EP0816965B1 - Reference voltage generator controlled as a function of temperature - Google Patents

Reference voltage generator controlled as a function of temperature Download PDF

Info

Publication number
EP0816965B1
EP0816965B1 EP97201850A EP97201850A EP0816965B1 EP 0816965 B1 EP0816965 B1 EP 0816965B1 EP 97201850 A EP97201850 A EP 97201850A EP 97201850 A EP97201850 A EP 97201850A EP 0816965 B1 EP0816965 B1 EP 0816965B1
Authority
EP
European Patent Office
Prior art keywords
transistor
base
current mirror
current
bases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97201850A
Other languages
German (de)
French (fr)
Other versions
EP0816965A1 (en
Inventor
Jean-Claude Perraud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of EP0816965A1 publication Critical patent/EP0816965A1/en
Application granted granted Critical
Publication of EP0816965B1 publication Critical patent/EP0816965B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities

Definitions

  • Such a generator is described in the European patent having for registration number 94 203 440.6.
  • This generator has in particular function to provide on the basis of the first and second transistors a voltage whose value does not vary depending on the temperature.
  • the object of the present invention is to remedy this disadvantage by proposing a voltage generator in which the collector voltages of the first and second transistors are made equal, without resorting to a complex structure.
  • a reference voltage generator is characterized in that it comprises, inserted between the first and second transistors and the current sources, a fourth and fifth transistors whose bases are connected together at the base of the third transistor, whose emitters are connected respectively to the collectors of the first and second transistors and whose collectors are each connected to one of the current sources.
  • each of the collectors of the first and second transistor is at a lower potential of a Vbe at the base voltage of the third transistor.
  • each of the bases of the first and second transistors is also at a potential one Vbe lower than the base voltage of the third transistor. It shows that the first and second transistors both work under zero collector-emitter voltage, which is a point of particularly stable operation.
  • a variant of the invention presents a generator of reference voltage as described above, characterized in that it has first, second and third current mirrors, each of them having first and second branches and one feeding point, the first branches of the first and second current mirror being respectively connected to the collectors of the fourth and fifth transistors, the supply points of the first and second current mirror being connected to the second terminal supply, the second branches of the first and second mirrors of current being respectively connected to the first and second branches of the third current mirror including the power point is connected to the first power supply terminal, the bases of the first, second and third transistors being connected together to one of branches of the third current mirror.
  • Such a structure ensures equality of currents passing through the first and second transistors which is necessary to good regulation of the output voltage depending on the temperature.
  • this structure being very simple, the tension power supply of such a generator can take low values, of the order of 2 Volts.
  • Another variant of the invention presents a generator reference voltage as described above, characterized in that it includes, inserted between that of the branches of the first or second current mirror which is not connected to the base of the third transistor, and that of the branches of the third current mirror which is not connected to the base of the third transistor, a sixth transistor whose base is connected to the emitter of the third transistor.
  • the potentials of second current branches of the first and second mirrors of current are identical, both being equal to the output voltage to which is added a Vbe, which further improves the identity of currents flowing through the first and second transistors.
  • the third current mirror has a seventh, an eighth, a ninth and a tenth transistor, the basics of the seventh and eighth transistors being connected to their respective collectors and at the bases of the ninth and tenth transistors, the emitters of the seventh and ninth transistors being connected respectively to collectors of the eighth and tenth transistors, including the transmitters are connected together and form the feeding point of the third current mirror, seventh and ninth collectors transistors respectively forming the first and second branches of the third current mirror, the second branch of the third current mirror being connected to the base of the third transistor.
  • This structure of the third current mirror makes it possible to partially compensate for the currents drawn from its second branch.
  • a generator as described above, characterized in that it comprises a module of startup allowing him to quickly evolve towards a diet stabilized after switching on, module comprising an eleventh and a twelfth transistor mounted in differential pair, the collector the eleventh transistor being connected to the positive supply terminal, the base of the eleventh transistor being connected to the bases of the third, fourth and fifth transistors, the collector of the twelfth transistor being connected to the first branch of that of the first or second current mirror, the second branch of which is connected to the base of the third transistor, the base of the twelfth transistor receiving a voltage of nominal value fixed lower than the voltage which is present at the bases of the third, fourth and fifth transistors when the generator is operating in steady state.
  • Such a starter module ensures rapid stabilization generator after power up.
  • the transistors T1 and T2 are therefore both polarized at an operating point particularly stable.
  • Figure 2 presents a block diagram describing a voltage generator according to a variant of the invention, which comprises first, second and third current mirrors (M1, M2, and M3), each of them having first and second branches and a feeding point.
  • the first branches of the first and second current mirror (M1, M2) are respectively connected to collectors of the fourth and fifth transistors (T4, T5).
  • the supply points of the first and second current mirrors (M1, M2) are connected to the second VCC supply terminal.
  • the second branches of the first and second current mirrors (M1, M2) are connected respectively to the first and second branches of the third M3 current mirror whose power point is connected to the first GND supply terminal.
  • the basics of first, second and third transistors (T1, T2 and T3) are connected together to the second branch of the third current mirror M3.
  • Such a structure ensures equality of currents passing through the first and second transistors (T1, T2) which is necessary for proper regulation of the output voltage Vbg in temperature function.
  • Figure 3 presents a block diagram describing a voltage generator according to a preferred embodiment of the invention, which comprises, inserted between the second branch of the first current mirror M1 and the first branch of the third mirror of current M3, a sixth transistor T6 of PNP type whose base is connected to the emitter of the third transistor T3.
  • the potential of the second branch of the first mirror of current M1 is equal to Vbg + Vbe (T6), while the potential of the second branch of the second current mirror M2 is equal to Vbg + Vbe (T3).
  • the values of the voltages Vbe of the different transistors are very close to each other. Thanks to this additional transistor T6, the potentials of the second branches of current of the first and second current mirrors (M1, M2) are therefore identical, which further improves the identity of the currents traversing the first and second transistors (T1, T2).
  • the third current mirror M3 comprises a seventh, an eighth, a ninth and a tenth transistor (T7, T8, T9 and T10).
  • the basics seventh and eighth transistors (T7, T8) are connected to their respective collectors and bases of the ninth and tenth transistors (T9, T10).
  • the transmitters of the seventh and ninth transistors (T7, T9) are respectively connected to the collectors of the eighth and tenth transistors (T8, T10), the emitters of which are connected together and form the feeding point of the third mirror current M3.
  • the collectors of the seventh and ninth transistors (T7, T9) respectively form the first and second branches of the third current mirror M3.
  • the second branch of the third current mirror is connected to the base of the third transistor T3.
  • the current entering the second branch of the mirror current M3 is cut off from the base currents of the third, fourth and fifth transistors.
  • the asymmetrical structure of the current mirror M3 described above compensates for these losses, because the currents basic transistors contained in the current mirror M3 are taken from the current entering the first branch, restoring thus the symmetry between the two incoming currents, and improving the identity of the currents flowing through the first and second transistors that result from reflections of currents entering the current mirror M3 from mirrors M1 and M2.
  • Mirrors of current M1 and M2 are constituted here respectively by the transistors T13, T14 and T15, T16, all four of PNP type.
  • the minimum supply voltage VCC which is for example equal to Vbg + Vbe (T4) -Vce sat (T13), with Vbe (T14) and Vce sat (T13) respectively of the order of 0.6V and 0.2V will therefore be close to 2V, which allows the generator to consume little energy, and makes it particularly suitable for uses in portable devices, such as cordless phones.
  • the voltage generator shown in Figure 3 also includes an MD starter module allowing it to evolve quickly to a stabilized speed after powering up.
  • This MD module includes an eleventh and a twelfth transistor (T11, T12), both NPN type, mounted in differential pair.
  • the collector of the eleventh transistor T11 is connected to the second supply terminal VCC, its base being connected to the bases of the third, fourth and fifth transistors (T3, T4, T5).
  • the collector of the twelfth transistor T12 is connected to the first branch of the second mirror of current M2, its base being connected, via a resistor R0 at the second VCC supply terminal.
  • the basis of the twelfth transistor T12 is further connected to the base of a seventeenth transistor T17, NPN type, diode mounted, the emitter of which is connected via an eighteenth transistor T18, of the NPN type, at the first GND supply terminal.
  • the eighteenth transistor T18 is mounted in current mirror with a nineteenth transistor T19, of NPN type, whose collector is connected to the transmitters of the eleventh and twelfth transistors (T11, T12).
  • Resistor R0 outputs a current fixed I0, whose value is (VCC-2.Vbe) / R0. This current is reproduced by the current mirror (T18, T19) and thus polarizes the pair differential (T11, T12).
  • the base of the third transistor is in permanence at a potential equal to 2.Vbe.
  • the voltage of Vbg output of the generator is zero.
  • the voltage applied to the base of the eleventh transistor T11 is therefore much less than 2.Vbe, and the twelfth transistor T12 conducts current I0.
  • This current is reproduced by the M2 mirror, and allows the conduction of the third transistor T3, which then conducts a current to the load resistance RL, thereby increasing the output voltage Vbg.
  • the current 10 reproduced by the mirror M2 also allows the setting in conduction of the fourth and fifth transistors (T4, T5) while the current I0, successively reflected by the mirrors M3 and M2 is sent to the first transistor T1.
  • the base of the eleventh transistor T11 is at a potential whose value is of the order of Vbg + Vbe.
  • Voltage regulated Vbg itself being of the order of 2.Vbe, the applied potential at the base of the eleventh transistor T11 is then greater than 2.Vbe, which is the potential applied to the base of the twelfth transistor T12. This one hangs, thus separating the MD starter module from the rest of the generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Description

La présente invention concerne un générateur de tension de référence fournissant sur une borne de sortie une tension de sortie régulée, comprenant :

  • un premier et un deuxième transistors, dont les bases sont reliées ensemble et forment la borne de sortie du générateur, l'émetteur du premier transistor étant relié via une première résistance à l'émetteur du deuxième transistor, lequel est en outre relié via une deuxième résistance à une première borne d'alimentation, les collecteurs des premier et deuxième transistors étant reliés à deux sources de courant de valeurs nominales égales,
  • un troisième transistor dont la base est reliée à l'une des sources de courant, le collecteur à une deuxième borne d'alimentation et l'émetteur aux bases des premier et deuxième transistors, ainsi qu'à la borne négative d'alimentation via une résistance de charge.
The present invention relates to a reference voltage generator supplying a regulated output voltage on an output terminal, comprising:
  • first and second transistors, the bases of which are connected together and form the output terminal of the generator, the emitter of the first transistor being connected via a first resistor to the emitter of the second transistor, which is further connected via a second resistance to a first power supply terminal, the collectors of the first and second transistors being connected to two current sources of equal nominal values,
  • a third transistor, the base of which is connected to one of the current sources, the collector to a second supply terminal and the emitter to the bases of the first and second transistors, as well as to the negative supply terminal via a load resistance.

Un tel générateur est décrit dans le brevet européen ayant pour numéro d'enregistrement 94 203 440.6. Ce générateur a notamment pour fonction de fournir sur les bases des premier et deuxième transistors une tension dont la valeur ne varie pas en fonction de la température. La théorie décrivant ce type de systèmes est connue de l'homme de l'art. Elle repose sur le fait que la tension base-émetteur d'un transistor diminue linéairement en fonction de la température. Une chute de tension créée grâce à la première résistance, notée VR1, permet d'augmenter le potentiel de l'émetteur de manière linéaire en fonction de la température. En effet, si le premier transistor est N fois plus grand que le deuxième, la tension VR1 est égale à Vt.ln(N), avec Vt=K.T/q, où K est la constante de Boltzmann, q la charge de l'électron et T la température absolue. On a donc VR1=T.(ln(N).K/q). La diminution linéaire en fonction de la température de la tension base-émetteur, appelée Vbe, du premier transistor peut ainsi être compensée grâce à un bon dimensionnement des composants constituant le générateur. Celui-ci fonctionne de manière optimale lorsque les courants traversant les premier et deuxième transistors sont rigoureusement égaux. De plus, afin que l'effet d'Early ne crée pas de déséquilibre entre les dits transistors, leurs tensions de collecteur doivent également être identiques, ce qui n'est pas le cas dans le générateur décrit dans le document cité ci-dessus, dans lequel les collecteurs présentent une différence de potentiel due à la tension base-émetteur du troisième transistor à laquelle s'ajoute une chute de tension aux bornes d'une résistance additionnelle. Cette différence de potentiel crée un déséquilibre ayant pour effet d'altérer la qualité de la compensation en température de la tension base-émetteur du premier transistor.Such a generator is described in the European patent having for registration number 94 203 440.6. This generator has in particular function to provide on the basis of the first and second transistors a voltage whose value does not vary depending on the temperature. The theory describing this type of system is known from one skilled in the art. It is based on the fact that the base-emitter voltage of a transistor decreases linearly as a function of temperature. A voltage drop created by the first resistance, noted VR1, increases the potential of the transmitter in a linear fashion temperature function. Indeed, if the first transistor is N times greater than the second, the voltage VR1 is equal to Vt.ln (N), with Vt = K.T / q, where K is the Boltzmann constant, q the charge of the electron and T the absolute temperature. We therefore have VR1 = T. (Ln (N) .K / q). Linear decrease as a function of voltage temperature base emitter, called Vbe, of the first transistor can thus be compensated by a good dimensioning of the components constituting the generator. This works best when the currents flowing through the first and second transistors are strictly equal. In addition, so that the Early effect does not create imbalance between said transistors, their collector voltages must also be identical, which is not the case in the generator described in the document cited above, in which the collectors have a potential difference due to voltage base-emitter of the third transistor to which is added a drop of voltage across an additional resistor. This difference of potential creates an imbalance with the effect of altering the quality temperature compensation of the base-emitter voltage of the first transistor.

La présente invention a pour but de remédier à cet inconvénient en proposant un générateur de tension dans lequel les tensions de collecteur des premier et deuxième transistors sont rendues égales, sans pour autant recourir à une structure complexe.The object of the present invention is to remedy this disadvantage by proposing a voltage generator in which the collector voltages of the first and second transistors are made equal, without resorting to a complex structure.

En effet, un générateur de tension de référence selon la présente invention est caractérisé en ce qu'il comporte, insérés entre les premier et deuxième transistors et les sources de courant, un quatrième et un cinquième transistors dont les bases sont reliées ensemble à la base du troisième transistor, dont les émetteurs sont reliés respectivement aux collecteurs des premier et deuxième transistors et dont les collecteurs sont reliés chacun à une des sources de courant.Indeed, a reference voltage generator according to the present invention is characterized in that it comprises, inserted between the first and second transistors and the current sources, a fourth and fifth transistors whose bases are connected together at the base of the third transistor, whose emitters are connected respectively to the collectors of the first and second transistors and whose collectors are each connected to one of the current sources.

Dans un tel générateur, chacun des collecteurs des premier et deuxième transistor est à un potentiel inférieur d'un Vbe à la tension de base du troisième transistor. De plus, chacune des bases des premier et deuxième transistors est également à un potentiel inférieur d'un Vbe à la tension de base du troisième transistor. Il en ressort que les premier et deuxième transistors fonctionnent tous deux sous une tension collecteur-émetteur nulle, ce qui est un point de fonctionnement particulièrement stable.In such a generator, each of the collectors of the first and second transistor is at a lower potential of a Vbe at the base voltage of the third transistor. In addition, each of the bases of the first and second transistors is also at a potential one Vbe lower than the base voltage of the third transistor. It shows that the first and second transistors both work under zero collector-emitter voltage, which is a point of particularly stable operation.

Une variante de l'invention présente un générateur de tension de référence tel que décrit ci-dessus, caractérisé en ce qu'il comporte un premier, un deuxième et un troisième miroirs de courant, chacun d'eux présentant une première et une deuxième branches et un point d'alimentation, les premières branches des premier et deuxième miroir de courant étant reliées respectivement aux collecteurs des quatrième et cinquième transistors, les points d'alimentation des premier et deuxième miroir de courant étant reliés à la deuxième borne d'alimentation, les deuxièmes branches des premier et deuxième miroirs de courant étant respectivement reliées aux première et deuxième branches du troisième miroir de courant dont le point d'alimentation est relié à la première borne d'alimentation, les bases des premier, deuxième et troisième transistors étant reliées ensemble à l'une des branches du troisième miroir de courant.A variant of the invention presents a generator of reference voltage as described above, characterized in that it has first, second and third current mirrors, each of them having first and second branches and one feeding point, the first branches of the first and second current mirror being respectively connected to the collectors of the fourth and fifth transistors, the supply points of the first and second current mirror being connected to the second terminal supply, the second branches of the first and second mirrors of current being respectively connected to the first and second branches of the third current mirror including the power point is connected to the first power supply terminal, the bases of the first, second and third transistors being connected together to one of branches of the third current mirror.

Une telle structure assure l'égalité des courants traversant les premier et deuxième transistors qui est nécessaire à une bonne régulation de la tension de sortie en fonction de la température. De plus, cette structure étant très simple, la tension d'alimentation d'un tel générateur peut prendre des valeurs faibles, de l'ordre de 2 Volts.Such a structure ensures equality of currents passing through the first and second transistors which is necessary to good regulation of the output voltage depending on the temperature. In addition, this structure being very simple, the tension power supply of such a generator can take low values, of the order of 2 Volts.

Une autre variante de l'invention présente un générateur de tension de référence tel que décrit ci-dessus, caractérisé en ce qu'il comporte, inséré entre celle des branches du premier ou deuxième miroir de courant qui n'est pas reliée à la base du troisième transistor, et celle des branches du troisième miroir de courant qui n'est pas reliée à la base du troisième transistor, un sixième transistor dont la base est reliée à l'émetteur du troisième transistor.Another variant of the invention presents a generator reference voltage as described above, characterized in that it includes, inserted between that of the branches of the first or second current mirror which is not connected to the base of the third transistor, and that of the branches of the third current mirror which is not connected to the base of the third transistor, a sixth transistor whose base is connected to the emitter of the third transistor.

Grâce à ce transistor additionnel, les potentiels des deuxièmes branches de courant des premier et deuxième miroirs de courant sont identiques, étant tous deux égaux à la tension de sortie à laquelle s'ajoute un Vbe, ce qui améliore encore l'identicité des courants parcourant les premier et deuxième transistors.Thanks to this additional transistor, the potentials of second current branches of the first and second mirrors of current are identical, both being equal to the output voltage to which is added a Vbe, which further improves the identity of currents flowing through the first and second transistors.

Une autre variante de l'invention présente un générateur de tension de référence tel que décrit ci-dessus, caractérisé en ce que le troisième miroir de courant comporte un septième, un huitième, un neuvième et un dixième transistor, les bases des septième et huitième transistors étant reliées à leurs collecteurs respectifs et aux bases des neuvième et dixième transistors, les émetteurs des septième et neuvième transistors étant reliés respectivement aux collecteurs des huitième et dixième transistors, dont les émetteurs sont reliés ensemble et forment le point d'alimentation du troisième miroir de courant, les collecteurs des septième et neuvième transistors formant respectivement les première et deuxième branches du troisième miroir de courant, la deuxième branche du troisième miroir de courant étant reliée à la base du troisième transistor.Another variant of the invention presents a generator reference voltage as described above, characterized in that the third current mirror has a seventh, an eighth, a ninth and a tenth transistor, the basics of the seventh and eighth transistors being connected to their respective collectors and at the bases of the ninth and tenth transistors, the emitters of the seventh and ninth transistors being connected respectively to collectors of the eighth and tenth transistors, including the transmitters are connected together and form the feeding point of the third current mirror, seventh and ninth collectors transistors respectively forming the first and second branches of the third current mirror, the second branch of the third current mirror being connected to the base of the third transistor.

Cette structure du troisième miroir de courant permet de compenser en partie les courants prélevés sur sa deuxième branche.This structure of the third current mirror makes it possible to partially compensate for the currents drawn from its second branch.

Une autre variante de l'invention présente un générateur tel que décrit plus haut, caractérisé en ce qu'il comprend un module de démarrage lui permettant d'évoluer rapidement vers un régime stabilisé après sa mise sous tension, module comportant un onzième et un douzième transistors montés en paire différentielle, le collecteur du onzième transistor étant relié à la borne positive d'alimentation, la base du onzième transistor étant reliée aux bases des troisième, quatrième et cinquième transistors, le collecteur du douzième transistor étant relié à la première branche de celui des premier ou deuxième miroir de courant dont la deuxième branche est reliée à la base du troisième transistor, la base du douzième transistor recevant une tension de valeur nominale fixée inférieure à la tension qui est présente aux bases des troisième, quatrième et cinquième transistors lorsque le générateur fonctionne en régime établi.Another variant of the invention presents a generator as described above, characterized in that it comprises a module of startup allowing him to quickly evolve towards a diet stabilized after switching on, module comprising an eleventh and a twelfth transistor mounted in differential pair, the collector the eleventh transistor being connected to the positive supply terminal, the base of the eleventh transistor being connected to the bases of the third, fourth and fifth transistors, the collector of the twelfth transistor being connected to the first branch of that of the first or second current mirror, the second branch of which is connected to the base of the third transistor, the base of the twelfth transistor receiving a voltage of nominal value fixed lower than the voltage which is present at the bases of the third, fourth and fifth transistors when the generator is operating in steady state.

Un tel module de démarrage assure une stabilisation rapide du générateur après sa mise sous tension.Such a starter module ensures rapid stabilization generator after power up.

L'invention sera mieux comprise à l'aide de la description suivante de quelques modes de réalisation, faite à titre d'exemple et en regard des dessins annexés dans lesquels :

  • la figure 1 présente un schéma fonctionnel décrivant un générateur de tension selon l'invention,
  • la figure 2 présente un schéma fonctionnel décrivant un générateur de tension selon une variante de l'invention, et
  • la figure 3 présente un schéma fonctionnel décrivant un générateur de tension selon un mode de réalisation préféré de l'invention.
The invention will be better understood with the aid of the following description of some embodiments, given by way of example and with reference to the appended drawings in which:
  • FIG. 1 presents a functional diagram describing a voltage generator according to the invention,
  • FIG. 2 presents a functional diagram describing a voltage generator according to a variant of the invention, and
  • FIG. 3 presents a functional diagram describing a voltage generator according to a preferred embodiment of the invention.

Selon la figure 1, un générateur de tension de référence selon l'invention, fournissant sur une borne de sortie une tension de sortie régulée Vbg, comprend :

  • un premier et un deuxième transistors (T1, T2), tous deux de type NPN, dont les bases sont reliées ensemble et forment la borne de sortie du générateur, l'émetteur du premier transistor T1 étant relié via une première résistance R1 à l'émetteur du deuxième transistor T2, lequel est en outre relié via une deuxième résistance R2 à une première borne d'alimentation GND, les collecteurs des premier et deuxième transistors (T1, T2) étant reliés à deux sources de courant de valeurs nominales égales (I1, I2),
  • un troisième transistor T3, de type NPN, dont la base est reliée à la source de courant I2, le collecteur à une deuxième borne d'alimentation VCC et l'émetteur aux bases des premier et deuxième transistors (T1, T2), ainsi qu'à la borne négative d'alimentation GND via une résistance de charge RL. Ce générateur comporte en outre, insérés entre les premier et deuxième transistors (T1, T2) et les sources de courant (I1, I2), un quatrième et un cinquième transistors (T4, T5), tous deux de type NPN, dont les bases sont reliées ensemble à la base du troisième transistor T3. Leurs émetteurs sont reliés respectivement aux collecteurs des premier et deuxième transistors (T1, T2). Leurs collecteurs sont reliés chacun à une des sources de courant (I1, I2).
According to FIG. 1, a reference voltage generator according to the invention, supplying on a output terminal a regulated output voltage Vbg, comprises:
  • first and second transistors (T1, T2), both of NPN type, the bases of which are connected together and form the output terminal of the generator, the emitter of the first transistor T1 being connected via a first resistor R1 to the emitter of the second transistor T2, which is also connected via a second resistor R2 to a first supply terminal GND, the collectors of the first and second transistors (T1, T2) being connected to two current sources of equal nominal values (I1 , I2),
  • a third transistor T3, of NPN type, the base of which is connected to the current source I2, the collector to a second supply terminal VCC and the emitter to the bases of the first and second transistors (T1, T2), as well as 'to the negative supply terminal GND via a load resistor RL. This generator further comprises, inserted between the first and second transistors (T1, T2) and the current sources (I1, I2), a fourth and a fifth transistors (T4, T5), both of NPN type, the bases of which are connected together at the base of the third transistor T3. Their transmitters are connected respectively to the collectors of the first and second transistors (T1, T2). Their collectors are each connected to one of the current sources (I1, I2).

Dans un tel générateur, la tension de collecteur de T1, notée Vc(T1), est égale à la tension de base de T3, notée Vb(T3), moins la tension base-émetteur de T4, notée Vbe(T4) : Vc(T1)=Vb(T3)-Vbe(T4). De même, on a pour T2 : Vc(T2)=Vb(T3)-Vbe(T5). Si T4 et T5 sont identiques, Vc(T1)=Vc(T2). De plus, les tensions collecteur-base de T1 et T2, notées respectivement Vcb(T1) et Vcb(T2), sont nulles, puisque Vb(T1)=Vb(T2)=Vb(T3)-Vbe(T3). Les transistors T1 et T2 sont donc tous deux polarisés en un point de fonctionnement particulièrement stable.In such a generator, the collector voltage of T1, denoted Vc (T1), is equal to the base voltage of T3, denoted Vb (T3), minus the base-emitter voltage of T4, denoted Vbe (T4): Vc (T1) = Vb (T3) -Vbe (T4). Similarly, we have for T2: Vc (T2) = Vb (T3) -Vbe (T5). If T4 and T5 are identical, Vc (T1) = Vc (T2). In addition, the collector-base voltages of T1 and T2, denoted respectively Vcb (T1) and Vcb (T2), are zero, since Vb (T1) = Vb (T2) = Vb (T3) -Vbe (T3). The transistors T1 and T2 are therefore both polarized at an operating point particularly stable.

La figure 2 présente un schéma fonctionnel décrivant un générateur de tension selon une variante de l'invention, qui comporte un premier, un deuxième et un troisième miroirs de courant (M1, M2, et M3), chacun d'eux présentant une première et une deuxième branches et un point d'alimentation. Les premières branches des premier et deuxième miroir de courant (M1, M2) sont reliées respectivement aux collecteurs des quatrième et cinquième transistors (T4, T5). Les points d'alimentation des premier et deuxième miroirs de courant (M1, M2) sont reliés à la deuxième borne d'alimentation VCC. Les deuxièmes branches des premier et deuxième miroirs de courant (M1, M2) sont reliées respectivement aux première et deuxième branches du troisième miroir de courant M3 dont le point d'alimentation est relié à la première borne d'alimentation GND. Les bases des premier, deuxième et troisième transistors (T1, T2 et T3) sont reliées ensemble à la deuxième branche du troisième miroir de courant M3.Figure 2 presents a block diagram describing a voltage generator according to a variant of the invention, which comprises first, second and third current mirrors (M1, M2, and M3), each of them having first and second branches and a feeding point. The first branches of the first and second current mirror (M1, M2) are respectively connected to collectors of the fourth and fifth transistors (T4, T5). The supply points of the first and second current mirrors (M1, M2) are connected to the second VCC supply terminal. The second branches of the first and second current mirrors (M1, M2) are connected respectively to the first and second branches of the third M3 current mirror whose power point is connected to the first GND supply terminal. The basics of first, second and third transistors (T1, T2 and T3) are connected together to the second branch of the third current mirror M3.

Une telle structure assure l'égalité des courants traversant les premier et deuxième transistors (T1, T2) qui est nécessaire à une bonne régulation de la tension de sortie Vbg en fonction de la température.Such a structure ensures equality of currents passing through the first and second transistors (T1, T2) which is necessary for proper regulation of the output voltage Vbg in temperature function.

La figure 3 présente un schéma fonctionnel décrivant un générateur de tension selon un mode de réalisation préféré de l'invention, qui comporte, inséré entre la deuxième branche du premier miroir de courant M1 et la première branche du troisième miroir de courant M3 , un sixième transistor T6 de type PNP dont la base est reliée à l'émetteur du troisième transistor T3.Figure 3 presents a block diagram describing a voltage generator according to a preferred embodiment of the invention, which comprises, inserted between the second branch of the first current mirror M1 and the first branch of the third mirror of current M3, a sixth transistor T6 of PNP type whose base is connected to the emitter of the third transistor T3.

Le potentiel de la deuxième branche du premier miroir de courant M1 est égal à Vbg+Vbe(T6), tandis que le potentiel de la deuxième branche du deuxième miroir de courant M2 est égal à Vbg+Vbe(T3). Dans un tel circuit, les valeurs des tensions Vbe des différents transistors sont très proches les unes des autres. Grâce à ce transistor additionnel T6, les potentiels des deuxièmes branches de courant des premier et deuxième miroirs de courant (M1, M2) sont donc identiques, ce qui améliore encore l'identicité des courants parcourant les premier et deuxième transistors (T1, T2).The potential of the second branch of the first mirror of current M1 is equal to Vbg + Vbe (T6), while the potential of the second branch of the second current mirror M2 is equal to Vbg + Vbe (T3). In such a circuit, the values of the voltages Vbe of the different transistors are very close to each other. Thanks to this additional transistor T6, the potentials of the second branches of current of the first and second current mirrors (M1, M2) are therefore identical, which further improves the identity of the currents traversing the first and second transistors (T1, T2).

Dans le générateur de tension représenté sur la figure 3, le troisième miroir de courant M3 comporte un septième, un huitième, un neuvième et un dixième transistor (T7, T8, T9 et T10). Les bases des septième et huitième transistors (T7, T8) sont reliées à leurs collecteurs respectifs et aux bases des neuvième et dixième transistors (T9, T10). Les émetteurs des septième et neuvième transistors (T7, T9) sont reliés respectivement aux collecteurs des huitième et dixième transistors (T8, T10), dont les émetteurs sont reliés ensemble et forment le point d'alimentation du troisième miroir de courant M3. Les collecteurs des septième et neuvième transistors (T7, T9) forment respectivement la première et la deuxième branche du troisième miroir de courant M3. La deuxième branche du troisième miroir de courant est reliée à la base du troisième transistor T3.In the voltage generator shown in Figure 3, the third current mirror M3 comprises a seventh, an eighth, a ninth and a tenth transistor (T7, T8, T9 and T10). The basics seventh and eighth transistors (T7, T8) are connected to their respective collectors and bases of the ninth and tenth transistors (T9, T10). The transmitters of the seventh and ninth transistors (T7, T9) are respectively connected to the collectors of the eighth and tenth transistors (T8, T10), the emitters of which are connected together and form the feeding point of the third mirror current M3. The collectors of the seventh and ninth transistors (T7, T9) respectively form the first and second branches of the third current mirror M3. The second branch of the third current mirror is connected to the base of the third transistor T3.

Le courant entrant dans la deuxième branche du miroir de courant M3 est amputé des courants de base des troisième, quatrième et cinquième transistors. La structure dissymétrique du miroir de courant M3 décrite ci-dessus permet de compenser ces pertes, car les courants de base des transistors que contient le miroir de courant M3 sont prélevés sur le courant entrant dans la première branche, rétablissant ainsi la symétrie entre les deux courants entrants, et améliorant l'identicité des courants parcourant les premier et deuxième transistors qui résultent des réflexions des courants entrant dans le miroir de courant M3 en provenance des miroirs M1 et M2. Les miroirs de courant M1 et M2 sont constitués ici respectivement par les transistors T13, T14 et T15, T16, tous quatre de type PNP.The current entering the second branch of the mirror current M3 is cut off from the base currents of the third, fourth and fifth transistors. The asymmetrical structure of the current mirror M3 described above compensates for these losses, because the currents basic transistors contained in the current mirror M3 are taken from the current entering the first branch, restoring thus the symmetry between the two incoming currents, and improving the identity of the currents flowing through the first and second transistors that result from reflections of currents entering the current mirror M3 from mirrors M1 and M2. Mirrors of current M1 and M2 are constituted here respectively by the transistors T13, T14 and T15, T16, all four of PNP type.

Si la tension de sortie Vbg d'un tel générateur est de 1,2V, la tension minimale d'alimentation VCC, qui est par exemple égale à Vbg+Vbe(T4)-Vcesat(T13), avec Vbe(T14) et Vcesat(T13) respectivement de l'ordre de 0,6V et 0,2V sera donc voisine de 2V, ce qui permet au générateur de consommer peu d'énergie, et le rend particulièrement adapté pour des utilisations dans des appareils portables, comme des téléphones sans fil.If the output voltage Vbg of such a generator is 1.2V, the minimum supply voltage VCC, which is for example equal to Vbg + Vbe (T4) -Vce sat (T13), with Vbe (T14) and Vce sat (T13) respectively of the order of 0.6V and 0.2V will therefore be close to 2V, which allows the generator to consume little energy, and makes it particularly suitable for uses in portable devices, such as cordless phones.

Le générateur de tension représenté sur la figure 3 comprend de plus un module de démarrage MD lui permettant d'évoluer rapidement vers un régime stabilisé après sa mise sous tension. Ce module MD comporte un onzième et un douzième transistors (T11, T12), tous deux de type NPN, montés en paire différentielle. Le collecteur du onzième transistor T11 est relié à la deuxième borne d'alimentation VCC, sa base étant reliée aux bases des troisième, quatrième et cinquième transistors (T3, T4, T5). Le collecteur du douzième transistor T12 est relié à la première branche du deuxième miroir de courant M2, sa base étant reliée, par l'intermédiaire d'une résistance R0 à la deuxième borne d'alimentation VCC. La base du douzième transistor T12 est en outre reliée à la base d'un dix-septième transistor T17, de type NPN, monté en diode, dont l'émetteur est relié par l'intermédiaire d'un dix-huitième transistor T18, de type NPN, à la première borne d'alimentation GND. Le dix-huitième transistor T18 est monté en miroir de courant avec un dix-neuvième transistor T19, de type NPN, dont le collecteur est relié aux émetteurs des onzième et douzième transistors (T11, T12). La résistance R0 débite un courant fixe I0, dont la valeur est (VCC-2.Vbe)/R0. Ce courant est reproduit par le miroir de courant (T18, T19) et polarise ainsi la paire différentielle (T11, T12). La base du troisième transistor est en permanence à un potentiel égal à 2.Vbe. Au démarrage, la tension de sortie Vbg du générateur est nulle. La tension appliquée à la base du onzième transistor T11 est donc très inférieure à 2.Vbe, et le douzième transistor T12 conduit le courant I0. Ce courant est reproduit par le miroir M2, et permet la mise en conduction du troisième transistor T3, lequel conduit alors un courant vers la résistance de charge RL, faisant ainsi augmenter la tension de sortie Vbg. Le courant 10 reproduit par le miroir M2 permet aussi la mise en conduction des quatrième et cinquième transistors (T4, T5) pendant que le courant I0, successivement réfléchi par les miroirs M3 et M2 est envoyé vers le premier transistor T1. Lorsque la tension de sortie Vbg du générateur est stabilisée, la base du onzième transistor T11 est à un potentiel dont la valeur est de l'ordre de Vbg+Vbe. La tension régulée Vbg étant elle-même de l'ordre de 2.Vbe, le potentiel appliqué à la base du onzième transistor T11 est alors supérieur à 2.Vbe, qui est le potentiel appliqué à la base du douzième transistor T12. Celui-ci se bloque, désolidarisant donc le module de démarrage MD du reste du générateur.The voltage generator shown in Figure 3 also includes an MD starter module allowing it to evolve quickly to a stabilized speed after powering up. This MD module includes an eleventh and a twelfth transistor (T11, T12), both NPN type, mounted in differential pair. The collector of the eleventh transistor T11 is connected to the second supply terminal VCC, its base being connected to the bases of the third, fourth and fifth transistors (T3, T4, T5). The collector of the twelfth transistor T12 is connected to the first branch of the second mirror of current M2, its base being connected, via a resistor R0 at the second VCC supply terminal. The basis of the twelfth transistor T12 is further connected to the base of a seventeenth transistor T17, NPN type, diode mounted, the emitter of which is connected via an eighteenth transistor T18, of the NPN type, at the first GND supply terminal. The eighteenth transistor T18 is mounted in current mirror with a nineteenth transistor T19, of NPN type, whose collector is connected to the transmitters of the eleventh and twelfth transistors (T11, T12). Resistor R0 outputs a current fixed I0, whose value is (VCC-2.Vbe) / R0. This current is reproduced by the current mirror (T18, T19) and thus polarizes the pair differential (T11, T12). The base of the third transistor is in permanence at a potential equal to 2.Vbe. At start-up, the voltage of Vbg output of the generator is zero. The voltage applied to the base of the eleventh transistor T11 is therefore much less than 2.Vbe, and the twelfth transistor T12 conducts current I0. This current is reproduced by the M2 mirror, and allows the conduction of the third transistor T3, which then conducts a current to the load resistance RL, thereby increasing the output voltage Vbg. The current 10 reproduced by the mirror M2 also allows the setting in conduction of the fourth and fifth transistors (T4, T5) while the current I0, successively reflected by the mirrors M3 and M2 is sent to the first transistor T1. When the output voltage Vbg of the generator is stabilized, the base of the eleventh transistor T11 is at a potential whose value is of the order of Vbg + Vbe. Voltage regulated Vbg itself being of the order of 2.Vbe, the applied potential at the base of the eleventh transistor T11 is then greater than 2.Vbe, which is the potential applied to the base of the twelfth transistor T12. This one hangs, thus separating the MD starter module from the rest of the generator.

Claims (5)

  1. A reference voltage generator which supplies a controlled output voltage at an output terminal, which generator comprises:
    a first and a second transistor whose bases are interconnected and form the output terminal of the generator, the emitter of the first transistor being connected via a first resistor to the emitter of the second transistor, which latter emitter is also connected via a second resistor to a first supply terminal, while the collectors of the first and the second transistor are connected to two current sources of equal nominal values,
    a third transistor whose base is connected to one of the current sources, whose collector is connected to a second supply terminal, and whose emitter is connected to the bases of the first and the second transistor as well as to the negative supply terminal via a charge resistor,
       which generator is characterized in that it comprises, inserted between the first and second transistors and the current sources, a fourth and a fifth transistor whose bases are jointly connected to the base of the third transistor, whose emitters are connected to the respective collectors of the first and the second transistor, and whose collectors are each connected to one of the current sources.
  2. A reference voltage generator as claimed in Claim 1, characterized in that it comprises a first, a second, and a third current mirror, each comprising a first and a second branch and a supply point, the first branches of the first and the second current mirror being connected to the collectors of the fourth and the fifth transistor, respectively, while the supply points of the first and the second current mirror are connected to the second supply terminal, the second branches of the first and of the second current mirror are connected to the first and to the second branch, respectively, of the third current mirror, whose supply point is connected to the first supply terminal, and the bases of the first, the second, and the third transistor are jointly connected to one of the branches of the third current mirror.
  3. A reference voltage generator as claimed in Claim 2, characterized in that it comprises a sixth transistor whose base is inserted to the emitter of the third transistor and which is connected between that one of the branches of the first or second current mirror which is not connected to the base of the third transistor and that one of the branches of the third current mirror which is not connected to the base of the third transistor.
  4. A reference voltage generator as claimed in one of the Claims 2 and 3, characterized in that the third mirror current comprises a seventh, an eighth, a ninth, and a tenth transistor, the bases of the seventh and the eighth transistor being connected to their respective collectors and to the bases of the ninth and the tenth transistor, the emitters of the seventh and the ninth transistor being connected to the respective collectors of the eighth and the tenth transistor, of which the emitters are interconnected and constitute the supply point of the third current mirror, while the collectors of the seventh and the ninth transistor form the first and the second branch, respectively, of the third current mirror, the second branch of the third current mirror being connected to the base of the third transistor.
  5. A generator as claimed in one of the Claims 2 to 4, characterized in that it comprises a starting module which enables it to evolve rapidly into a stabilized state after a supply voltage has been applied to it, which module comprises an eleventh and a twelfth transistor arranged as a differential pair, the collector of the eleventh transistor being connected to the positive supply terminal, the base of the eleventh transistor being connected to the bases of the third, the fourth, and the fifth transistor, the collector of the twelfth transistor being connected to the first branch of that one from the first and second current mirrors of which the second branch is connected to the base of the third transistor, while the base of the twelfth transistor receives a voltage of a nominal fixed value lower than the voltage which is applied to the bases of the third, fourth, and fifth transistors when the generator is in the nominal operational state.
EP97201850A 1996-06-26 1997-06-17 Reference voltage generator controlled as a function of temperature Expired - Lifetime EP0816965B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9607941A FR2750515A1 (en) 1996-06-26 1996-06-26 TEMPERATURE REGULATED REFERENCE VOLTAGE GENERATOR
FR9607941 1996-06-26

Publications (2)

Publication Number Publication Date
EP0816965A1 EP0816965A1 (en) 1998-01-07
EP0816965B1 true EP0816965B1 (en) 2001-10-17

Family

ID=9493434

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97201850A Expired - Lifetime EP0816965B1 (en) 1996-06-26 1997-06-17 Reference voltage generator controlled as a function of temperature

Country Status (7)

Country Link
US (1) US5783937A (en)
EP (1) EP0816965B1 (en)
JP (1) JPH1084227A (en)
KR (1) KR980006844A (en)
CN (1) CN1170279A (en)
DE (1) DE69707368T2 (en)
FR (1) FR2750515A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3828662B1 (en) * 2019-11-29 2023-01-18 STMicroelectronics S.r.l. A bandgap reference circuit, corresponding device and method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037833A (en) * 1997-11-10 2000-03-14 Philips Electronics North America Corporation Generator for generating voltage proportional to absolute temperature
DE60110758D1 (en) * 2001-06-01 2005-06-16 Sgs Thomson Microelectronics power source
US9086358B2 (en) 2013-03-15 2015-07-21 Foresite, Inc. Test cell
CN103760944B (en) * 2014-02-10 2016-04-06 绍兴光大芯业微电子有限公司 Realize base current compensation without amplifier internal electric source structure
CN112162577B (en) * 2020-09-25 2021-06-22 上海联影医疗科技股份有限公司 Magnetic resonance equipment temperature control circuit, system and method
CN114020085B (en) * 2021-10-18 2023-10-27 杭州中科微电子有限公司 Reference voltage generating circuit with multiple outputs
CN115390611B (en) * 2022-09-13 2024-01-23 思瑞浦微电子科技(苏州)股份有限公司 Band gap reference circuit, base current compensation method and chip
CN115407821B (en) * 2022-11-01 2023-03-24 苏州贝克微电子股份有限公司 Circuit with strong anti-interference capability

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396883A (en) * 1981-12-23 1983-08-02 International Business Machines Corporation Bandgap reference voltage generator
GB2218544B (en) * 1988-05-13 1992-05-06 Plessey Co Plc Bandgap startup circuit
GB2236444A (en) * 1989-09-27 1991-04-03 Motorola Inc Current mirror
DE4312117C1 (en) * 1993-04-14 1994-04-14 Texas Instruments Deutschland Band spacing reference voltage source - incorporates current reflectors compensating early effect and voltage follower providing output reference voltage
BE1007853A3 (en) * 1993-12-03 1995-11-07 Philips Electronics Nv BANDGAPE REFERENCE FLOW SOURCE WITH COMPENSATION FOR DISTRIBUTION IN SATURATION FLOW OF BIPOLAR TRANSISTORS.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3828662B1 (en) * 2019-11-29 2023-01-18 STMicroelectronics S.r.l. A bandgap reference circuit, corresponding device and method

Also Published As

Publication number Publication date
DE69707368T2 (en) 2002-06-27
KR980006844A (en) 1998-03-30
CN1170279A (en) 1998-01-14
US5783937A (en) 1998-07-21
FR2750515A1 (en) 1998-01-02
EP0816965A1 (en) 1998-01-07
JPH1084227A (en) 1998-03-31
DE69707368D1 (en) 2001-11-22

Similar Documents

Publication Publication Date Title
EP0838745B1 (en) Voltage regulator with automatic selection of the highest supply voltage
EP0816965B1 (en) Reference voltage generator controlled as a function of temperature
CH697322B1 (en) A method of generating a substantially Independent current temperature and device for carrying out this method.
EP0414319A1 (en) Circuit for supplying a reference voltage
FR2724072A1 (en) POWER AMPLIFIER STAGE, OF FOLLOWER TYPE.
EP0052040B1 (en) Cmos-integrated class ab amplifier
FR2546687A1 (en) CIRCUIT MIRROR OF CURRENT
EP0649079B1 (en) Regulated voltage generating circuit of bandgap type
EP0159233B1 (en) Control circuit for switching a power transistor
FR2470485A1 (en) BALANCED AB CLASS AMPLIFIERS
EP0219158B1 (en) Voltage-regulating circuit
EP0163332A1 (en) Static relay for direct current
EP0292071A1 (en) Current mirror with a high output voltage
EP0230176A1 (en) Static relay and its use in a bipolar inverter or in a bi-directional current circuit
FR2752961A1 (en) VOLTAGE CONTROLLER WITH SENSITIVITY TO ATTENUATED TEMPERATURE VARIATIONS
EP1102148B1 (en) Low temperature corrected voltage generating device
FR2688361A1 (en) PUSH-PULL OUTPUT STAGE FOR INTEGRATED CIRCUIT AMPLIFIER.
EP0886382A1 (en) Analog-to-digital converter
FR2733101A1 (en) LOGIC CIRCUIT TYPE A COUPLED TRANSMITTERS OPERATING UNDER LOW POWER SUPPLY VOLTAGE
JP2541003B2 (en) Sample-hold circuit
FR2667703A1 (en) SOURCE OF CURRENT WITH REPORT BETWEEN CURRENT OUTPUT AND INPUT.
FR2597679A1 (en) HIGH SPEED FOLLOWER AMPLIFIER.
EP0700162A1 (en) Logic circuit with differential stages
JP3073619B2 (en) Sample hold circuit
EP0164770A1 (en) Static relay for low-voltage direct current

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19980707

AKX Designation fees paid

Free format text: DE FR GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20001207

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011017

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20011017

REF Corresponds to:

Ref document number: 69707368

Country of ref document: DE

Date of ref document: 20011122

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011228

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020617

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST