US08/895,025 patent/US5931235A/en not_active Expired - Fee Related
- 1997-07-16 AU AU28684/97A patent/AU2868497A/en not_active Abandoned
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1626127A1 (fr) | 2004-08-10 | 2006-02-15 | BAUER Maschinen GmbH | Appareil de fraisage et méthode d'obtention d'un trou fraisé |
US7363990B2 (en) | 2004-08-10 | 2008-04-29 | Bauer Maschinen Gmbh | Cutting device and method for producing a cut hole |
EP2251491A1 (fr) | 2009-05-15 | 2010-11-17 | BAUER Maschinen GmbH | Dispositif de fraisage et procédé de dépôt de matériau de sol |
Also Published As
Publication number | Publication date |
---|---|
US5931235A (en) | 1999-08-03 |
CA2210442C (fr) | 2004-05-04 |
EP0819819A1 (fr) | 1998-01-21 |
AU2868497A (en) | 1998-01-22 |
CA2210442A1 (fr) | 1998-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2322724B1 (fr) | Installation de forage d'eau souterraine et procédé d'entrée d'un élément de fondation cylindrique au fond de l'eau | |
EP2562348B1 (fr) | Agencement de forage sous-marin et procédé d'exécution d'un forage | |
EP2527539A1 (fr) | Agencement de forage sous-marin et procédé d'introduction d'un élément de fondation dans le sol d'une étendue d'eau | |
DE3014990A1 (de) | Erdbohrgeraet | |
DE2540590A1 (de) | Verfahren und vorrichtung zur durchfuehrung einer bohrung unterhalb eines hindernisses laengs einer bogenfoermigen bahn | |
EP1310600A1 (fr) | Appareil et méthode de forage | |
EP2295646A1 (fr) | Machine de forage et procédée | |
EP0900319B1 (fr) | Procece et dispositif pour decouper des tubes ou des piliers ancres dans le sol | |
EP0819819B1 (fr) | Tête de fraisage, dispositif de forage et procédé de forage sous-marin | |
EP0958446B1 (fr) | Procede et dispositif pour forer des sondages, notamment des sondages de recherche et d'extraction | |
EP1580398A1 (fr) | Appareil et méthode pour constructions souterraines | |
EP0825326B1 (fr) | Procédé et dispositif pour le forage horizontal et pour la manipulation de tiges de forage | |
DE69720262T2 (de) | Vorrichtung und verfahren zur handhabung von rohren | |
DE3446900C2 (de) | Verfahren und Vorrichtung zum Reinigen der Wendel eines Schneckenbohrers | |
EP1640507A1 (fr) | Appareil de forage pour pieu | |
DE2815149C3 (de) | Verfahren und Vorrichtung zum Hochbrechen eines Schachtes durch Aufwärtsbohren aus dem Vollen | |
DE102008064180A1 (de) | Vorrichtung zum Einbringen einer Erdbohrung in das Erdreich | |
DE3729561C2 (fr) | ||
DE2829834A1 (de) | Steinbohrmeissel und verfahren zu seiner anwendung | |
DE60011244T2 (de) | Bohrer zur herstellung von weitdurchmesser und grosstiefen bohrlöchern sowie verfahren zur durchführung von solchen bohrlöchern | |
DE3423789C2 (de) | Bohreinrichtung für Gesteinsbohrungen | |
EP0956424B1 (fr) | Procede et dispositif pour foncer des forages, en particulier des forages d'exploration et d'exploitation dans le fond de la mer | |
EP1167635A1 (fr) | Dispositif pour insérer une conduite | |
DE202008016851U1 (de) | Vorrichtung zum Einbringen einer Erdbohrung in das Erdreich | |
DE3601713A1 (de) | Fahrbare bohr- und rammanlage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR IT |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;RO;SI |
|
17P | Request for examination filed |
Effective date: 19971215 |
|
AKX | Designation fees paid |
Free format text: DE FR IT |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR IT |
|
17Q | First examination report despatched |
Effective date: 20010802 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BAUER MASCHINEN GMBH |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR IT |
|
REF | Corresponds to: |
Ref document number: 59710797 Country of ref document: DE Date of ref document: 20031106 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040730 Year of fee payment: 8 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080728 Year of fee payment: 12 Ref country code: FR Payment date: 20080728 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090715 |