EP0798529A1 - Austauscherrohr - Google Patents

Austauscherrohr Download PDF

Info

Publication number
EP0798529A1
EP0798529A1 EP97103505A EP97103505A EP0798529A1 EP 0798529 A1 EP0798529 A1 EP 0798529A1 EP 97103505 A EP97103505 A EP 97103505A EP 97103505 A EP97103505 A EP 97103505A EP 0798529 A1 EP0798529 A1 EP 0798529A1
Authority
EP
European Patent Office
Prior art keywords
ribs
exchanger tube
tube according
primary
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97103505A
Other languages
English (en)
French (fr)
Other versions
EP0798529B1 (de
Inventor
Ulrich Dipl.-Ing. Naumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KM Europa Metal AG
Original Assignee
KM Europa Metal AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KM Europa Metal AG filed Critical KM Europa Metal AG
Publication of EP0798529A1 publication Critical patent/EP0798529A1/de
Application granted granted Critical
Publication of EP0798529B1 publication Critical patent/EP0798529B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/04Arrangements for modifying heat-transfer, e.g. increasing, decreasing by preventing the formation of continuous films of condensate on heat-exchange surfaces, e.g. by promoting droplet formation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Definitions

  • the invention relates to an exchanger tube for a heat exchanger according to the features in the preamble of claim 1.
  • Both the ribs and the channels laterally delimited by the ribs each have a trapezoidal cross section.
  • the flanks of the ribs are flat.
  • the transitions from the flanks to the canal bases are designed with sharp edges.
  • the cross-sectional volume of the ribs is approximately half the size of the cross-sectional volume of the channels.
  • the ribs, which run parallel to one another, extend at an angle to the longitudinal axis of the tube that deviates from 90 °. All ribs have the same radial extension (height).
  • the troughs passing through the ribs also run at an angle to the longitudinal axis of the pipe that deviates from 90 °.
  • the flanks of the troughs are convex.
  • the transitions from the flanks to the flat bottoms of the troughs and to the flat head sides of the rib areas between two adjacent troughs of a rib are sharp-edged.
  • the depth of the depressions is smaller than the radial extension of the ribs. All troughs are of the same depth.
  • the known exchanger tube is preferably produced by first producing the structure of the subsequent inner surface on one side on a metal strip in a rolling process, then shaping the metal strip into a slot tube with an internal surface structure and then welding the slot edges.
  • the invention has for its object to provide an exchanger tube with an inner surface structure in which a significantly more intensive flow through the channels can be guaranteed and the advantages of an equally good evaporation or condensation performance combined with a reduced fin weight are combined.
  • the embodiment of claim 2 provides that on the one hand all primary ribs and on the other hand all secondary ribs each have the same radial extent. This means that all primary ribs have the same height and all secondary ribs have the same height.
  • both the primary ribs and the secondary ribs run at the same angle to the pipe longitudinal axis.
  • the primary ribs should extend at an angle ⁇ 20 °, but ⁇ 90 ° to the longitudinal axis of the pipe.
  • the primary ribs preferably extend at an angle between 20 ° and 40 ° to the longitudinal axis of the pipe.
  • the secondary fins should extend at an angle 20 20 °, but zur 90 ° to the tube longitudinal axis.
  • the secondary fins preferably run at an angle between approximately 20 ° and 40 ° to the longitudinal axis of the pipe.
  • the features of claim 7 are associated with the particular advantage that when pulling in an exchanger tube, e.g. in the fins of a heat exchanger, in particular by widening by means of a tool moved through the exchanger tube, the rounded tips of the primary fins and the secondary fins are only slightly flattened. In this way, the formation of condensate films that are difficult to tear open is effectively counteracted.
  • flank angle of the primary ribs and the secondary ribs is 20 ° to 40 °, preferably 25 °.
  • the invention has recognized that in the case of primary ribs lying at a special angle to the longitudinal axis of the tube with alternating lower secondary ribs alternating in the circumferential direction, the ratio of the distance of the central longitudinal planes of two adjacent primary ribs to the radial extension of the secondary ribs is of particular importance. This ratio is 15: 1 to 8: 1, preferably 10: 1.
  • the size of the radial extension of the primary ribs advantageously ranges between about 0.15 mm and 0.40 mm.
  • a further improvement in the flow conditions in the channels between the primary ribs and the secondary ribs is achieved according to claim 13 in that the radial extension of the primary ribs is dimensioned approximately 3: 1 for the radial extension of the secondary ribs.
  • the cross-sectional area ratio of the primary ribs relative to the secondary ribs also plays an important role in achieving particularly good heat transfer.
  • the area ratio of the primary ribs to that of the secondary ribs is approximately 15: 1 to 5: 1, preferably 8: 1 to 6: 1.
  • the secondary ribs can extend at the same angle to the longitudinal axis of the tube as the primary ribs. However, if the secondary ribs run at a different angle to the longitudinal axis of the tube than the primary ribs, then it is advantageous according to the embodiment of claim 15 that the distance between two adjacent secondary ribs is then a maximum of 10 mm.
  • At least the soles of the channels are roughened. Roughening of all surfaces of the primary and secondary ribs is also conceivable. This can be a micro roughness. Such roughness is particularly noticeable in the condensation and evaporation of refrigerants if the exchanger tube is integrated into a corresponding heat exchanger becomes. Because of the large fin surfaces, the micro-roughness enables the large number of projections, edges, tips and depressions which are advantageous for effective evaporation to be provided as vapor bubble nuclei without, on the other hand, larger amounts of material being required for this.
  • the depth of the troughs corresponds to the radial extension of the primary ribs or the secondary ribs.
  • the troughs formed in adjacent primary or secondary ribs preferably extend coaxially one behind the other.
  • the troughs and the rib regions preferably have a triangular cross section.
  • the concave soles of the troughs are curved more than the tips of the rib regions.
  • a preferred application of the exchanger tube according to the invention is given according to the features of claim 21 if it is formed from copper or a copper alloy.
  • the exchanger tube can have a round or an oval cross section.
  • Round exchanger tubes preferably have an outside diameter of approximately 6 mm to 20 mm.
  • the exchanger tube is formed from aluminum or an aluminum alloy or according to claim 23 from iron or an iron alloy.
  • FIG. 1 in FIG. 1 denotes a longitudinal section of a longitudinally welded exchanger tube for an otherwise not shown heat exchanger for the condensation and evaporation of refrigerants.
  • the exchanger tube 1 consists of oxygen-free, phosphorus-deoxidized copper (SF-Cu soft). It has an outer diameter D of 9.52 mm.
  • the exchanger tube 1 which has a circular outer and inner cross section, has a smooth outer surface 2 and a structured inner surface 3.
  • the exchanger tube 1 is produced from a sheet-metal strip made of SF-Cu, which is flat on both sides and is not shown in any more detail.
  • the sheet metal strip is subjected to a single-stage roll embossing process, with one side of the sheet metal strip 4 then deformed remaining smooth (as shown in FIGS. 2 and 3) (the later outer surface 2 of the exchanger tube 1) and the other side with a structured surface (the later inner surface 3 the exchanger tube 1) is provided. Only the edge regions 5 of the sheet metal strip 4 (FIG. 2) used for welding remain unstructured.
  • the sheet metal strip 4 is formed into a slotted tube and then welded along the longitudinal seam and divided into lengths.
  • the structure of the inner surface 3 of the exchanger tube 1 (see FIGS. 2 to 5) comprises parallel primary ribs 7 (FIGS. 2 to 4) with inclined flanks 8 (FIGS. 3a / b and) running at an angle ⁇ of 25 ° to the longitudinal axis 6 of the exchanger tube 1 4).
  • the flank angle ⁇ of the primary ribs 7 is 25 ° and the distance A of the central longitudinal planes MLE of two adjacent primary ribs 7 is 1.0 mm (FIG. 4).
  • Their height H (radial extension) amounts to 0.30 mm ( Figure 4).
  • the wall 9 of the exchanger tube 1 connecting the primary ribs 7 has a thickness of 0.30 mm (FIG. 4).
  • FIGS. 3a and 3b the longitudinal axis 6 of the exchanger tube is entered in FIGS. 3a and 3b. It can also be seen from FIGS. 3a and 3b that the crests 10 of the primary ribs 7 are flat. The throats 11 between the flanks 8 and the flat soles 12 of the channels 13 are rounded (FIG. 4). The cross-sectional volume of the primary ribs 7 is significantly smaller than the cross-sectional volume of the channels 13 between the primary ribs 7.
  • FIGS. 2 to 4 also show that secondary ribs 14 which are smaller in height H1 (radial extension) extend between two adjacent primary ribs 7.
  • the height H1 of the secondary ribs 14 is 0.10 mm.
  • the crests 15 of the secondary ribs 14 are also rounded.
  • the throats 16 between the flanks 17 of the secondary ribs 14 and the soles 12 of the channels 13 are also rounded.
  • the flank angle ⁇ , as with the flank angle ⁇ of the primary ribs 7, is 25 °.
  • the secondary ribs 14 run at the same angle ⁇ to the tube longitudinal axis 6 as the primary ribs 7.
  • the spacing A1 of parallel secondary ribs 14 corresponds to the spacing A of parallel primary ribs 7 (FIG. 2).
  • each primary rib 7, seen in longitudinal section, is provided with troughs 18 running parallel to one another and triangular in cross section.
  • troughs 18 of adjacent primary ribs 7 are arranged one behind the other at an angle ⁇ of 35 ° to the pipe longitudinal axis 6.
  • the angle ⁇ enclosed between the central longitudinal plane MLE of the primary ribs 7 and the central longitudinal planes MLE1 of the troughs 18 is 60 °.
  • the distance A2 between two troughs 18 adjacent in the longitudinal direction of a primary rib 7 is 0.4 mm (FIGS. 2 and 5).
  • the troughs 18 have a depth T which corresponds to the height H of the primary ribs 7.
  • the flanks 19 of the troughs 18 are flat.
  • Trapezoidal rib areas 20 are formed between the troughs 18, the tips 21 of which are flat.
  • the bottoms 22 of the troughs 18 are rounded (FIG. 5).
  • the secondary ribs 14 also have depressions 23 corresponding to the arrangement and configuration of the depressions 18 in the primary ribs 7. In this respect, the troughs 23 are not explained again below.
  • At least the soles 12 of the channels 13 are provided in a manner not shown with a micro-roughness that is generated directly during the roll embossing.
  • the exchanger tube 1 illustrated in FIG. 1 has a significantly better heat transfer coefficient k '(not only compared to an exchanger tube 24 with a smooth inner surface, but also to an internally grooved exchanger tube 25 (commercially available V-profile)). W / m 2 K) ( Figure 6).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • External Artificial Organs (AREA)

Abstract

Das Austauscherrohr (1) weist eine glatte äußere Oberfläche (2) und eine strukturierte innere Oberfläche (3) auf. Die innere Oberfläche (3) ist aus unter einem von 90° abweichenden Winkel zur Rohrlängsachse (6) verlaufenden parallelen Primärrippen und Sekundärrippen mit jeweils geneigten ebenen Flanken, von den Primärrippen und Sekundärrippen seitlich begrenzten Kanälen und in den Primärrippen und Sekundärrippen ausgeformten Mulden gebildet. Die radiale Erstreckung der Sekundärrippen ist kleiner als die der Primärrippen. Die Mulden sind dreieckförmig gestaltet. Die Mittellängsebenen der Mulden sind unter einem von 90° abweichenden Winkel zur Rohrlängsachse (6) angeordnet. Die Kuppen der Primär- und Sekundärrippen sind gerundet. Zwischen den Flanken der Primär- und Sekundärrippen und den Kanalsohlen sind gerundete Kehlen vorhanden.

Description

  • Die Erfindung betrifft ein Austauscherrohr für einen Wärmetauscher gemäß den Merkmalen im Oberbegriff des Anspruchs 1.
  • Ein derartiges Austauscherrohr zählt durch die EP 0 692 694 A2 zum Stand der Technik. Hierbei weisen sowohl die Rippen als auch die von den Rippen seitlich begrenzten Kanäle jeweils einen trapezförmigen Querschnitt auf. Die Flanken der Rippen sind eben ausgebildet. Die Übergänge von den Flanken auf die Kanalsohlen sind scharfkantig gestaltet. Scharfkantige Übergänge sind ferner zwischen den Flanken und den flachen Kopfseiten der Rippen vorhanden. Das Querschnittsvolumen der Rippen ist etwa halb so groß wie das Querschnittsvolumen der Kanäle bemessen. Die zueinander parallel verlaufenden Rippen erstrecken sich unter einem von 90° abweichenden Winkel zur Rohrlängsachse. Alle Rippen besitzen dieselbe radiale Erstreckung (Höhe).
  • Die die Rippen quer durchsetzenden Mulden verlaufen ebenfalls unter einem von 90° abweichenden Winkel zur Rohrlängsachse. Die Flanken der Mulden sind konvex gewölbt. Die Übergänge von den Flanken auf die flachen Böden der Mulden sowie auf die flachen Kopfseiten der Rippenbereiche zwischen zwei benachbarten Mulden einer Rippe sind scharfkantig ausgebildet. Die Tiefe der Mulden ist kleiner als die radiale Erstreckung der Rippen bemessen. Alle Mulden sind gleich tief ausgebildet. Bei der Fertigung der Mulden wird das aus den Rippen verformte Material stirnseitig der Mulden in die Kanäle hinein verformt.
  • Die Herstellung des bekannten Austauscherrohrs erfolgt in bevorzugter Weise dadurch, daß zunächst in einem Walzprozeß die Struktur der späteren inneren Oberfläche einseitig an einem Metallband erzeugt, anschließend das Metallband zu einem Schlitzrohr mit innenliegender Oberflächenstruktur umgeformt wird und danach die Schlitzkanten verschweißt werden.
  • Aufgrund der flachen Kopfseiten und der ebenen Flanken der Rippen kann es im praktischen Einsatz des Austauscherrohrs zur Bildung von schwer aufreißbaren, die Kondensation verzögernden Kondensatfilmen kommen. Somit können sich Sperrschichten mit wärmeisolierenden Eigenschaften bilden. Für die Verdampfung stehen dann nur wenige Kanten als Dampfblasenkeime zur Verfügung.
  • Der Erfindung liegt ausgehend vom Stand der Technik die Aufgabe zugrunde, ein Austauscherrohr mit einer inneren Oberflächenstruktur zu schaffen, bei welchem eine deutlich intensivere Durchströmung der Kanäle gewährleistet werden kann und sich die Vorteile einer gleichermaßen guten Verdampfungs- bzw. Kondensationsleistung bei reduziertem Rippengewicht verbinden.
  • Die Lösung dieser Aufgabe besteht nach der Erfindung in den im kennzeichnenden Teil des Anspruchs 1 aufgeführten Merkmalen.
  • Dadurch, daß jetzt jede zweite der in Umfangsrichtung aufeinander folgenden Primär- und Sekundärrippen eine bezüglich der jeweils benachbarten Sekundär- bzw. Primärrippen abweichende radiale Erstreckung (Höhe) aufweist, werden abwechselnd hohe Primärrippen und niedrige Sekundärrippen gebildet. Diese Gestaltung bremst die in den Kanälen gegebene Strömungsgeschwindigkeit nur unwesentlich ab. Dennoch können sich in den Kanälen an geeigneten Stellen stärkere Turbulenzen bilden, die letztlich den Wärmeübergang vom strömenden Fluid auf die Rohrwand intensivieren. Interne Untersuchungen haben gezeigt, daß eine deutliche Leistungssteigerung im Wärmeaustausch durch die alternierenden Höhen der Primär- und Sekundärrippen erreichbar ist.
  • Die Ausführungsform des Anspruchs 2 sieht vor, daß einerseits alle Primärrippen und andererseits alle Sekundärrippen jeweils dieselbe radiale Erstreckung aufweisen. Das heißt, alle Primärrippen besitzen ein und dieselbe Höhe sowie auch alle Sekundärrippen ein und dieselbe Höhe aufweisen.
  • Gemäß den Merkmalen des Anspruchs 3 ist es möglich, daß sowohl die Primärrippen als auch die Sekundärrippen unter demselben Winkel zur Rohrlängsachse verlaufen.
  • Entsprechend Anspruch 4 ist es demgegenüber aber auch denkbar, daß die Sekundärrippen unter einem anderen Winkel zur Rohrlängsachse als die Primärrippen verlaufen.
  • Interne Versuche haben ergeben, daß gemäß den Merkmalen des Anspruchs 5 die Primärrippen unter einem Winkel ≥ 20°, jedoch ≤ 90° zur Rohrlängsachse verlaufen sollten. Bevorzugt erstrecken sich die Primärrippen unter einem Winkel zwischen 20° und 40° zur Rohrlängsachse.
  • Auch bezüglich des Verlaufs der Sekundärrippen hat sich bei internen Untersuchungen herausgestellt, daß entsprechend Anspruch 6 die Sekundärrippen sich unter einem Winkel ≥ 20°, indessen ≤ 90° zur Rohrlängsachse erstrecken sollten. Bevorzugt verlaufen auch in diesem Fall die Sekundärrippen unter einem Winkel zwischen etwa 20° und 40° zur Rohrlängsachse.
  • Die Merkmale des Anspruchs 7 sind mit dem besonderen Vorteil verbunden, daß beim Einziehen eines Austauscherrohrs, z.B. in die Lamellen eines Wärmetauschers, insbesondere durch Aufweiten mittels eines durch das Austauscherrohr bewegten Werkzeugs, die gerundeten Kuppen der Primärrippen und der Sekundärrippen nur unwesentlich abgeplattet werden. Auf diese Weise wird der Bildung von schwer aufreißbaren Kondensatfilmen wirksam entgegengetreten.
  • Auch die Merkmale des Anspruchs 8 tragen entscheidend mit dazu bei, daß der Wärmeaustausch zwischen dem im Austauscherrohr strömenden Fluid und der Wandung des Austauscherrohrs optimiert wird.
  • Eine schlanke Rippenkontur wird mit den Merkmalen des Anspruchs 9 erzielt. Danach beträgt der Flankenwinkel der Primärrippen und der Sekundärrippen 20° bis 40°, vorzugsweise 25°.
  • Eine bevorzugte Weiterbildung des erfindungsgemäßen Grundgedankens im Hinblick auf eine weitere Verbesserung des Wärmeübergangs wird in den Merkmalen des Anspruchs 10 erblickt. Hierbei hat die Erfindung erkannt, daß bei unter einem speziellen Winkel zur Rohrlängsachse liegenden Primärrippen mit abwechselnd in Umfangsrichtung aufeinander folgenden niedrigeren Sekundärrippen das Verhältnis des Abstands der Mittellängsebenen zweier benachbarter Primärrippen zur radialen Erstreckung der Sekundärrippen von besonderer Bedeutung ist. Dieses Verhältnis beträgt 15:1 bis 8:1, vorzugsweise 10:1.
  • In diesem Zusammenhang hat es sich dann entsprechend Anspruch 11 als besonders zweckmäßig erwiesen, den Abstand der Mittellängsebenen zweier benachbarter Primärrippen zwischen etwa 0,8 mm und 2,0 mm zu bemessen.
  • Die Größe der radialen Erstreckung der Primärrippen bewegt sich nach Anspruch 12 vorteilhaft zwischen etwa 0,15 mm und 0,40 mm.
  • Eine weitere Verbesserung der Strömungsverhältnisse in den Kanälen zwischen den Primärrippen und den Sekundärrippen wird nach Anspruch 13 dadurch erzielt, daß die radiale Erstreckung der Primärrippen zur radialen Erstreckung der Sekundärrippen etwa wie 3:1 bemessen ist.
  • Auch das querschnittsmäßige Flächenverhältnis der Primärrippen relativ zu den Sekundärrippen spielt zur Erzielung eines besonders guten Wärmeübergangs eine wichtige Rolle. Gemäß den Merkmalen des Anspruchs 14 ist das Flächenverhältnis der Primärrippen zu dem der Sekundärrippen etwa wie 15:1 bis 5:1, vorzugsweise 8:1 bis 6:1, bemessen.
  • Wie vorstehend bereits dargelegt, können sich die Sekundärrippen unter demselben Winkel zur Rohrlängsachse erstrecken wie die Primärrippen. Verlaufen jedoch die Sekundärrippen unter einem anderen Winkel zur Rohrlängsachse als die Primärrippen, so ist es entsprechend der Ausführungsform des Anspruchs 15 von Vorteil, daß dann der Abstand zwischen zwei benachbarten Sekundärrippen maximal 10 mm beträgt.
  • Nach Anspruch 16 sind mindestens die Sohlen der Kanäle aufgerauht. Denkbar ist aber auch eine Aufrauhung aller Oberflächen der Primär- und Sekundärrippen. Hierbei kann es sich um eine Mikrorauhigkeit handeln. Eine derartige Rauhigkeit macht sich insbesondere bei der Kondensation und Verdampfung von Kältemitteln bemerkbar, wenn das Austauscherrohr in einen entsprechenden Wärmetauscher eingegliedert wird. Die Mikrorauhigkeit ermöglicht es aufgrund der großen Rippenoberflächen, die für eine effektive Verdampfung vorteilhafte große Anzahl von Vorsprüngen, Kanten, Spitzen und Vertiefungen als Dampfblasenkeime bereitzustellen, ohne daß auf der anderen Seite hierfür größere Materialmengen erforderlich wären.
  • Gemäß Anspruch 17 ist es desweiteren von Vorteil, wenn die Tiefe der Mulden der radialen Erstreckung der Primärrippen bzw. der Sekundärrippen entspricht. Bevorzugt erstrecken sich die in benachbarten Primär- bzw. Sekundärrippen ausgeformten Mulden koaxial hintereinander.
  • Die Herstellung eines erfindungsgemäßen Austauscherrohrs wird dadurch erleichtert, daß entsprechend den Merkmalen des Anspruchs 18 der Querschnitt der Mulden etwa dem Querschnitt der zwei benachbarte Mulden trennenden Rippenbereiche entspricht.
  • Vorzugsweise weisen in diesem Zusammenhang gemäß Anspruch 19 die Mulden und die Rippenbereiche einen dreieckförmigen Querschnitt auf.
  • Auch sind hierbei nach Anspruch 20 die konkaven Sohlen der Mulden stärker als die Kuppen der Rippenbereiche gekrümmt.
  • Eine bevorzugte Anwendung des erfindungsgemäßen Austauscherrohrs ist gemäß den Merkmalen des Anspruchs 21 dann gegeben, wenn es aus Kupfer oder einer Kupferlegierung gebildet ist. Das Austauscherrohr kann einen runden oder einen ovalen Querschnitt besitzen. Runde Austauscherrohre weisen bevorzugt einen Außendurchmesser von etwa 6 mm bis 20 mm auf.
  • In anders gelagerten Einsatzfällen kann es erfindungsgemäß auch sinnvoll sein, daß nach Anspruch 22 das Austauscherrohr aus Aluminium oder einer Aluminiumlegierung bzw. gemäß Anspruch 23 aus Eisen oder einer Eisenlegierung gebildet ist.
  • Die Erfindung ist nachfolgend anhand eines in den Zeichnungen veranschaulichten Ausführungsbeispiels näher erläutert. Es zeigen:
  • Figur 1
    in der Perspektive einen Längenabschnitt eines Austauscherrohrs;
    Figur 2
    in der Draufsicht einen Längenabschnitt eines strukturierten Blechbands zur Bildung eines Austauscherrohrs gemäß Figur 1;
    Figuren 3a und 3b
    in der Perspektive den Ausschnitt III der Figur 2 aus zwei verschiedenen Blickrichtungen;
    Figur 4
    in vergrößerter Darstellung einen vertikalen Querschnitt entlang der Linie IV-IV der Figur 2;
    Figur 5
    in vergrößerter Darstellung einen vertikalen Querschnitt entlang der Linie V-V der Figur 2 und
    Figur 6
    anhand eines Diagramms einen Leistungsvergleich von Koaxialkondensatoren, bestückt mit verschiedenen Innenrohren.
  • Mit 1 ist in der Figur 1 ein Längenabschnitt eines längsnahtgeschweißten Austauscherrohrs für einen ansonsten nicht näher dargestellten Wärmetauscher zur Kondensation und Verdampfung von Kältemitteln bezeichnet.
  • Das Austauscherrohr 1 besteht aus sauerstofffreiem, phosphordesoxidiertem Kupfer (SF-Cu weich). Es hat einen Außendurchmesser D von 9,52 mm.
  • Das im Außen- und Innenquerschnitt kreisrunde Austauscherrohr 1 besitzt eine glatte äußere Oberfläche 2 und eine strukturierte innere Oberfläche 3.
  • Die Herstellung des Austauscherrohrs 1 erfolgt aus einem nicht näher dargestellten, beidseitig ebenen Blechband aus SF-Cu. Das Blechband wird einem einstufigen Walzprägevorgang unterworfen, wobei entsprechend der Darstellung der Figuren 2 und 3 eine Seite des dann verformten Blechbands 4 glatt bleibt (die spätere äußere Oberfläche 2 des Austauscherrohrs 1) und die andere Seite mit einer strukturierten Oberfläche (die spätere innere Oberfläche 3 des Austauscherrohrs 1) versehen wird. Lediglich die dem Verschweißen dienenden Randbereiche 5 des Blechbands 4 (Figur 2) bleiben unstrukturiert. Nach dem Walzprägen wird das Blechband 4 zu einem Schlitzrohr eingeformt und dann längsnahtgeschweißt sowie auf Länge abgeteilt.
  • Die Struktur der inneren Oberfläche 3 des Austauscherrohrs 1 (siehe Figuren 2 bis 5) umfaßt unter einem Winkel α von 25° zur Längsachse 6 des Austauscherrohrs 1 verlaufende parallele Primärrippen 7 (Figuren 2 bis 4) mit geneigten Flanken 8 (Figuren 3a/b und 4). Der Flankenwinkel β der Primärrippen 7 beträgt beim Ausführungsbeispiel 25° und der Abstand A der Mittellängsebenen MLE zweier benachbarter Primärrippen 7 1,0 mm (Figur 4). Ihre Höhe H (radiale Erstreckung) beläuft sich auf 0,30 mm (Figur 4). Die die Primärrippen 7 verbindende Wand 9 des Austauscherrohrs 1 hat eine Dicke von 0,30 mm (Figur 4).
  • Zur Verdeutlichung der jeweiligen Blickrichtung ist in den Figuren 3a und 3b die Längsachse 6 des Austauscherrohrs eingetragen. Ferner ist aus den Figuren 3a und 3b zu erkennen, daß die Kuppen 10 der Primärrippen 7 flach ausgebildet sind. Die Kehlen 11 zwischen den Flanken 8 und den ebenen Sohlen 12 der Kanäle 13 sind gerundet (Figur 4). Das Querschnittsvolumen der Primärrippen 7 ist deutlich kleiner als das Querschnittsvolumen der Kanäle 13 zwischen den Primärrippen 7 bemessen.
  • Die Figuren 2 bis 4 zeigen darüber hinaus, daß sich zwischen zwei einander benachbarten Primärrippen 7 in der Höhe H1 (radiale Erstreckung) kleiner bemessene Sekundärrippen 14 erstrecken. Die Höhe H1 der Sekundärrippen 14 beträgt 0,10 mm. Auch die Kuppen 15 der Sekundärrippen 14 sind gerundet. Die Kehlen 16 zwischen den Flanken 17 der Sekundärrippen 14 und den Sohlen 12 der Kanäle 13 sind ebenfalls gerundet. Der Flankenwinkel β beträgt, wie beim Flankenwinkel β der Primärrippen 7 25°.
  • Die Sekundärrippen 14 verlaufen unter demselben Winkel α zur Rohrlängsachse 6 wie die Primärrippen 7. Der Abstand A1 paralleler Sekundärrippen 14 entspricht dem Abstand A paralleler Primärrippen 7 (Figur 2).
  • Wie die Figuren 3a und 5 veranschaulichen, ist jede Primärrippe 7 im Längsschnitt gesehen mit parallel zueinander verlaufenden, im Querschnitt dreieckförmigen Mulden 18 versehen. Wie in diesem Zusammenhang die Figur 2 zeigt, sind Mulden 18 benachbarter Primärrippen 7 in einem Winkel γ von 35° zur Rohrlängsachse 6 fluchtend hintereinander angeordnet. Der zwischen der Mittellängsebene MLE der Primärrippen 7 und den Mittellängsebenen MLE1 der Mulden 18 eingeschlossene Winkel δ beträgt 60°. Der Abstand A2 zweier in Längsrichtung einer Primärrippe 7 benachbarter Mulden 18 beträgt 0,4 mm (Figuren 2 und 5).
  • Die Mulden 18 haben eine Tiefe T, welche der Höhe H der Primärrippen 7 entspricht. Die Flanken 19 der Mulden 18 sind eben ausgebildet. Zwischen den Mulden 18 werden trapezförmige Rippenbereiche 20 gebildet, deren Kuppen 21 flach sind. Die Böden 22 der Mulden 18 sind gerundet (Figur 5).
  • Auch die Sekundärrippen 14 weisen, wie die Figur 3a zeigt, Mulden 23 entsprechend der Anordnung und Konfiguration der Mulden 18 in den Primärrippen 7 auf. Insofern sind die Mulden 23 nachfolgend nicht noch einmal erläutert.
  • Zumindest die Sohlen 12 der Kanäle 13 sind in nicht näher dargestellter Weise mit einer Mikrorauhigkeit versehen, die unmittelbar beim Walzprägen mit erzeugt wird.
  • Aufgrund der strukturierten inneren Oberfläche 3 hat das in Figur 1 veranschaulichte Austauscherrohr 1 im Vergleich nicht nur zu einem Austauscherrohr 24 mit einer glatten inneren Oberfläche, sondern auch zu einem innen einfach gerillten Austauscherrohr 25 (marktüblichen V-Profil) einen wesentlich besseren Wärmedurchgangskoeffizienten k' (W/m2K) (Figur 6).
  • Dieser Sachverhalt ist aus dem aufgrund vergleichender Untersuchungen erstellten Diagramm gemäß Figur 6 ohne zusätzliche Erläuterungen erkennbar.
  • Bezugszeichenaufstellung
  • 1
    - Austauscherrohr
    2
    - äußere Oberfläche v. 1
    3
    - innere Oberfläche v. 1
    4
    - Blechband
    5
    - Randbereiche v. 4
    6
    - Rohrlängsachse
    7
    - Primärrippen
    8
    - Flanken v. 7
    9
    - Wand v. 1
    10
    - Kuppen v. 7
    11
    - Kehlen zw. 8 u. 12
    12
    - Sohlen v. 13
    13
    - Kanäle
    14
    - Sekundärrippen
    15
    - Kuppen v. 14
    16
    - Kehlen zw. 17 u. 12
    17
    - Flanken v. 14
    18
    - Mulden in 7
    19
    - Flanken v. 18
    20
    - Rippenbereiche
    21
    - Kuppen v. 20
    22
    - Böden v. 18
    23
    - Mulden in 14
    24
    - Austauscherrohr, glatt
    25
    - Austauscherrohr, gerillt
    α
    - Winkel zw. 7 bzw. 14 u. 6
    β
    - Flankenwinkel v. 7 u. 14
    γ
    - Winkel zwischen 18 u. 6
    δ
    - Winkel zw. MLE und MLE1
    A
    - Abstand v. 7
    A1
    - Abstand v. 14
    A2
    - Abstand v. 18
    D
    - Durchmesser v. 1
    D1
    - Dicke v. 9
    H
    - Höhe v. 7
    H1
    - Höhe v. 14
    MLE
    - Mittellängsebene v. 7
    MLE1
    -Mittellängsebene v. 18
    T
    - Tiefe v. 18

Claims (23)

  1. Austauscherrohr für einen Wärmetauscher, das eine strukturierte innere Oberfläche (3) aufweist, die aus unter einem von 90° abweichenden Winkel (α) zur Rohrlängsachse (6) verlaufenden Rippen (7, 14) mit geneigten Flanken (8, 17), von den Rippen (7, 14) seitlich begrenzten Kanälen (13) und die Rippen (7, 14) quer durchsetzenden Mulden (18, 23) mit ebenfalls geneigten Flanken (19) gebildet ist, welche sich unter einem von 90° abweichenden Winkel (γ) zur Rohrlängsachse (6) erstrecken, dadurch gekennzeichnet, daß von zwei in Umfangsrichtung nebeneinander verlaufenden Rippen (7, 14) eine Primärrippe (7) eine größere radiale Erstreckung (H) als die benachbarte Sekundärrippe (14) aufweist.
  2. Austauscherrohr nach Anspruch 1, dadurch gekennzeichnet, daß alle Primärrippen (7) und alle Sekundärrippen (14) jeweils dieselbe radiale Erstreckung (H bzw. H1) aufweisen.
  3. Austauscherrohr nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sowohl die Primärrippen (7) als auch die Sekundärrippen (14) unter demselben Winkel (α) zur Rohrlängsachse (6) verlaufen.
  4. Austauscherrohr nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Sekundärrippen (14) unter einem anderen Winkel zur Rohrlängsachse (6) als die Primärrippen (7) verlaufen.
  5. Austauscherrohr nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Primärrippen (7) unter einem Winkel (α) ≥ 20° ≤ 90°, bevorzugt 20° bis 40°, zur Rohrlängsachse (6) verlaufen.
  6. Austauscherrohr nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Sekundärrippen (14) unter einem Winkel (α) ≥ 20° ≤ 90°, bevorzugt 20° bis 40°, zur Rohrlängsachse (6) verlaufen.
  7. Austauscherrohr nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sowohl die Primärrippen (7) als auch die Sekundärrippen (14) gerundete Kuppen (10, 15) und ebene Flanken (8, 17) aufweisen.
  8. Austauscherrohr nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Flanken (8) der Primärrippen (7) über gerundete Kehlen (11) und die Flanken (17) der Sekundärrippen (14) über gerundete Kehlen (16) in die Sohlen (12) der Kanäle (13) einlaufen.
  9. Austauscherrohr nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Flankenwinkel (β) der Primärrippen (7) und der Sekundärrippen (14) 20° bis 40°, vorzugsweise 25°, beträgt.
  10. Austauscherrohr nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Verhältnis des Abstands (A) der Mittellängsebenen (MLE) zweier benachbarter Primärrippen (7) zur radialen Erstreckung (H1) der Sekundärrippen (14) 15:1 bis 8:1, vorzugsweise 10:1, beträgt.
  11. Austauscherrohr nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Abstand (A) der Mittellängsebenen (MLE) zweier benachbarter Primärrippen (7) zwischen etwa 0,8 mm und 2,0 mm beträgt.
  12. Austauscherrohr nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die radiale Erstreckung (H) der Primärrippen (7) zwischen 0,15 mm und 0,40 mm beträgt.
  13. Austauscherrohr nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die radiale Erstreckung (H) der Primärrippen (7) zur radialen Erstreckung (H1) der Sekundärrippen (14) etwa wie 3:1 bemessen ist.
  14. Austauscherrohr nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß - im Querschnitt gesehen - das Flächenverhältnis der Primärrippen (7) zu dem der Sekundärrippen (14) etwa wie 15:1 bis 5:1, vorzugsweise 8:1 bis 6:1, bemessen ist.
  15. Austauscherrohr nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß bei einem bezüglich der Winkel zur Rohrlängsachse (6) abweichenden Verlauf der Primärrippen (7) und der Sekundärrippen (14) der Abstand (A1) zwischen zwei benachbarten Sekundärrippen (14) maximal 10 mm beträgt.
  16. Austauscherrohr nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß mindestens die Sohlen (12) der Kanäle (13) aufgerauht sind.
  17. Austauscherrohr nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die Tiefe (T) der Mulden (18, 23) der radialen Erstreckung (H) der Primärrippen (7) bzw. (H1) der Sekundärrippen (14) entspricht.
  18. Austauscherrohr nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß der Querschnitt der Mulden (18, 23) etwa dem Querschnitt der zwei benachbarte Mulden (18, 23) trennenden Rippenbereiche (20) entspricht.
  19. Austauscherrohr nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß die Mulden (18, 23) und die Rippenbereiche (20) einen dreieckförmigen Querschnitt aufweisen.
  20. Austauscherrohr nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß die Sohlen (22) der Mulden (18, 23) stärker als die Kuppen (21) der Rippenbereiche (20) gekrümmt sind.
  21. Austauscherrohr nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß es aus Kupfer oder einer Kupferlegierung gebildet ist.
  22. Austauscherrohr nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß es aus Aluminium oder einer Aluminiumlegierung gebildet ist.
  23. Austauscherrohr nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß es aus Eisen oder einer Eisenlegierung gebildet ist.
EP97103505A 1996-03-28 1997-03-04 Wärmeaustauscherrohr Expired - Lifetime EP0798529B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19612470 1996-03-28
DE19612470A DE19612470A1 (de) 1996-03-28 1996-03-28 Austauscherrohr

Publications (2)

Publication Number Publication Date
EP0798529A1 true EP0798529A1 (de) 1997-10-01
EP0798529B1 EP0798529B1 (de) 2002-10-16

Family

ID=7789799

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97103505A Expired - Lifetime EP0798529B1 (de) 1996-03-28 1997-03-04 Wärmeaustauscherrohr

Country Status (13)

Country Link
US (1) US6308775B1 (de)
EP (1) EP0798529B1 (de)
JP (1) JPH109789A (de)
AT (1) ATE226310T1 (de)
AU (1) AU709707B2 (de)
CA (1) CA2200671C (de)
DE (2) DE19612470A1 (de)
DK (1) DK0798529T3 (de)
ES (1) ES2180835T3 (de)
MY (1) MY119385A (de)
RU (1) RU2179292C2 (de)
TW (1) TW332859B (de)
ZA (1) ZA972300B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1818641A1 (de) * 2004-12-02 2007-08-15 Sumitomo Light Metal Industries, Ltd. Wärmeübertragungsrohr mit innennuten für hochdruckkältemittel
EP2453119A1 (de) * 2009-07-10 2012-05-16 Toyota Jidosha Kabushiki Kaisha Kühlmittelkreislauf
US10415892B2 (en) * 2017-12-20 2019-09-17 Rheem Manufacturing Company Heat exchange tubes and tube assembly configurations
USD945579S1 (en) 2017-12-20 2022-03-08 Rheem Manufacturing Company Heat exchanger tube with fins

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19612470A1 (de) * 1996-03-28 1997-10-02 Km Europa Metal Ag Austauscherrohr
DE10041919C1 (de) 2000-08-25 2001-10-31 Wieland Werke Ag Innenberipptes Wärmeaustauschrohr mit versetzt angeordneten Rippen unterschiedlicher Höhe
US6883597B2 (en) * 2001-04-17 2005-04-26 Wolverine Tube, Inc. Heat transfer tube with grooved inner surface
JP4822238B2 (ja) * 2001-07-24 2011-11-24 株式会社日本製鋼所 液媒用内面溝付伝熱管とその伝熱管を用いた熱交換器
FR2837270B1 (fr) * 2002-03-12 2004-10-01 Trefimetaux Tubes rainures a utilisation reversible pour echangeurs thermiques
US20040099409A1 (en) * 2002-11-25 2004-05-27 Bennett Donald L. Polyhedral array heat transfer tube
US20040244958A1 (en) * 2003-06-04 2004-12-09 Roland Dilley Multi-spiral upset heat exchanger tube
US20100243225A1 (en) * 2006-01-19 2010-09-30 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US8091621B2 (en) * 2006-01-19 2012-01-10 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US20090014165A1 (en) * 2006-01-19 2009-01-15 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US8438728B2 (en) * 2006-01-19 2013-05-14 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US8683690B2 (en) * 2006-01-19 2014-04-01 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US8191258B2 (en) * 2006-01-19 2012-06-05 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US8281489B2 (en) * 2006-01-19 2012-10-09 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US8434227B2 (en) 2006-01-19 2013-05-07 Modine Manufacturing Company Method of forming heat exchanger tubes
US20080078534A1 (en) * 2006-10-02 2008-04-03 General Electric Company Heat exchanger tube with enhanced heat transfer co-efficient and related method
DE102007004993A1 (de) 2007-02-01 2008-08-07 Modine Manufacturing Co., Racine Herstellungsverfahren für Flachrohre und Walzenstraße
US20090294112A1 (en) * 2008-06-03 2009-12-03 Nordyne, Inc. Internally finned tube having enhanced nucleation centers, heat exchangers, and methods of manufacture
TWI408329B (zh) * 2010-02-12 2013-09-11 Univ Nat Sun Yat Sen 微型熱交換管結構、散熱元件及其製造方法
DE102010023384B4 (de) 2010-06-10 2014-08-28 Modine Manufacturing Co. Herstellungsverfahren, insbesondere für Rohre und Abreißvorrichtung
CN103851945B (zh) * 2012-12-07 2017-05-24 诺而达奥托铜业(中山)有限公司 具有粗糙内表面的内螺纹管
CN104807358A (zh) * 2014-01-29 2015-07-29 卢瓦塔埃斯波公司 截面不规则的内槽管
USD1009227S1 (en) 2016-08-05 2023-12-26 Rls Llc Crimp fitting for joining tubing
US11045912B2 (en) * 2019-06-18 2021-06-29 Hamilton Sundstrand Corporation Method of fabricating an oscillating heat pipe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1452244A1 (de) * 1964-04-23 1971-07-22 Universal Oil Prod Co Doppelrohraggregat mit innenliegenden Rippen und Verfahren zu dessen Herstellung
JPS57175896A (en) * 1981-04-24 1982-10-28 Hitachi Ltd Heat transmission pipe
US4715436A (en) * 1984-10-05 1987-12-29 Hitachi, Ltd. Construction of a heat transfer wall of a heat transfer pipe
US5458191A (en) * 1994-07-11 1995-10-17 Carrier Corporation Heat transfer tube

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588995A (ja) * 1981-07-06 1983-01-19 Kobe Steel Ltd 伝熱管
JPH02161290A (ja) * 1988-12-15 1990-06-21 Furukawa Electric Co Ltd:The 内面加工伝熱管
DE19510124A1 (de) * 1995-03-21 1996-09-26 Km Europa Metal Ag Austauscherrohr für einen Wärmeaustauscher
DE19612470A1 (de) * 1996-03-28 1997-10-02 Km Europa Metal Ag Austauscherrohr

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1452244A1 (de) * 1964-04-23 1971-07-22 Universal Oil Prod Co Doppelrohraggregat mit innenliegenden Rippen und Verfahren zu dessen Herstellung
JPS57175896A (en) * 1981-04-24 1982-10-28 Hitachi Ltd Heat transmission pipe
US4715436A (en) * 1984-10-05 1987-12-29 Hitachi, Ltd. Construction of a heat transfer wall of a heat transfer pipe
US5458191A (en) * 1994-07-11 1995-10-17 Carrier Corporation Heat transfer tube
EP0692694A2 (de) * 1994-07-11 1996-01-17 Carrier Corporation Wärmeaustauschrohr

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 020 (M - 188) 26 January 1983 (1983-01-26) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1818641A1 (de) * 2004-12-02 2007-08-15 Sumitomo Light Metal Industries, Ltd. Wärmeübertragungsrohr mit innennuten für hochdruckkältemittel
EP1818641A4 (de) * 2004-12-02 2010-08-04 Sumitomo Light Metal Ind Wärmeübertragungsrohr mit innennuten für hochdruckkältemittel
EP2453119A1 (de) * 2009-07-10 2012-05-16 Toyota Jidosha Kabushiki Kaisha Kühlmittelkreislauf
EP2453119A4 (de) * 2009-07-10 2013-12-04 Toyota Motor Co Ltd Kühlmittelkreislauf
US10415892B2 (en) * 2017-12-20 2019-09-17 Rheem Manufacturing Company Heat exchange tubes and tube assembly configurations
USD945579S1 (en) 2017-12-20 2022-03-08 Rheem Manufacturing Company Heat exchanger tube with fins

Also Published As

Publication number Publication date
CA2200671A1 (en) 1997-09-28
MY119385A (en) 2005-05-31
CA2200671C (en) 2002-11-19
AU1650997A (en) 1997-10-02
EP0798529B1 (de) 2002-10-16
ATE226310T1 (de) 2002-11-15
AU709707B2 (en) 1999-09-02
DE59708466D1 (de) 2002-11-21
ES2180835T3 (es) 2003-02-16
RU2179292C2 (ru) 2002-02-10
DE19612470A1 (de) 1997-10-02
ZA972300B (en) 1997-10-22
TW332859B (en) 1998-06-01
DK0798529T3 (da) 2003-02-17
US6308775B1 (en) 2001-10-30
JPH109789A (ja) 1998-01-16

Similar Documents

Publication Publication Date Title
EP0798529B1 (de) Wärmeaustauscherrohr
EP0733871B1 (de) Austauscherrohr für einen Wärmeaustauscher
DE60219538T2 (de) Wärmetauscher
DE4404357C1 (de) Wärmeaustauschrohr zum Kondensieren von Dampf
DE10038624C2 (de) Wärmeübertragungsrohr mit gedrallten Innenrippen
DE60209994T2 (de) Wärmetauscherrohr
EP3359902B1 (de) Verfahren zur herstellung einer lamelle und plattenwärmetauscher mit einer lamelle hergestellt nach dem verfahren
DE19644586C2 (de) Rippenrohrblock für einen Wärmeübertrager
EP2339283B1 (de) Wärmeübertragerrohr und Verfahren zur Herstellung eines Wärmeübertragerrohrs
EP0990828A2 (de) Mehrkanal-Flachrohr
EP0672882A1 (de) Rippe für Wärmetauscher
DE10315371A1 (de) Wärmeübertrager
EP0389970B1 (de) Wärmeaustauschernetz mit Leitblechen
EP1163484B1 (de) Sammelrohr für einen wärmeübertrager und herstellungsverfahren hierfür
EP1182416A2 (de) Innenberipptes Wärmeaustauschrohr mit versetzt angeordneten Rippen unterschiedlicher Höhe
DE10054158A1 (de) Mehrkammerrohr mit kreisförmigen Strömungskanälen
EP1327846A2 (de) Wärmetauscher sowie Verfahren zur Herstellung eines Wärmetauschers
EP1227291B1 (de) Wärmetauscher und Herstellungsverfahren
DE102006002932A1 (de) Wärmetauscher und Herstellungsverfahren für Wärmetauscher
DE60015701T2 (de) Gebogenes Rohr für Wärmetauscher und dessen Herstellung
EP2447626B1 (de) Wärmetauscher, insbesondere zur Anwendung bei Kühlmöbeln
WO2003098142A1 (de) Wärmeübertrager und verfahren zu seiner herstellung
DE10210016B9 (de) Wärmeaustauschrohr mit berippter Innenoberfläche
EP0268831B1 (de) Lamelle
DE4120442A1 (de) Flachrohrwaermetauscher, herstellungsverfahren desselben und anwendungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IT LI NL SE

17P Request for examination filed

Effective date: 19980305

17Q First examination report despatched

Effective date: 20000330

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IT LI NL SE

REF Corresponds to:

Ref document number: 226310

Country of ref document: AT

Date of ref document: 20021115

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59708466

Country of ref document: DE

Date of ref document: 20021121

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PA ALDO ROEMPLER

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20020404527

Country of ref document: GR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2180835

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030123

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030717

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: KME GERMANY AG

Free format text: KM EUROPA METAL AKTIENGESELLSCHAFT#POSTFACH 3320#D-49023 OSNABRUECK (DE) -TRANSFER TO- KME GERMANY AG#KLOSTERSTRASSE 29#49074 OSNABRUECK (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ALDO ROEMPLER PATENTANWALT;BRENDENWEG 11 POSTFACH 154;9424 RHEINECK (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20110325

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20110329

Year of fee payment: 15

Ref country code: CH

Payment date: 20110330

Year of fee payment: 15

Ref country code: AT

Payment date: 20110325

Year of fee payment: 15

Ref country code: NL

Payment date: 20110330

Year of fee payment: 15

Ref country code: IT

Payment date: 20110323

Year of fee payment: 15

Ref country code: FI

Payment date: 20110323

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20110323

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110428

Year of fee payment: 15

Ref country code: FR

Payment date: 20110414

Year of fee payment: 15

Ref country code: GB

Payment date: 20110331

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110419

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110526

Year of fee payment: 15

BERE Be: lapsed

Owner name: *KM EUROPA METAL A.G.

Effective date: 20120331

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121001

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120305

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120304

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120304

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20020404527

Country of ref document: GR

Effective date: 20121008

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 226310

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120304

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59708466

Country of ref document: DE

Effective date: 20121002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120304

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120304

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120304

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121002