EP0795519B1 - Dispositif d'injection de gaz non oxydant à l'intérieur d'un four - Google Patents

Dispositif d'injection de gaz non oxydant à l'intérieur d'un four Download PDF

Info

Publication number
EP0795519B1
EP0795519B1 EP97400555A EP97400555A EP0795519B1 EP 0795519 B1 EP0795519 B1 EP 0795519B1 EP 97400555 A EP97400555 A EP 97400555A EP 97400555 A EP97400555 A EP 97400555A EP 0795519 B1 EP0795519 B1 EP 0795519B1
Authority
EP
European Patent Office
Prior art keywords
furnace
enclosure
oxidizing gas
gas
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97400555A
Other languages
German (de)
English (en)
Other versions
EP0795519A1 (fr
Inventor
Gérard Orcel
Jean-François Regnier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP0795519A1 publication Critical patent/EP0795519A1/fr
Application granted granted Critical
Publication of EP0795519B1 publication Critical patent/EP0795519B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/047Re-forming tubes or rods by drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/043Heating devices specially adapted for re-forming tubes or rods in general, e.g. burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01257Heating devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • F27B14/061Induction furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/62Heating means for drawing
    • C03B2205/64Induction furnaces, i.e. HF/RF coil, e.g. of the graphite or zirconia susceptor type
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/70Draw furnace insulation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/80Means for sealing the preform entry or upper end of the furnace
    • C03B2205/81Means for sealing the preform entry or upper end of the furnace using gas
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/82Means for sealing the fibre exit or lower end of the furnace
    • C03B2205/83Means for sealing the fibre exit or lower end of the furnace using gas
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles
    • C03B2205/98Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles using annular gas inlet distributors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • F27D2099/0015Induction heating
    • F27D2099/002Core heating

Definitions

  • the present invention relates to ovens, the enclosure is heated by a heating element graphite such as induction furnaces with a graphite susceptor, and in particular a device injection of non-oxidizing gas inside a this guy.
  • a heating element graphite such as induction furnaces with a graphite susceptor, and in particular a device injection of non-oxidizing gas inside a this guy.
  • Induction ovens with a susceptor in graphite are used in particular in the field of optical fiber.
  • Optical fibers are indeed made from preforms that come in shape of cylindrical bars whose obtaining requires a shrinking operation. In this operation, a primary preform which is a hollow silica rod, is heated at high temperature in an oven to be transformed into a solid bar having undergone a pasty fusion inside the oven during which the diameter of the preform is restricted.
  • Document DE-37 31 346 relates to the injection of annular flames preventing oxygen from entering the oven.
  • JP-A-57 140 330 describes an oven for the manufacture of optical fibers in which nitrogen is injected at each end of the oven by means of cone-shaped nozzles to prevent dirt from entering the oven. This process is not effective enough to prevent air from entering the oven.
  • the main object of the invention is to provide a device for injecting non-oxidizing gas into an oven whose heating element is made of graphite, which prevents any air entering the oven which could cause combustion of graphite.
  • the object of the invention is therefore a device injection of non-oxidizing gas into an oven comprising a graphite heating element used to heat a elongated object, part of which is inside the enclosure of the furnace, the object and the furnace being in relative displacement relative to each other in the axial direction of the oven.
  • This device comprises at each of the inlet ports or out of the enclosure two rings of conduits passage of non-oxidizing gas, the conduits of each of rings being inclined at the same angle relative to the axial direction of the furnace, this angle being different for the two rings of conduits, so as to inject the gas non-oxidizing according to two cone-shaped gas curtains, the gas being directed to the top of the cone and into the direction away from the enclosure in order to prevent any air entering the enclosure which could cause combustion of graphite from the heating element.
  • an induction furnace such that illustrated in Figure 1 is a cylindrical furnace mainly comprising an inductor formed by turns 10 and intended to induce an R.F. electromagnetic field, and a graphite 12 armature or susceptor surrounding the enclosure 14 from the oven.
  • the graphite susceptor 12 is surrounded by a thermal insulation jacket 16 generally made of felt of graphite and an outer silica enclosure 18.
  • the oven includes other items that are not essential or necessary for the functioning of the device according to the invention and which are included in the general enclosure 19 represented by a line in dashed in Figure 1.
  • Such an oven can be used for shrinking a primary preform 20 which is in the form of a hollow bar about 30 mm in diameter required transform into a preform 22 usable for drawing fiber optics, i.e. a bar full of diameter of about 20 mm. This transformation is happening mainly around the middle of the oven brought to a temperature of around 2000 ° C, and is manifested by the narrowing 23.
  • the preform 20, 22 enters the oven through the orifice inlet 24 and exits through outlet port 26 with a travel speed up to 500 mm / min. But he it is possible to provide that the preform is stationary and whether the oven is moved in translation.
  • a non-oxidizing gas is injected into the enclosure. This injection is done at each orifice of the oven from an annular injection chamber 28 to the inlet, and an annular injection chamber 30 at the outlet. The gas is introduced into each chamber by an inlet tube 32 for the injection chamber 28 and via an inlet tube 34 for the injection chamber 30.
  • Each of the injection chambers surrounds a ring of diameter slightly less than the diameter of the enclosure of the oven, the ring 36 for the chamber 28 and the ring 38 for the chamber 30, so that the non-oxidizing gas introduced under pressure into the injection chamber flows in an axial direction towards the center of the enclosure (see arrows in the figure).
  • This gas flow injected at each end of the oven enclosure allows thus maintain a slight overpressure of non-oxidizing gas inside the oven to prevent entry air that could cause graphite to burn.
  • the non-oxidizing gas is first sent by a tube 44 or 46 in a pressure chamber 48 or 50, also annular in shape and surrounding the chamber injection proper.
  • a tube 44 or 46 in a pressure chamber 48 or 50, also annular in shape and surrounding the chamber injection proper.
  • the wall 52 separating the injection chamber 40 from the chamber pressure 48 is relatively thick and crossed by conduits 54 or 56 having an angle with the axial direction of the furnace so that the non-oxidizing gas under pressure in the pressure chamber 48, is injected in room 40 with a certain speed depending on the arrows illustrated in the figure.
  • Crossing conduits the wall being close to each other, so it's a real conical curtain which is formed to inside the chamber 40 and this at each end of the oven.
  • FIG. 4 The injection of a double gas curtain is illustrated in FIG. 4.
  • the wall 52 between the chamber injection 40 and the pressure chamber 48 has two rows of conduits, a first row of conduits 58, 60 similar to the row of conduits in Figure 3, and a second row of conduits 62, 64 more inclined by relative to the axial direction and therefore forming a curtain conical whose apex angle is smaller than the angle of the cone formed by the first curtain. This difference tilting of the two curtains brings increased efficiency.
  • the first row may have an angle with the direction axial between 65 and 85 ° and the second row have an angle between 45 and 65 °.
  • the temperature control in the oven shown in section in Figure 1 is improved to the extent that it is performed taking into account the radiation received from of the preform in the enclosure by means of a pyrometric sighting.
  • a sighting tube ending at the place 23 where the preform undergoes the shrunk passes through the outer silica enclosure 18, the thermal insulation layer of graphite felt 16 and the graphite 12 susceptor, and leads to the heart of the oven enclosure without the presence of a porthole.
  • the radiation 66 emitted by the preform leaves the oven by a sight hole or tube 68 located between two turns as shown in Figure 2 representing the exterior of the oven. This radiation is collected by a type pyrometer bichromatic less sensitive to measurement conditions than a monochromatic pyrometer.
  • the injection of non-oxidizing gas according to the device of the invention prevents any entry of air into the oven enclosure, the existence of the sight hole 68 could leave air enter the enclosure.
  • a conduit 72 into which one injects using an injector (not shown) non-oxidizing gas through its orifice 74 located at outside the coils of the inductor.
  • the duct 72 is located in the thermal insulation layer 16 and ends in the sight tube 68.
  • non-oxidizing gas is injected in the duct 72, part passes through the sight tube 68 towards the oven enclosure and thus maintains a pressure in the sight tube. Most of it actually goes out outside the oven through the sight tube hole thus preventing any entry of air into the sight tube and thus preventing any combustion of the graphite which could produce with oxygen from the air.
  • the non-oxidizing gas which is injected either in the injection chambers located at ends of the oven, either in the duct leading to the pyrometric sight tube can be an inert gas such as argon or helium, or a reducing gas such as nitrogen.
  • the embodiment of the invention which just described uses an induction furnace to the operation of shrinking a primary preform, it goes from the non-oxidizing gas injection device to the interior of an oven according to the invention can be used in any other type of oven whose enclosure contains walls of graphite or any other susceptible material to be oxidized and for application to any other object that a preform insofar as this object is in relative movement with respect to the oven.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)

Description

La présente invention concerne les fours dont l'enceinte est chauffée par un élément chauffant en graphite tels les fours à induction comportant un suscepteur en graphite, et en particulier un dispositif d'injection de gaz non oxydant à l'intérieur d'un four de ce type.
Les fours à induction comportant un suscepteur en graphite sont utilisés en particulier dans le domaine des fibres optiques. Les fibres optiques sont en effet fabriquées à partir de préformes qui se présentent sous forme de barreaux cylindriques dont l'obtention nécessite une opération de rétreint. Dans cette opération, une préforme primaire qui est un barreau de silice creux, est chauffée à haute température dans un four de façon à être transformée en barreau plein ayant subi une fusion pâteuse à l'intérieur au four au cours de laquelle le diamètre de la préforme s'est restreint.
Au cours d'une opération de rétreint d'une préforme primaire, soit la préforme est en déplacement par rapport au four, soit c'est le four qui est en mouvement de translation par rapport à la préforme. Ce déplacement en translation s'effectue à des vitesses pouvant atteindre 500 mm/mn, ce qui rend difficile le contrôle de l'atmosphère interne en raison principalement de l'effet lié au déplacement de matière à l'intérieur de l'enceinte du four. Cependant, il faut éviter toute entrée d'air et donc d'oxygène dans l'enceinte qui aurait pour principale conséquence la combustion du graphite et une réduction de la durée de vie du suscepteur en graphite.
Une solution décrite dans l'article "R.F. Induction furnace for silica-fibre drawing" de Electronics letters 1976, vol. 12, consiste à utiliser un flux d'argon continu dans l'enceinte du four. Mais cette solution est utilisée dans l'étirage de la préforme en une fibre optique où la vitesse de déplacement de la fibre par rapport au four est très faible (quelques mm/minute), et ne serait pas satisfaisante dans l'opération de rétreint mentionnée ci-dessus.
Le document DE-37 31 346 concerne l'injection de flammes annulaires empêchant l'entrée d'oxygène dans le four.
L'abrégé du document JP-A-57 140 330 décrit un four pour la fabrication de fibres optiques dans lequel de l'azote est injecté à chaque extrémité du four au moyen de buses en forme de cônes pour empêcher les inpuretés de pénétrer dans le four. Ce procédé n'est pas assez efficace pour empêcher l'entrée d'air dans le four.
C'est pourquoi le but principal de l'invention est de fournir un dispositif d'injection de gaz non oxydant dans un four dont l'élément chauffant est en graphite, qui empêche toute entrée d'air dans le four pouvant provoquer la combustion du graphite.
L'objet de l'invention est donc un dispositif d'injection de gaz non oxydant dans un four comprenant un élément chauffant en graphite utilisé pour chauffer un objet longiforme dont une partie se trouve dans l'enceinte du four, l'objet et le four étant en déplacement relatif l'un par rapport à l'autre selon la direction axiale du four. Ce dispositif comprend à chacun des orifices d'entrée ou de sortie de l'enceinte deux anneaux de conduits de passage de gaz non oxydant, les conduits de chacun des anneaux étant inclinés d'un même angle par rapport à la direction axiale du four, cet angle étant différent pour les deux anneaux de conduits, de manière à injecter le gaz non oxydant selon deux rideaux de gaz en forme de cône, le gaz étant dirigé vers le sommet du cône et dans la direction s'éloignant de l'enceinte dans le but d'empêcher toute entrée d'air dans l'enceinte pouvant provoquer la combustion du graphite de l'élément chauffant.
Les buts, objets et caractéristiques de l'invention apparaítront plus clairement à la lecture de la description qui suit faite en référence aux dessins dans lesquels :
  • la figure 1 est une représentation schématique en coupe d'un four à induction comportant un suscepteur en graphite et disposant d'un dispositif selon l'invention,
  • la figure 2 est une représentation schématique en perspective d'un four à induction selon la figure 1 et montrant le pyromètre pour mesurer la température ainsi que le tube d'accès du gaz non oxydant,
  • la figure 3 est une vue en coupe d'une chambre d'injection formant un rideau de gaz non oxydant utilisé dans le dispositif de la figure 1, cette chambre d'injection ne faisant pas partie de la présente invention,
  • la figure 4 est une vue en coupe d'une chambre d'injection formant deux rideaux de gaz non oxydant utilisée dans le dispositif selon l'invention.
  • Selon l'invention, un four à induction tel qu'illustré sur la figure 1 est un four cylindrique comprenant principalement un inducteur formé des spires 10 et destiné à induire un champs électromagnétique R.F., et un induit ou suscepteur en graphite 12 entourant l'enceinte 14 du four. Le suscepteur en graphite 12 est entouré d'une enveloppe d'isolation thermique 16 généralement en feutre de graphite et d'une enceinte extérieure en silice 18. Le four comprend d'autres éléments qui ne sont pas indispensables ou nécessaires pour le fonctionnement du dispositif selon l'invention et qui sont inclus dans l'enceinte générale 19 représentée par une ligne en pointillés sur la figure 1.
    Un tel four peut être utilisé pour le rétreint d'une préforme primaire 20 qui se présente sous la forme d'un barreau creux d'environ 30 mm de diamètre qu'il faut transformer en une préforme 22 utilisable pour l'étirage de la fibre optique, c'est à dire un barreau plein d'un diamètre d'environ 20 mm. Cette transformation se produit principalement vers le milieu du four porté à une température d'environ 2000°C, et se manifeste par le rétrécissement 23.
    La préforme 20, 22 pénètre dans la four par l'orifice d'entrée 24 et sort par l'orifice de sortie 26 avec une vitesse de translation pouvant atteindre 500 mm/mn. Mais il est possible de prévoir que la préforme soit immobile et que ce soit le four qui soit mû en translation.
    De façon à éviter la combustion du suscepteur en graphite 12 qui ne manquerait pas de se produire à la température élevée régnant à l'intérieur de l'enceinte 14 en présence d'air, on injecte un gaz non oxydant dans l'enceinte. Cette injection se fait à chaque orifice du four à partir d'une chambre d'injection annulaire 28 à l'orifice d'entrée, et d'une chambre d'injection annulaire 30 à l'orifice de sortie. Le gaz est introduit dans chaque chambre par un tube d'entrée 32 pour la chambre d'injection 28 et par un tube d'entrée 34 pour la chambre d'injection 30. Chacune des chambres d'injection entoure une bague de diamètre légèrement inférieur au diamètre de l'enceinte du four, la bague 36 pour la chambre 28 et la bague 38 pour la chambre 30, de manière à ce que le gaz non oxydant introduit sous pression dans la chambre d'injection s'écoule dans une direction axiale vers le centre de l'enceinte (voir les flèches sur la figure). Ce flux de gaz injecté à chaque extrémité de l'enceinte du four permet de maintenir ainsi une légère surpression de gaz non oxydant dans l'enceinte du four de façon à empêcher toute entrée d'air qui pourrait entraíner la combustion du graphite.
    Mais cette surpression à l'intérieur de l'enceinte n'est pas suffisante pour empêcher toute entrée d'air dans l'enceinte du fait du déplacement relatif entre le four et la préforme. C'est pourquoi il est prévu à chaque extrémité de l'enceinte une autre chambre d'injection 40 du côté entrée et 42 du côté sortie. Ces chambres d'injection, annulaires également, envoient vers l'intérieur des flux de gaz non oxydant sous pression présentant un certain angle avec la direction axiale (voir les flèches sur la figure) de façon à créer des rideaux coniques de gaz à chaque extrémité de l'enceinte, le sommet du cône formé par chaque rideau étant dirigé vers l'extérieur du four. Les essais ont montré que de tels rideaux de forme conique empêchaient de façon efficace toute entrée d'air, même lorsque la vitesse relative de déplacement entre le four et la préforme atteignait une vitesse aussi élevée que 500 mm/mn.
    De façon à ce que le gaz injecté dans les rideaux ait une certaine pression, le gaz non oxydant est d'abord envoyé par un tube 44 ou 46 dans une chambre de pression 48 ou 50, également de forme annulaire et entourant la chambre d'injection proprement dite. Comme illustré sur la figure 3 qui illustre le principe général avec un seul rideau de gaz, ce principe qénéral ne faisant pas partie de la présente invention, la paroi 52 séparant la chambre d'injection 40 de la chambre de pression 48 est relativement épaisse et traversée par des conduits 54 ou 56 présentant un certain angle avec la direction axiale du four de sorte que le gaz non oxydant sous pression dans la chambre de pression 48, est injecté dans la chambre 40 avec une certaine vitesse selon les flèches illustrées sur la figure. Les conduits traversant la paroi étant près les uns des autres, c'est donc un véritable rideau de forme conique qui est formé à l'intérieur de la chambre 40 et ceci à chaque extrémité du four.
    En fait l'utilisation d'un seul anneau de conduits 52 tel qu'illustré sur la figure 3 n'est pas suffisante pour résoudre le problème posé par l'invention. En effet, compte-tenu de la vitesse assez grande du gaz à la sortie des conduits, il y a entraínement de molécules d'air par le gaz injecté à cause de la viscosité de ce gaz se déplaçant à vitesse élevée. Lorsque ces molécules arrivent au sommet du cône, une proportion d'entre elles pénètrent tout de même dans l'enceinte à l'orifice d'entrée du four (qui n'est pas forcément toujours le même orifice), ceci étant principalement dû à la vitesse de translation relative importante entre la préforme et le four. C'est pourquoi, il est préférable de disposer de deux anneaux de conduits produisant deux rideaux de gaz non oxydant. Bien que des molécules d'air soient entraínées malgré le premier rideau, il y a un pourcentage d'air relativement faible par rapport au gaz non oxydant entre les deux rideaux de gaz, et par conséquent le risque que de l'air puisse pénétrer dans l'enceinte est absolument négligeable.
    L'injection d'un double rideau de gaz est illustrée sur la figure 4. Dans ce cas, la paroi 52 entre la chambre d'injection 40 et la chambre de pression 48 comporte deux rangées de conduits, une première rangée de conduits 58, 60 similaire à la rangée de conduits de la figure 3, et une deuxième rangée de conduits 62, 64 plus inclinés par rapport à la direction axiale et donc formant un rideau conique dont l'angle au sommet est plus faible que l'angle du cône formé par le premier rideau. Cette différence d'inclinaison des deux rideaux amène une efficacité accrue.
    Dans le dispositif illustré sur la figure 4, la première rangée pourra avoir un angle avec la direction axiale compris entre 65 et 85° et la deuxième rangée avoir un angle compris entre 45 et 65°. On peut ainsi choisir un angle de 80° pour la première rangée et un angle de 50° pour la deuxième rangée.
    Le contrôle de température dans le four représenté en coupe sur la figure 1 est amélioré dans la mesure où il est effectué en prenant en compte le rayonnement reçu à partir de la préforme se trouvant dans l'enceinte au moyen d'une visée pyrométrique. Pour ce faire, un tube de visée aboutissant à l'endroit 23 où la préforme subit le rétreint, traverse l'enceinte extérieure en silice 18, la couche d'isolation thermique en feutre de graphite 16 et le suscepteur en graphite 12, et aboutit au coeur de l'enceinte du four sans la présence d'un hublot. Le rayonnement 66 émis par la préforme sort du four par un orifice ou tube de visée 68 se trouvant entre deux spires comme le montre la figure 2 représentant l'extérieur du four. Ce rayonnement est recueilli par un pyromètre de type bichromatique moins sensible aux conditions de mesures qu'un pyromètre monochromatique.
    Bien que, comme il vient d'être décrit, l'injection de gaz non oxydant selon la dispositif de l'invention empêche toute entrée d'air dans l'enceinte du four, l'existence du trou de visée 68 pourrait laisser de l'air pénétrer dans l'enceinte. C'est pourquoi il est prévu un conduit 72 dans lequel on injecte à l'aide d'un injecteur (non montré) du gaz non oxydant par son orifice 74 situé en dehors des spires de l'inducteur. Le conduit 72 est situé dans la couche d'isolation thermique 16 et aboutit dans le tube de visée 68. Lorsque le gaz non oxydant est injecté dans le conduit 72, une partie passe dans le tube de visée 68 vers l'enceinte du four et maintient ainsi une pression dans le tube de visée. La majeure partie sort en fait vers l'extérieur du four par l'orifice du tube de visée empêchant ainsi toute entrée d'air dans le tube de visée et donc empêchant toute combustion du graphite qui pourrait se produire avec l'oxygène de l'air.
    Bien que ce ne soit pas montré sur la figure, il est bien sûr possible d'asservir la puissance du four à la mesure de température de l'enceinte.
    On doit noter que le gaz non oxydant qui est injecté soit dans les chambres d'injection se trouvant aux extrémités du four, soit dans le conduit aboutissant au tube de visée pyrométrique, peut être un gaz inerte tel que de l'argon ou de l'hélium, ou bien un gaz réducteur tel que de l'azote.
    Bien que le mode de réalisation de l'invention qui vient d'être décrit utilise un four à induction pour l'opération de rétreint d'une préforme primaire, il va de soi que le dispositif d'injection de gaz non oxydant à l'intérieur d'un four selon l'invention peut être utilisé dans tout autre type de four dont l'enceinte comporte des parois en graphite ou en tout autre matériau susceptible d'être oxydé et pour l'application à tout autre objet qu'une préforme dans la mesure où cet objet est en mouvement relatif par rapport au four.

    Claims (8)

    1. Dispositif d'injection de gaz non oxydant à l'intérieur d'un four du type comprenant un élément chauffant en graphite (12) pour chauffer une enceinte cylindrique (14) comportant un orifice d'entrée (24) et un orifice de sortie (26), le four étant utilisé pour chauffer un objet longiforme dont une partie se trouve dans ladite enceinte entre l'orifice d'entrée et l'orifice de sortie, ledit objet et ledit four étant en déplacement relatif l'un par rapport à l'autre selon la direction axiale du four ;
         ledit dispositif d'injection étant caractérisé en ce qu'il comprend deux anneaux de conduits de passage de gaz non oxydant (58, 60 et 62, 64), les conduits de chacun des anneaux étant inclinés d'un même angle par rapport à la direction axiale du four et ledit angle étant différent pour les deux anneaux de conduits, de manière à injecter le gaz non oxydant selon deux rideaux de gaz en forme de cône, le gaz étant dirigé vers le sommet du cône et dans la direction s'éloignant de ladite enceinte, de manière à empêcher toute entrée d'air dans ladite enceinte pouvant provoquer la combustion du graphite dudit élément chauffant.
    2. Dispositif selon la revendication 1, comportant, à chacun des orifices d'entrée (24) et de sortie (26) de ladite enceinte (14), une chambre de pression (48 ou 50) dans laquelle est envoyé le gaz non oxydant au moyen d'un tube d'arrivée de gaz (44 ou 46), et une chambre d'injection (40 ou 42) séparée de ladite chambre de pression par une paroi comportant lesdits anneaux de conduits de passage de gaz (58, 60 et 62, 64).
    3. Dispositif selon la revendication 1 ou 2, comprenant en outre un deuxième injecteur annulaire (28, 30) à chaque orifice du four recevant du gaz non oxydant au moyen d'un tube d'arrivée de gaz (32, 34) et entourant une bague (36, 38) pour injecter le gaz non oxydant dans la direction axiale du four et vers le centre de l'enceinte de manière à créer une surpression à l'intérieur de l'enceinte empêchant toute entrée d'air.
    4. Dispositif selon l'une des revendications 1 à 3, comportant en outre un dispositif de mesure de température comprenant un tube de visée (68) accessible de l'extérieur et traversant l'enveloppe d'isolation thermique du four (16) et ledit suscepteur en graphite (12), un pyromètre (70) situé à l'extérieur du four à l'entrée dudit tube de visée pour recueillir le rayonnement (66) émis par ladite préforme approximativement à l'endroit (23) subissant l'opération de rétreint et ainsi mesurer sa température, et un injecteur de gaz pour injecter du gaz non oxydant dans un conduit (72) débouchant dans ledit tube de visée de sorte que le gaz non oxydant injecté ressorte à l'extérieur en empruntant ledit tube de visée et empêche toute entrée d'air dans ledit tube de visée.
    5. Dispositif selon l'une des revendications 1 à 4, dans lequel ledit four est un four à induction formé d'un inducteur à spires (10) et d'un suscepteur en graphite (12) constituant ledit élément chauffant.
    6. Dispositif selon la revendication 5, dans lequel ledit objet longiforme chauffé dans l'enceinte du four est une préforme primaire subissant une opération de rétreint.
    7. Dispositif selon la revendication 6, dans lequel ledit tube de visée (68) a son extrémité intérieure à l'enceinte située approximativement au centre de l'enceinte pour recueillir le rayonnement (66) émis par l'endroit (23) de la préforme primaire subissant l'opération de rétreint.
    8. Dispositif selon l'une quelconque des revendications précédentes, dans lequel ledit gaz non oxydant est de l'argon.
    EP97400555A 1996-03-14 1997-03-13 Dispositif d'injection de gaz non oxydant à l'intérieur d'un four Expired - Lifetime EP0795519B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9603224A FR2746176B1 (fr) 1996-03-14 1996-03-14 Dispositif d'injection de gaz non oxydant a l'interieur d'un four
    FR9603224 1996-03-14

    Publications (2)

    Publication Number Publication Date
    EP0795519A1 EP0795519A1 (fr) 1997-09-17
    EP0795519B1 true EP0795519B1 (fr) 1999-09-15

    Family

    ID=9490188

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97400555A Expired - Lifetime EP0795519B1 (fr) 1996-03-14 1997-03-13 Dispositif d'injection de gaz non oxydant à l'intérieur d'un four

    Country Status (3)

    Country Link
    US (1) US5970083A (fr)
    EP (1) EP0795519B1 (fr)
    FR (1) FR2746176B1 (fr)

    Families Citing this family (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    ATE301621T1 (de) 1999-05-10 2005-08-15 Pirelli & C Spa Verfahren und induktionsofen zum ziehen von vorformen grosser diameter zu optischen fasern
    NL1016644C2 (nl) * 2000-11-17 2002-05-22 Draka Fibre Technology Bv Inrichting en werkwijze voor het vervaardigen van een voorvorm.
    US7797966B2 (en) * 2000-12-29 2010-09-21 Single Crystal Technologies, Inc. Hot substrate deposition of fused silica
    US20020083740A1 (en) * 2000-12-29 2002-07-04 Pandelisev Kiril A. Process and apparatus for production of silica grain having desired properties and their fiber optic and semiconductor application
    US20020083739A1 (en) * 2000-12-29 2002-07-04 Pandelisev Kiril A. Hot substrate deposition fiber optic preforms and preform components process and apparatus
    JP2002234750A (ja) * 2001-02-01 2002-08-23 Shinetsu Quartz Prod Co Ltd 光ファイバ用石英ガラス母材の製造方法
    GB0119664D0 (en) * 2001-08-11 2001-10-03 Stanelco Fibre Optics Ltd Glass stretching furnace
    US20030041628A1 (en) * 2001-09-05 2003-03-06 Bird Lindwood A. Furnaces having dual gas screens and methods for operating the same
    WO2004054323A2 (fr) * 2002-12-09 2004-06-24 Nordson Corporation Dispositif de sechage a induction
    JP6302833B2 (ja) * 2014-12-26 2018-03-28 信越化学工業株式会社 ガラスロッドの絞り加工方法
    NL2015161B1 (en) * 2015-07-13 2017-02-01 Draka Comteq Bv A method for preparing a primary preform by etching and collapsing a deposited tube.
    NL1041529B1 (en) * 2015-10-16 2017-05-02 Draka Comteq Bv A method for etching a primary preform and the etched primary preform thus obtained.
    JP6691881B2 (ja) * 2017-03-01 2020-05-13 信越化学工業株式会社 線引き用光ファイバ母材の製造方法および製造装置
    NL2020974B1 (en) * 2018-05-23 2019-12-02 Draka Comteq Bv A device, system and method for forming a core rod for optical fibers
    CN112645569B (zh) * 2020-12-23 2022-04-19 江苏晶隆科技有限公司 一种石英拉管生产用电炉气压稳定装置

    Family Cites Families (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1523595A (en) * 1975-10-31 1978-09-06 Nat Res Dev Electrical resistance furnaces
    FR2340519A1 (fr) * 1976-02-06 1977-09-02 France Etat Four pour tres hautes temperatures
    US4030901A (en) * 1976-07-19 1977-06-21 Bell Telephone Laboratories, Incorporated Method for drawing fibers
    FR2386004B2 (fr) * 1977-03-29 1980-05-23 Comp Generale Electricite Four electrique a haute frequence
    US4174842A (en) * 1978-03-31 1979-11-20 Western Electric Company, Incorporated Non-contacting seal for treating chamber through which elongated material is moved
    JPS605683B2 (ja) * 1979-08-21 1985-02-13 東邦レーヨン株式会社 黒鉛繊維の製造装置
    DE3025680A1 (de) * 1980-07-07 1982-02-04 Siemens AG, 1000 Berlin und 8000 München Heizkoerper fuer einen hochtemperaturofen
    JPS57140330A (en) * 1981-02-23 1982-08-30 Nippon Telegr & Teleph Corp <Ntt> Spinning method for optical fiber
    FR2546912B1 (fr) * 1983-06-06 1987-07-10 Commissariat Energie Atomique Procede et dispositif d'elaboration d'un monocristal
    US4643890A (en) * 1984-09-05 1987-02-17 J. M. Huber Corporation Perforated reactor tube for a fluid wall reactor and method of forming a fluid wall
    DE3731346A1 (de) * 1987-09-18 1989-03-30 Licentia Gmbh Verfahren zur herstellung einer vorform fuer einen lichtwellenleiter
    DE4001462A1 (de) * 1990-01-19 1991-07-25 Rheydt Kabelwerk Ag Verfahren zum herstellen einer vorform
    FR2677972B1 (fr) * 1991-06-21 1996-12-06 France Telecom Procede de fabrication de preformes pour fibres optiques et dispositif pour la mise en óoeuvre de ce procede.

    Also Published As

    Publication number Publication date
    FR2746176A1 (fr) 1997-09-19
    EP0795519A1 (fr) 1997-09-17
    US5970083A (en) 1999-10-19
    FR2746176B1 (fr) 1998-04-10

    Similar Documents

    Publication Publication Date Title
    EP0795519B1 (fr) Dispositif d&#39;injection de gaz non oxydant à l&#39;intérieur d&#39;un four
    EP0950643B1 (fr) Soudage bout à bout de préformes de fibres optiques à l&#39;aide d&#39;une torche à plasma
    FR2512804A1 (fr) Procede et appareil de chauffage d&#39;une preforme pour fibre optique
    EP0296032B1 (fr) Système à brûleur notamment à grande vitesse de sortie des gaz brûlés
    EP0112224A1 (fr) Dispositif d&#39;échauffement d&#39;une zone annulaire superficielle d&#39;un objet filiforme
    EP0803478B1 (fr) Dispositif de fibrage d&#39;une préforme de fibre optique
    EP0519834B1 (fr) Procédé et dispositif pour la fabrication de préformes pour fibres optiques
    EP0934909B1 (fr) Procédé de fibrage en continu de préformes pour la fabrication de fibres optique
    CA1092200A (fr) Four electrique a haute frequence
    FR2784449A1 (fr) Bruleur a combustible fluide notamment pour fours de rechauffage de produits siderurgiques
    KR920019685A (ko) 신장 유리 기질 가열 방법 및 장치
    FR2512520A1 (fr) Chalumeau
    EP0850890A1 (fr) Four de fibrage d&#39;une préforme de fibre optique
    FR2505472A1 (fr) Dispositif de concentration d&#39;energie infrarouge et dispositif de fabrication de fibres optiques comportant un tel dispositif de concentration
    EP0708060A1 (fr) Procédé d&#39;amélioration géométrique d&#39;un tube en verre pour réalisation de préformé pour fibres optiques
    FR2496231A1 (fr) Bruleur destine a la production de preformes pour fibres optiques
    EP0178198A2 (fr) Brûleur à mélange préalable intégré et à flamme pilote intégrée
    EP0082073B1 (fr) Procédé et dispositif de frittage de parois réfractaires
    FR2714047A1 (fr) Procédé de fabrication de matériaux composites à matrice vitreuse ou virtrocéramique renforcée de fibres et dispositifs pour sa mise en Óoeuvre.
    FR2714371A1 (fr) Procédé de recharge d&#39;une préforme de fibre optique, dispositif pour la mise en Óoeuvre de ce procédé et fibre optique par ce procédé.
    FR2741702A1 (fr) Bruleur a gaz pour four de rechauffage de produits siderurgiques
    EP0872459B1 (fr) Procédé et appareil de fabrication d&#39;une fibre optique munie d&#39;un revêtement hermétique
    EP1065174B1 (fr) Torche à plasma, procédé de fabrication d&#39;une préforme de fibre optique et dispositif de fabrication de préformes mettant en oeuvre ce procédé
    FR2587502A1 (fr) Appareil permettant de realiser la fusion et l&#39;etirage de fibres optiques, notamment pour la fabrication de coupleurs
    FR2830606A1 (fr) Bruleur adaptable a differentes puissances de fonctionnement

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DK FI FR GB NL

    17P Request for examination filed

    Effective date: 19980317

    17Q First examination report despatched

    Effective date: 19980414

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALCATEL

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DK FI FR GB NL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990915

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19991027

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19991215

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20010228

    Year of fee payment: 5

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021001

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20021001

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20140319

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20140319

    Year of fee payment: 18

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20150313

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20151130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150313

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150331