EP0817943A1 - Trennvorrichtung zum abscheiden von feststoffpartikeln aus dem gasstrom einer wirbelschicht - Google Patents

Trennvorrichtung zum abscheiden von feststoffpartikeln aus dem gasstrom einer wirbelschicht

Info

Publication number
EP0817943A1
EP0817943A1 EP97902297A EP97902297A EP0817943A1 EP 0817943 A1 EP0817943 A1 EP 0817943A1 EP 97902297 A EP97902297 A EP 97902297A EP 97902297 A EP97902297 A EP 97902297A EP 0817943 A1 EP0817943 A1 EP 0817943A1
Authority
EP
European Patent Office
Prior art keywords
separating device
separation chamber
gas flow
channel
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97902297A
Other languages
English (en)
French (fr)
Inventor
Wladyslaw Lewandowski
Henrik Schirner
Frank Steege
Axel Schulle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Patent GmbH
Original Assignee
ABB Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Patent GmbH filed Critical ABB Patent GmbH
Publication of EP0817943A1 publication Critical patent/EP0817943A1/de
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/384Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
    • B01J8/386Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only internally, i.e. the particles rotate within the vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C1/00Apparatus in which the main direction of flow follows a flat spiral ; so-called flat cyclones or vortex chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C7/00Apparatus not provided for in group B04C1/00, B04C3/00, or B04C5/00; Multiple arrangements not provided for in one of the groups B04C1/00, B04C3/00, or B04C5/00; Combinations of apparatus covered by two or more of the groups B04C1/00, B04C3/00, or B04C5/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/086Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by the winding course of the gas stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • F23J15/027Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow using cyclone separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00256Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles in a heat exchanger for the heat exchange medium separate from the reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2206/00Fluidised bed combustion
    • F23C2206/10Circulating fluidised bed
    • F23C2206/101Entrained or fast fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/15026Cyclone separators with horizontal axis

Definitions

  • Separating device for separating solid particles from the gas stream
  • the invention relates to a separating device for separating solid particles from a gas stream carrying these particles from a combustion chamber in accordance with the preamble of claim 1.
  • a ZWS system works with a circulating fluidized bed reactor.
  • a mass of fine-grained solid particles which are fed to a combustion chamber, has primary air flowing through them from bottom to top.
  • the weight of the solid particles is canceled out by the opposite flow force of the gas stream.
  • Some of the solid particles leave the fluidized bed reactor with the gas stream.
  • the solid particles are removed from the gas stream by additional devices in order to ensure a solids cycle necessary for the process.
  • centrifugal separators called cyclones for separating the solid particles from the exhaust gas stream.
  • the principle of centrifugal force separation is based on the effect of centrifugal forces. By accelerating the gas / solid mixture on a circular path around the vertical cyclone axis, centrifugal forces are created which act to different degrees on gas and solid components of the gas flow. The centrifugal force increases with increasing particle size, so that the particles are separated from a certain core size. Particles that are smaller than the so-called separation grain follow the gas flow. The solid particles, which are larger than the separating grain of the cyclone, are thrown against its wall and slide down to a solids outlet.
  • the effect of centrifugal force separation is very much overlaid by mass separation, i.e. a large part of the particles in the gas flow do not whirl around the vertical cyclone axis several times, but fall downwards immediately after entering the cyclone the solid pipe down to the solid discharge. Only a relatively small part of the solid particles is separated from the gas flow by centrifugal force separation.
  • Cyclones of conventional design for ZWS systems are very large, voluminous structures that require a large masonry mass to provide adequate heat insulation and protection against erosion from impacting solid particles. These may only be heated slowly, which leads to long start-up times for ZWS systems Shutdown processes reduce the service life of the lining. Furthermore, in the conventional construction of cyclones, complex compensators are required due to the different amounts and dimensions of thermal expansion for the cyclone, combustion chamber and boiler convection part.
  • the object of the invention is to provide a separation device according to the preamble of claim 1, which effects a separation of solid particles from the exhaust gas stream as directly as possible at the exit of the combustion chamber and thereby enables a compact connection with the combustion chamber and possibly with further functional units.
  • the emerging from the combustion chamber Gass ⁇ trom passes directly to a flow channel which directs the gas flow to a hori ⁇ zontal lying Zyklo ⁇ achse around on a circular arc from top to un ⁇ th In Vertika l he downward direction is the Stromungskanai expanded in that it merges into a chamber, in which the separated solid particles sink down.
  • the cleaned gas stream arrives at a suitable transfer channel.
  • this flow channel Due to the construction of this flow channel with a horizontally running cyclo-axis, the solid particles get in the shortest way to a point of the flow channel where it widens into the separation chamber, which thereby comes to lie directly next to the combustion chamber.
  • This arrangement enables a very compact structure, but at the same time a very effective separation of the solid particles from the exhaust gas stream is achieved because the entry point into the separation chamber works as a diffuser.
  • the gravitational and centrifugal forces acting on the heavy solid particles do not allow them to follow the exhaust gas flow on its upward curve up to the transfer channel, so that the particles slide down into the separation chamber.
  • the flow channel tapers continuously until it enters the separation chamber in order to achieve a continuous acceleration of the exhaust gas flow.
  • the gas flow is decelerated and deflected, so that flow energy is recovered as pressure.
  • An effective means is to position the entry into the take-over channel at a sufficient distance from the exit of the flow channel, the gas stream expediently also having to pass a turning point, behind which it goes up again.
  • a receiving opening must be provided in order to receive the gas stream which has been cleaned of the separated solid particles in the transfer channel. To this end, it is conceivable as a first alternative that the receiving opening extends parallel to the cyclone axis and faces the separation chamber downwards. A second alternative could be that the receiving opening extends vertically or at an angle to the cyclone axis.
  • the design of the flow channel is simplified in that it is formed without additional fittings on the one hand by the outer contour of the take-over channel and on the other hand by the inside of the outer wall of the reactor assembly.
  • the gas flow in the flow channel reaches its highest speed at its narrowest point before entering the separation chamber.
  • a speed of 10 to 60 m / s is particularly favorable for separating the particles.
  • the arrangement of the take-over channel immediately behind the exit of the combustion chamber not only enables a compact network between the latter and the separation chamber, but also enables the convection part to be connected directly. As a result, it is then also possible to integrate the convection part into the reactor assembly consisting of the separation chamber and combustion chamber, as a result of which a further partition wall lies between the separation chamber and the convection part.
  • the compensators required in conventional reactors can be omitted in that all walls in the reactor unit are membrane walls with boiling water leading pipes are constructed, whereby it is avoided that inadmissible heat stresses arise.
  • the separation chamber according to the invention will preferably be provided in connection with a combustion chamber for circulating fluidized bed combustion.
  • the solid particles separated from the exhaust gas flow in the area of the separation chamber floor can be directed back into the combustion chamber via a return opening due to the compact construction.
  • Fig. 1 shows a reactor block laterally in section with a view of the fuel
  • FIG. 2 shows a section along the section line A-A according to FIG. 1,
  • FIG. 3 shows a section of a reactor block corresponding to FIG. 1 with a modified take-over channel
  • FIG. 4 shows a section along the section line B-B according to FIG. 3.
  • a ZWS reactor 1, a separation chamber 15 and a convection part 11 are integrated in a reactor unit, granular solid is introduced into the reactor 1 and swirled by adding primary air 2 and and and the desired reaction takes place. Since the speed of the gas flow in the combustion chamber is greater than the sinking speed of the solid particles, some of the solid particles are entrained and discharged from the ZWS reactor 1 at the top via the gas flow.
  • the gas flow reaches the inlet opening 3 of a flow channel 4, which is formed by the inside of an outer wall 5 and the outside of a wall 6 of the take-over channel 4.
  • a steady acceleration of the gas flow is generated by a narrowing of the flow channel 4 in the flow direction, which is narrowed at the narrowest point 8 with a cross-sectional area.
  • che x reaches its highest value.
  • the area x is selected so that the flow rate here is between 10 and 60 m / s.
  • the flow channel 4 opens to the separation chamber 15.
  • the diffuser effect produced by the cross-sectional expansion delays the gas flow, which is simultaneously diverted along an arc 17.
  • the separation of gas and solid takes place here, since the solid particles, which are larger than the separation grain of the cyclone-like arrangement, cannot follow the deflection due to their inertia. Backmixing, as can occur with conventional cyclones, is avoided by this arrangement.
  • the solid sliding down on an outer wall 9 of the separation chamber can no longer be caught by the gas flow.
  • the solid particles reach a return opening 10 in the bottom area of the separation chamber 15 and are fed from there back to the ZWS reactor. Since the ZWS reactor 1 must be sealed off from the separation chamber 15, one can e.g. work with a siphon (not shown here) installed in the bottom of the separation chamber.
  • a feed opening 14, 18 of the take-over channel 7 are conceivable.
  • the tubular take-over channel arranged coaxially to the cyclone axis 16 ends in front of a vertical outer wall of the separation chamber 1 and forms its feed opening 18 here.
  • the opening area can extend vertically or can also be angled and with said Form the outer wall of a funnel opening towards the separation chamber.
  • the feed opening is formed by a recess which extends horizontally along the lateral surface of the take-over channel 7, preferably directly adjacent to a partition wall 13a to the ZWS reactor 1.
  • the walls of the separation chamber 15, the ZWS reactor 1, the convection part 11 and the connecting partitions 13a, 13b are designed as boiling water-carrying membrane walls. de executed. This prevents inadmissible thermal stresses and complex compensators are no longer necessary. Thick masonry is not necessary because the solid particles do not hit the walls with the high energy that is usual with cyclones. A lining with a thin wear protection layer is only provided in areas at risk of erosion. The start-up time of the boiler system is shortened noticeably and the structure is lighter and less complex.

Abstract

Die Erfindung betrifft eine Trennvorrichtung zum Abscheiden von Feststoffpartikeln aus einem diese Partikel mitführenden Gasstrom eines ZWS-Reaktors (1). Es sind Mittel vorgesehen, die den Gasstrom so beeinflussen, daß Zentrifugal- und Schwerkräfte auf die Feststoffpartikeln einwirken, die größer als die Mitnehmerkräfte des Gasstroms sind und somit eine Ablösung von Partikeln einer bestimmten Mindestgröße aus dem Gasstrom ermöglichen. Ein besonders kompakter Aufbau einer ZWS-Anlage wird erfindungsgemäß dadurch erreicht, daß der aus dem ZWS-Reaktor (1) austretende Gasstrom zu einem Strömungskanal (4) gelangt, der ihn um eine horizontal liegende Zyklonachse (16) herum auf einem kreisartigen Bogen (17) von oben nach unten leitet. Der Gasstrom wird von hier einem zur Weiterleitung geeigneten Ubernahmekanal (7) zugeführt. Der Strömungskanal (4) geht in vertikaler Richtung, in eine sich nach unten entsprechend erweiternde Trennkammer (15) über, in der die abgeschiedenen Feststoffpartikeln zum Boden herabsinken.

Description

Beschreibung
Trennvorrichtunq zum Abscheiden von Feststoffpartikeln aus dem Gasstrom einer
Wirbelschicht
Die Erfindung betrifft eine Trenn Vorrichtung zum Abscheiden von Feststoff partikeln aus einem diese Partikel mitführenden Gasstrom einer Brennkammer entsprechend dem Oberbegriff des Anspruchs 1.
Bei einer ZWS-Anlage arbeitet man mit einem zirkulierenden Wirbelschichtreaktor. Hierbei wird eine Masse aus feinkörnigen Feststoffpartikeln, die einer Brennkammer zugeführt werden, von unten nach oben von Primärluft durchströmt. Bei Ausbildung der Wirbelschicht wird die Gewichtskraft der Feststoffpartikel durch die entgegenge¬ setzte Strömungskraft des Gasstromes aufgehoben. Ein Teil der Feststoffpartikel ver¬ läßt den Wirbelschichtreaktor mit dem Gasstrom. Die Feststoffpartikel werden durch Zusatzeiπrichtungen aus dem Gasstrom entfernt, um einen für den Prozeß erforderli¬ chen Feststoffkreislauf sicherzustellen.
Es ist bekannt als Zyklon bezeichnete Fliehkraftabscheider zum Trennen der Fest¬ stoffpartikeln aus dem Abgasstrom zu verwenden. Das Prinzip der Fliehkraftabschei- dung beruht auf der Wirkung von Zentrifugalkräften. Durch eine Beschleunigung des Gas-/Feststoffgemisches auf eine Kreisbahn um die senkrechte Zyklonachse herum, entstehen Fliehkräfte, die unterschiedlich stark auf Gas- und Feststoffanteile des Gasstromes wirken. Mit zunehmender Partikelgröße wächst die Fliehkraft, so daß ab einer bestimmten Kerngröße die Partikeln abgeschieden werden. Partikeln, die kleiner als das sogenannte Trennkorn sind, folgen der Gasströmung. Die Feststoffpartikeln, die größer als das Trennkorn des Zyklons sind, werden an seine Wand geschleudert und rutschen nach unten zu einem Feststoffauslaß. Der Gasstrom und die Feststoff¬ partikeln, die kleiner als das Trennkorn sind, verlassen den Zyklon durch eine zentra¬ le Öffnung in der Decke. Insbesondere bei Zyklonen mit einer sehr hohen Feststoffbeiadung des Gasstromes wird der Effekt der Fliehkraftabscheidung sehr stark von einer Massenabscheidung überlagert, d.h. ein großer Teil der Partikeln im Gasstrom wirbelt nicht mehrfach um die senkrechte Zyklonachse, sondern fällt gleich nach Eintritt in den Zyklon in Form einer abwärts geπchteten Feststoffröhre nach unten zum Feststoffaustrag Nur ein relativ kleiner Teil der Feststoffpartikeln wird durch die Fliehkraftabscheidung vom Gasstrom getrennt.
Zyklone herkömmlicher Bauart für ZWS-Anlagen sind sehr große, voluminöse Gebil¬ de, die zur ausreichenden Wärmeisolierung und zum Schutz gegen Erosion durch aufschlagende Feststoffpartikein große Mauerwerksmasseπ benötigen Diese dürfen nur langsam aufgeheizt werden, was zu langen Anfahrzeiten von ZWS-Anlagen führt An- und Abfahrvorgänge reduzieren die Standzeit der Ausmauerung Weiterhin sind bei der konventionellen Bauweise von Zyklonen aufgrund unterschiedlich großer Wärmedehnungsbeträge und -πchtungen für Zyklon, Brennkammer und Kesselkon- vektionsteil, aufwendige Kompensatoren erforderlich.
Aufgabe der Erfindung ist es, eine Trennvorπchtuπg nach dem Oberbegriff des An¬ spruchs 1 zu schaffen, die möglichst unmittelbar am Ausgang der Brennkammer eine Abscheiduπg von Feststoffpartikeln aus dem Abgasstrom bewirkt und dadurch einen kompakten Verbund mit der Brennkammer und ggf mit weiteren Funktionseinheiten ermöglicht.
Diese Aufgabe wird durch die im Anspruch gekennzeichneten Merkmale gelöst Zweckmäßige Ausgestaltungen und Weiterbildungen des Erfindungsgegenstandes sind in den Unteransprüchen genannt.
Erfindungsgemäß ist vorgesehen, daß der aus der Brennkammer austretende Gass¬ trom unmittelbar zu einem Strömungskanal gelangt, der den Gasstrom um eine hori¬ zontal liegende Zykloπachse herum auf einem kreisartigen Bogen von oben nach un¬ ten leitet In vertikaler Richtung nach unten ist der Stromungskanai dadurch erweitert, daß er in eine Treπnkammer übergeht, in der die abgeschiedenen Feststoffpartikein herabsinken. Der gereinigte Gasstrom gelangt zu einem zur Weiterleitung geeigneten Übernahmekanal.
Durch den Aufbau dieses Strömungskanals mit einer waagrecht verlaufenden Zyklo¬ nachse, gelangen die Feststoffpartikein auf dem kürzesten Weg zu einer Stelle des Strömungskanals, wo dieser sich erweiternd in die Trennkammer übergeht, die da¬ durch direkt neben der Brennkammer zu liegen kommt. Diese Anordnung ermöglicht einen sehr kompakten Aufbau, gleichzeitig wird aber auch eine sehr wirksame Tren¬ nung der Feststoffpartikein aus dem Abgasstrom erreicht, weil die Eintrittsstelle in die Trennkammer als Diffusor arbeitet. Die auf die schweren Feststoffpartikein wirkenden Schwer- und Zentrifugalkräfte erlauben es diesen nicht, dem Abgasstrom auf seinem nach oben führenden Bogen bis zum Übernahmekanal zu folgen, so daß die Partikeln in die Trennkammer hinabgleiten.
In einer vorteilhaften Weiterbildung des Erfindungsgegenstandes ist vorgesehen, daß sich der Strömungskanal bis zum Eintritt in die Trennkammer stetig verjüngt, um eine kontinuierliche Beschleunigung des Abgasstromes zu erreichen. An der Eintrittstelle zur Trennkammer mit ihrer diffusorartigen Erweiterung des Strömungskanals wird der Gasstrom verzögert und umgelenkt, so daß Strömungsenergie als Druck zurückge¬ wonnen wird.
Wichtig ist auch, daß die Umlenkung des Gasstromes im Diffusor so erfolgt, daß keine Rückvermischung mit bereits abgetrennten Feststoffpartikein entsteht. Ein wirksames Mittel besteht darin, den Eintritt in den Übernahmekanal in einem ausreichenden Ab¬ stand zum Austritt des Strömungskanals zu positionieren, wobei zweckmäßiger Weise der Gasstrom auch einen Wendepunkt durchlaufen sollte, hinter dem es wieder nach oben geht.
Während in herkömmlichen Zyklonen die Feststoffpartikein zusammen mit dem Gas¬ strom die senkrechte Zyklonachse mehrfach umrunden, genügt es bei der vorliegen¬ den Anordnung, daß die Zirkulation des Gasstroms um die horizontal liegende Zyklo¬ nachse herum bis zum Eintritt in den Übernahmekanal einen Teilkreis beschreibt, der einer Drehung von weniger als 360 Grad entspricht. Für den Gesamtaufbau von besonderem Vorteil ist, daß der innerhalb des kreisartigen Bogens liegende Raum dazu genutzt wird den Übernahmekanal koaxial zur Zyklo¬ nachse anzuordnen.
Zur Aufnahme des von den abgetrennten Feststoffpartikein gereinigten Gasstroms im Übernahmekanal muß eine Aufnahmeöffnung vorgesehen werden. Hierzu ist als erste Alternative denkbar, daß sich die Aufnahmeöffnung parallel zur Zyklonachse erstreckt und nach unten der Trennkammer zugewandt ist. Eine zweite Alternative könnte darin bestehen, daß die Aufnahmeöffnung sich vertikal oder im Winkel zur Zyklonachse er¬ streckt.
Einen besonders kompakten Aufbau erhält man, wenn die Brennkammer und die Trennkammer in einer Reaktorbaueinheit miteinander vereinigt werden und zwischen beiden eine Trennwand liegt, an deren oberen Ende sich auf der Seite der Trennkam¬ mer der Übernahmekanal anschließt
Die Gestaltung des Strömungskanals vereinfacht sich dadurch, daß er ohne zusätzli¬ che Einbauten einerseits durch die Außenkontur des Übernahmekanals und anderer¬ seits durch die Innenseite der Außenwand der Reaktorbaueinheit gebildet ist. Seine höchste Geschwindigkeit erreicht der Gasstrom im Strömungskanal an seiner engsten Stelle vor dem Eintritt in die Trennkammer. Für das Abtrennen der Partikel besonders günstig ist eine Geschwindigkeit von 10 bis 60 m/s.
Die Anordnung des Übernahmekanals unmittelbar hinter dem Ausgang der Brennkam¬ mer ermöglicht nicht nur zwischen dieser und der Trennkammer einen kompakten Ver¬ bund, sondern ermöglicht auch den unmittelbaren Anschluß des Konvektionsteils. Hierdurch ist es dann weiterhin möglich den Konvektionsteil in die aus Trenπkammer und Brennkammer bestehende Reaktorbaueinheit zu integrieren, wodurch eine weite¬ re Trennwand zwischen der Trennkammer und dem Konvektionsteil zu liegen kommt.
Die bei herkömmlichen Reaktoren benötigten Kompensatoren können dadurch entfal¬ len, daß alle Wände in der Reaktorbaueinheit als Membranwände mit Siedewasser führenden Rohren aufgebaut sind, wodurch vermieden wird, daß unzulässige Wärme¬ spannungen entstehen.
Die erfindungsgemäße Trennkammer wird man vorzugsweise in Verbindung mit einer Brennkammer für eine zirkulierende Wirbelschichtfeuerung vorsehen. Die aus dem Abgasstrom ausgeschiedenen Feststoffpartikel im Bereich des Trennkammerbodens kann man wegen des kompakten Aufbaus auf kurzem Weg über eine Rückführöffnung wieder in die Brennkammer leiten.
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im folgenden näher beschrieben. Es zeigen:
Fig 1 einen Reaktorblock seitlich im Schnitt mit Blick auf die Brenn- und die
Trennkammer, Fig. 2 einen Schnitt entlang der Schnittlinie A-A nach Fig. 1 ,
Fig. 3 einen Ausschnitt aus einem Reaktorblock entsprechend Fig. 1 mit einem modifiziertem Übernahmekanal, Fig. 4 einen Schnitt entlang der Schnittlinie B-B nach Fig. 3.
Wie die stark vereinfachten Prinzipdarstellungen der Fig. 1 bis 4 erkennen lassen, sind ein ZWS-Reaktor 1, eine Trennkammer 15 und ein Konvektionsteil 11 in einer Reaktorbaueinheit integriert, ln den Reaktor 1 wird körniger Feststoff eingebracht und durch Zugabe von Primärluft 2 verwirbelt und und es findet die gewünschte Reaktion statt. Da die Geschwindigkeit des Gasstromes in der Brennkammer größer als die Sinkgeschwindigkeit der Feststoffpartikein ist, wird ein Teil der Feststoffpartikein mit¬ gerissen und über den Gasstrom oben aus dem ZWS-Reaktor 1 ausgetragen.
Unmittelbar hinter der Brennkammer 1 erreicht der Gasstrom die Eintrittsöffnung 3 ei¬ nes Strömungskanals 4, der durch die Innenseite einer Außenwand 5 und die Außen¬ seite einer Wand 6 des Übernahmekanals 4 gebildet wird. Durch eine in Strömungs¬ richtung zunehmende Verengung des Strömungskanals 4 wird eine stetige Beschleu¬ nigung des Gasstroms erzeugt, die an der engsten Stelle 8 mit einer Querschnittsflä- che x ihren höchsten Wert erreicht. Die Fläche x ist so gewählt, daß die Strömungs¬ geschwindigkeit hier zwischen 10 und 60 m/s liegt.
Hinter der engsten Stelle 8 öffnet sich der Strömungskanal 4 zur Trennkammer 15 hin. Die durch die Querschnittserweiterung erzeugte Diffusorwirkung verzögert den Gas¬ strom, der gleichzeitig entlang eines Bogens 17 umgeleitet wird. Hierbei erfolgt die Trennung von Gas und Feststoff, da die Feststoffpartikein, die größer als das Trenn¬ korn der zyklonartigen Anordnung sind, durch ihre Massenträgheit der Umlenkung nicht folgen können. Eine Rückvermischung, wie sie bei üblichen Zyklonen auftreten kann, wird durch diese Anordnung vermieden. Der an einer Außenwand 9 der Trenn¬ kammer herabrutschende Feststoff kann nicht mehr vom Gasstrom erfaßt werden. Die Feststoffpartikein gelangen so zu einer Rückführöffnung 10 im Bodenbereich der Trennkammer 15 und werden von dort wieder dem ZWS-Reaktor zugeführt. Da der ZWS-Reaktor 1 gegenüber der Trennkammer 15 abgedichtet sein muß, kann man z.B. mit einem hier nicht dargestellten, im Boden der Trennkammer eingebauten Sy- phon arbeiten.
Der Gasanteil des Gasstromes und die Feststoffpartikel, die kleiner als das Trennkorn sind, verlassen die Trennkammer 15 durch einen waagrecht liegenden Übernahmeka¬ nal 7 und gelangen so in den Konvektionsteil 11 der Anlage. Wie insbesondere die Fig. 2 und 4 verdeutlichen, sind zwei Varianten zur Gestaltung einer Zuführöffnung 14, 18 des Übernahmekanals 7 denkbar. Bei der Variante nach den Fig. 1 und 2 en¬ det der koaxial zur Zyklonachse 16 angeordnete rohrförmige Übernahmekanal vor einer vertikalen Außenwand der Trennkammer 1 und bildet hier seine Zuführöffnung 18. Die Öffnungsfläche kann sich dabei vertikal erstrecken oder auch abgewinkelt sein und mit der besagten Außenwand einen sich zur Trennkammer hin öffnenden Trichter bilden. Bei dem Beispiel nach den Fig. 3 und 4 wird die Zuführöffnung durch eine Aussparung gebildet, die sich horizontal entlang der Mantelfläche des Übernah¬ mekanals 7 erstreckt, vorzugsweise unmittelbar angrenzend an eine Trennwand 13a zum ZWS-Reaktor 1.
Die Wände der Trennkammer 15, des ZWS-Reaktors 1 , des Konvektionsteils 11 und die verbindenden Trennwände 13a, 13b sind als siedewasserführende Membranwän- de ausgeführt. Dadurch werden unzulässige Wärmespannungen vermieden und auf¬ wendige Kompensatoren sind nicht mehr notwendig. Dickes Mauerwerk ist nicht erfor¬ derlich, weil die Feststoffpartikein nicht mit der hohen, bei Zyklonen üblichen Energie auf die Wände auftreffen. Nur in erosionsgefährdeten Bereichen erfolgt eine Ausklei¬ dung mit einer dünnen Verschleißschutzschicht. Die Anfahrzeit der Kesselanlage wird dadurch merklich verkürzt und der Aufbau leichter und weniger aufwendig.
Bβ7uqszeichenliste
ZWS-Reaktor (1 ) Primärluft (2) Eintrittsöffnung (3) Strömungskanal (4) Außenwand (5)
Wand des Übernahmekanals (6) Übernahmekanal (7) engste Stelle (8) Außenwand (9) Rückführöffnung (10) Konvektionsteil (11 ) Heizflächen (12) erste Trennwand (13a) zweite Trennwand (13b) Zufuhröffnung (14) Trennkammer (15) Übernahmekanal (16) Bogen (17) Zuführöffnung (18)

Claims

Ansprüche
1. Trennvorrichtung zum Abscheiden von Feststoffpartikein aus einem diese Partikeln mitführenden Gasstrom eines ZWS-Reaktors (1 ), wobei Mittel vorgesehen sind, die den Gasstrom so beeinflussen, daß Zentrifugal- und Schwerkräfte auf die Feststoffpartikein einwirken, die größer als die Mitnahmekräfte des Gasstroms sind und somit eine Ablösung von Partikeln einer bestimmten Mindestgröße aus dem Gasstrom ermöglichen, dadurch gekennzeichnet, daß der aus dem ZWS-Reaktor (1 ) austretende Gasstrom einen Strömungskanal (4) erreicht, der ihn um eine horizontal liegende Zykionachse (16) herum auf einem kreisartigen Bogen (17) von oben nach unten leitet, und der Gasstrom von hier zu einem zur Weiterleitung geeigneten Über¬ nahmekanal (7) gelangt, und daß der Strömungskanal (4) in vertikaler Richtung sich nach unten entsprechend erweiternd in eine Trennkammer (15) übergeht, in der die abgeschiedenen Feststoffpartikein herabsinken.
2. Trennvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, daß sich der Strömungskanal (4) bis zum Eintritt (8) in die Trennkammer (15) stetig verjüngt, um eine kontinuierliche Beschleunigung des Gasstromes zu erreichen und dahinter als Diffusor wirkt.
3. Trennvorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Um¬ lenkung des Gasstromes im Diffusor so erfolgt, daß keine Rückvermischung mit be¬ reits abgetrennten Feststoffpartikein entsteht.
4. Trennvorrichtung nach einem der vorhergehenden Ansprüche, dadurch ge¬ kennzeichnet, daß die Zirkulation des Gasstroms um die horizontal liegende Zyklo¬ nachse (16) herum bis zum Eintritt in den Übernahmekanal (7) einen Bogen be¬ schreibt, der einer Drehung von weniger als 360 Grad entspricht.
5. Trennvorrichtung nach einem der vorhergehenden Ansprüche, dadurch ge¬ kennzeichnet, daß innerhalb des kreisartigen Bogens (17) koaxial zur Zyklonachse (16) der Übernahmekanal (7) liegt.
6. Trennvorrichtung nach einem der vorhergehenden Ansprüche, dadurch ge¬ kennzeichnet, daß zur Aufnahme des von den abgetrennten Feststoffpartikein gerei¬ nigten Gasstroms im Übernahmekanal (7) eine Aufnahmeöffnung (14) vorgesehen ist, die sich parallel zur Zyklonachse (16) erstreckt und nach unten der Trennkammer (15) zugewandt ist.
7. Trennvorrichtung nach einem der vorhergehenden Ansprüche 1 bis 6, da¬ durch gekennzeichnet, daß im Übernahmekanal (7) eine Aufnahmeöffnung (18) vor¬ gesehen ist, die sich vertikal oder im Winkel zur Zyklonachse erstreckt.
8. Trennvorrichtung nach einem der vorhergehenden Ansprüche, dadurch ge¬ kennzeichnet, daß der ZWS-Reaktor und die Trennkammer (15) in einer Reaktorbau¬ einheit vereinigt sind und zwischen beiden eine Trennwand (13a) liegt, an deren obe¬ ren Ende sich auf der Seite der Trennkammer (15) der Übernahmekanal (7) an¬ schließt
9. Trennvorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der Über¬ nahmekanal (7) zusammen mit einer Außenwand (5) der Reaktorbaueinheit den Strö¬ mungskanal (4) bildet.
10. Trennvorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß im Strö¬ mungskanal (4) an seiner engsten Stelle vor dem Eintritt in die Trennkammer (15) der Gasstrom seine höchste Geschwindigkeit erreicht und diese zwischen 10 und 60 m/s beträgt.
11. Trennvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Übernahmekanal (7) die Trennkammer (15) mit einem Kon¬ vektionsteil (11 ) verbindet, in dem der gereinigte Gasstrom Wärme abgibt.
12. Trennvorrichtung nach Anspruch 11 , dadurch gekennzeichnet, daß der Konvektionsteil (11) in die Reaktorbaueinheit integriert ist und eine weitere Trenn¬ wand (13b) zwischen der Trennkammer (15) und dem Konvektionsteil (11 ) liegt.
13. Trennvorrichtung nach einem der vorhergehenden Ansprüche 8 bis 12, dadurch gekennzeichnet, daß mindestens eine Trennwand (13a, 13b) in der Reaktor¬ baueinheit als siedewasserführende Membranwand aufgebaut ist und weitere Wände der Reaktorbaueinheit, vorzugsweise alle Wände, in den Wasser/Dampfkreislauf des Kessels eingebunden sind.
14. Trennvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Reaktorkammer für ein Verfahren mit zirkulierender Wirbel¬ schicht vorgesehen ist und die aus dem Gasstrom ausgeschiedenen Feststoffpartikein im Bereich des Trennkammerbodens über eine Rückführöffnung (10) wieder in den ZWS-Reaktor (1 ) gelangen.
EP97902297A 1996-02-08 1997-02-03 Trennvorrichtung zum abscheiden von feststoffpartikeln aus dem gasstrom einer wirbelschicht Ceased EP0817943A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19604565 1996-02-08
DE19604565A DE19604565A1 (de) 1996-02-08 1996-02-08 Trennvorrichtung zum Abscheiden von Feststoffpartikeln aus dem Gasstrom einer Wirbelschicht
PCT/EP1997/000464 WO1997029324A1 (de) 1996-02-08 1997-02-03 Trennvorrichtung zum abscheiden von feststoffpartikeln aus dem gasstrom einer wirbelschicht

Publications (1)

Publication Number Publication Date
EP0817943A1 true EP0817943A1 (de) 1998-01-14

Family

ID=7784843

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97902297A Ceased EP0817943A1 (de) 1996-02-08 1997-02-03 Trennvorrichtung zum abscheiden von feststoffpartikeln aus dem gasstrom einer wirbelschicht

Country Status (6)

Country Link
US (1) US5878892A (de)
EP (1) EP0817943A1 (de)
JP (1) JPH11504261A (de)
DE (1) DE19604565A1 (de)
ID (1) ID15924A (de)
WO (1) WO1997029324A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2758277B1 (fr) * 1997-01-13 1999-10-08 Inst Francais Du Petrole Separateur a enroulement direct de particules d'un melange gazeux et son utilisation en craquage thermique ou catalytique en lit fluidise
FR2845620B1 (fr) * 2002-10-14 2007-11-30 Alstom Switzerland Ltd Reacteur a lit fluidise circulant avec separateur et gaine d'acceleration integree
FR2873790B1 (fr) * 2004-07-27 2006-09-22 Alstom Technology Ltd Reacteur a lit fluidise modulaire
FI124100B (fi) 2011-01-24 2014-03-14 Endev Oy Menetelmä kiertomassareaktorin toiminnan parantamiseksi ja menetelmän toteuttava kiertomassareaktori
CN102980177B (zh) * 2012-11-29 2015-11-18 湘潭锅炉有限责任公司 一种燃生物质流化床锅炉
EP2745927A1 (de) * 2012-12-21 2014-06-25 Borealis AG Fließbettreaktor mit interner Wanderbettreaktionseinheit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2101249A (en) * 1932-03-30 1937-12-07 Foster Wheeler Corp Pneumatic classifier
DE1442745A1 (de) * 1963-10-23 1969-02-06 Kloeckner Humboldt Deutz Ag Vorrichtung zum Behandeln von feinkoernigen,festen Stoffen
US3775948A (en) * 1972-01-18 1973-12-04 J Beam Device for cleaning exhaust products
DE3206236A1 (de) * 1982-02-20 1983-09-01 Bayer Ag, 5090 Leverkusen Verfahren zum gleichzeitigen sichten und geregelten, kontinuierlichen austrag von koernigem gut aus wirbelbettreaktoren
DE3414344A1 (de) * 1984-04-16 1985-10-24 Gebrüder Bühler AG, Uzwil Fliehkraftabscheider
EP0302854B1 (de) * 1987-01-21 1991-06-12 A. Ahlstrom Corporation Wirbelbettreaktor mit flüssigkeitsumwälzung
US5174799A (en) * 1990-04-06 1992-12-29 Foster Wheeler Energy Corporation Horizontal cyclone separator for a fluidized bed reactor
FI93701C (fi) * 1993-06-11 1995-05-26 Ahlstroem Oy Menetelmä ja laite kuumien kaasujen käsittelemiseksi
DE4405642C2 (de) * 1994-02-22 1996-11-07 Eirich Adolf & Albrecht Kg Fliehkraftabscheider
AT402846B (de) * 1994-05-31 1997-09-25 Austrian Energy & Environment Verbrennungsanlage nach dem prinzip einer zirkulierenden wirbelschicht
US5526938A (en) * 1994-10-07 1996-06-18 The Babcock & Wilcox Company Vertical arrangement fluidized/non-fluidized bed classifier cooler
AU5755096A (en) * 1995-06-02 1996-12-18 Austrian Energy & Environment Sgp/Waagner-Biro Gmbh Separation process and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9729324A1 *

Also Published As

Publication number Publication date
US5878892A (en) 1999-03-09
JPH11504261A (ja) 1999-04-20
DE19604565A1 (de) 1997-08-14
ID15924A (id) 1997-08-21
WO1997029324A1 (de) 1997-08-14

Similar Documents

Publication Publication Date Title
DE60130740T2 (de) Verfahren und vorrichtung zur feststoffabtrennung aus gasen
EP1658891B1 (de) Verfahren zur Regulierung der Feststoffumlaufmenge eines zirkulierenden Wirbelschichtreaktorsystems
DE69936217T2 (de) Verfahren und vorrichtung zur abtrennung von feststoffen aus der gasphase
DE60125737T2 (de) Verfahren und vorrichtung zur partikelabtrennung aus heissen abgasen
EP0616023B1 (de) Vergasungsapparat für die Druckvergasung von feinteiligen Brennstoffen
DE602005006433T2 (de) Zyklonenbypass für umlaufwirbelbettreaktor
CA2320411C (en) Fine solids recycle in a circulating fluidized bed
DD227980A1 (de) Apparat fuer die vergasung von kohlenstaub
AT392917B (de) Vorrichtung zur abscheidung des feststoffes aus den abgasen eines wirbelschichtreaktors
WO2010029033A2 (de) Abhitzedampferzeuger
EP0817943A1 (de) Trennvorrichtung zum abscheiden von feststoffpartikeln aus dem gasstrom einer wirbelschicht
DE3225509A1 (de) Wirbelschichtreaktor
DE19834881B4 (de) Wirbelschicht-Feuerungssystem mit Dampferzeugung
WO2000011401A1 (de) Abscheider für eine wasser-dampf-trenneinrichtung
KR910001835B1 (ko) 유동상 반응기
DD253945A5 (de) Umlaufender wirbelschichtreaktor und methode zur trennung von festen stoffen aus abgasen
DE3517986C2 (de)
EP0828970A1 (de) Verfahren und einrichtung zur abscheidung
AT414036B (de) Feuerung für stückeligen brennstoff aus nachwachsenden rohstoffen, insbesondere für einen heizkessel
EP0760071A1 (de) Verbrennungsanlage nach dem prinzip einer zirkulierenden wirbelschicht
DE102018201780A1 (de) Entlüftungsvorrichtung zum Abscheiden und Ausleiten von Gas aus einem flüssigen Medium
DE102008027740A1 (de) Vorrichtung zur Rauchgasführung in einem Mehrzug-Kessel
CH642279A5 (en) Device for dedusting flue gases produced when heating with solid fuels
DE720168C (de) Schornstein mit Flugascheabscheidevorrichtung
DE2136803C3 (de) Drehströmungswirbler zur Feuchtigkeitsabscheidung aus einer Gasströmung, insbesondere in Klimatisierungsanlagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT SE

17Q First examination report despatched

Effective date: 19991118

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20010228

R18R Application refused (corrected)

Effective date: 20010517