EP0793897A1 - Prothese auditive - Google Patents

Prothese auditive

Info

Publication number
EP0793897A1
EP0793897A1 EP95921771A EP95921771A EP0793897A1 EP 0793897 A1 EP0793897 A1 EP 0793897A1 EP 95921771 A EP95921771 A EP 95921771A EP 95921771 A EP95921771 A EP 95921771A EP 0793897 A1 EP0793897 A1 EP 0793897A1
Authority
EP
European Patent Office
Prior art keywords
signal
hearing aid
low
input
clock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95921771A
Other languages
German (de)
English (en)
Other versions
EP0793897B1 (fr
Inventor
Henning Haugaard Andersen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topholm and Westermann ApS
Original Assignee
Topholm and Westermann ApS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topholm and Westermann ApS filed Critical Topholm and Westermann ApS
Publication of EP0793897A1 publication Critical patent/EP0793897A1/fr
Application granted granted Critical
Publication of EP0793897B1 publication Critical patent/EP0793897B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing

Definitions

  • the invention relates to a hearing aid with a microphone, a transmission part for signal processing and an output amplifier with a receiver connected to it.
  • Output amplifiers for hearing aids should have low energy consumption in addition to low distortion, even with high output power.
  • Class B amplifiers are more efficient than A amplifiers.
  • Amplifiers of this type have also hitherto been customary in hearing aids.
  • D-amplifiers are, for example. in European Patent Application o 590 903 AI from Exar Corporation and in US Pat. Nos. 5, 247,581 to Exar Corporation and US Pat. Nos. 4,689,819 and 4,592,087 to Industrial Research Products Inc. disclosed and described in detail.
  • the rectangular pulse sequence of an oscillator which is in the ultrasound range, is fed to an integrator, which is also fed the output voltage of a low-frequency signal, which arrives from a microphone via an amplifier train and serves as a bias voltage.
  • the output signal of the integrator is then a triangular pulse train, the zero crossings through which Integrator supplied bias lying in the hearing frequency range can be varied. I.e. , this low-frequency bias voltage shifts the zero crossings of the triangular signal from a course symmetrical to the axis of symmetry without bias signal to asymmetrical conditions, the asymmetry in terms of sign and size being a continuously changing function of the amplitude of the low-frequency input signal.
  • Such D-amplifiers working with pulse width modulation have a very good efficiency and have almost no cross modulation.
  • a disadvantage of the D-amplifier with pulse width modulation is that the pulse width should be changed either continuously or in very small steps if a high signal to noise ratio is to be achieved.
  • the known class D output amplifiers use continuous modulation, i.e. a continuous variation of the pulse width and therefore require a continuous output signal from the microphone as an input signal. If the signal processing preceding the output amplifier is time-discrete and / or amplitude-discrete, then this digital signal must first e.g. be converted into a network or a digit / analog converter. This represents an unreasonable additional effort.
  • the invention is therefore intended to propose a hearing aid with a novel, considerably simpler output amplifier, in which a relatively high signal / noise ratio can be achieved, with extremely low power requirements and high output power, with minimal distortion and any lack of cross modulation and a possible control of the output signal with a digital or an analog input signal.
  • the output amplifier can be constructed completely as a digitally highly integrated CMOS circuit.
  • Fig. 1 shows a basic circuit diagram of a hearing aid with an output amplifier according to the invention
  • Fig. 2 a Signa icon converter used in the output amplifier of the hearing aid
  • Output amplifier of the hearing aid. 1 shows, for example, a hearing aid device with a novel output amplifier, the use of which is not limited to the use in hearing aid devices, but is generally applicable to digital amplifiers where a high ratio of useful signal to interference signal is important.
  • the acoustic signal is picked up by a microphone 1 and limited in a low-pass filter as an anti-aliasing filter to a frequency range customary in hearing aids.
  • This low-frequency signal is now subjected to signal processing in a signal processor 3.
  • the analog input signal is either further processed analogously in such a way that the amplifier characteristic of the signal processor is adapted to the variables required for the respective hearing damage or hearing loss of its wearer with respect to all the variables.
  • Such variable which are dependent on the frequency, are, for example. the amplification of the individual stages, the limit level, the compression threshold, the automatic amplification control with its response and decay times, a combination of compression and expansion or a non-linear course of the amplification of individual stages or all stages in total, as well as the output switching Pressure level.
  • the signal processor on the input side would have to contain a digital-analog log converter, for which a separate clock generator would be required for the clock.
  • a new output amplifier then follows the Signal processor 3.
  • This consists essentially of a signal converter 4, which is essentially a is.
  • This signal converter first contains a subtractor stage 5 with two inputs, namely a positive input and a negative input, the positive input being connected to the output of the signal processor 3.
  • This subtraction stage 5 is followed by a low-pass filter 6.
  • the low-pass filter 6 could be an integrator.
  • a comparison stage 7 with a holding network is connected to this integrator 6.
  • the output of this comparison stage is connected via a feedback connection to the negative input of the subtraction stage 5.
  • a high-frequency clock generator 8 is provided, which sends a high-frequency clock pulse signal with a frequency in the range of approximately 1 MHz to the comparison stage
  • the output of the Signa Ikon age 4 is connected to the receiver 10 via a low-pass function.
  • a clock generator with a significantly lower frequency required for the signal processor 3 is preferably provided by the high-frequency clock generator
  • a typical clock frequency for the signal processor 3 could be about 32 kHz.
  • the high-frequency clock signal 11 of the clock generator 8 is fed to the comparison stage 7.
  • the digital input signal 12 in FIG. 3 (an extremely simplified representation) is fed to the subtraction stage at its positive input.
  • the output signal 14 of the signal converter 4 reaches the negative input of the subtraction stage via a feedback connection and is subtracted there from the input signal 12.
  • the resulting output signal is fed to the integrator 6 (which represents the low-pass filter here) and integrated there to form the output signal 13.
  • This signal 13 is converted in the comparison stage 7 with holding network synchronously with the edges of the high-frequency clock signal into the output signal 14, which has only two possible values, which for the sake of simplicity are shown here as +1 and -1.
  • the input signal 12 should initially have the value -0.5.
  • the integrated signal 13 then rises from -1.5 to zero, which results in a first output pulse transition from -1 to +1.
  • the integrated signal then drops again to -1, 5, after which the output signal 14 again assumes the value -1.
  • the subsequent rise in the input signal 12 to the value zero results in a steeper rise in the integrated signal 13 to the value 0.5.
  • the corresponding signal values of the output signal 14 between -1 and +1 are then obtained via the integration, the values -1 corresponding to the lower value of the integrated signal and the values +1 to the upper value of the integrated signal .
  • the further values of the input signal of 0.3, 0.6 and 1.0 are converted into corresponding pulses of the output signal 14 via the integration. I.e. in the output signal 14 the ratio of positive values to negative values per time unit changes depending on the input signal 12.
  • the analog signal When converting a low-frequency analog signal into a digital signal by time-discrete and / or amplitude-discrete conversion, the analog signal is quantized.
  • the stages of the input signal 12 shown in FIG. 3 therefore represent corresponding amplitude steps of a quantized analog signal.
  • clock pulse frequencies of z. B. 100 kHz is sufficient, in the present case, to achieve a large ratio of useful signal to interference signal, significantly higher clock pulse frequencies are required, which can be, for example, in the range of 1 MHz.
  • the output signal 14 of the signal converter 4 contains, in addition to the desired amplified low-frequency component, a strong high-frequency signal component which, of course, represents an undesired interference signal which, for example, must be removed by a passive low-pass filter.
  • this output amplifier is used in a hearing aid, then the inductance of the voice coil of the listener and the low-pass properties of the mechanical and acoustic system of the hearing aid and the human ear can take over this low-pass function completely, so that a separate low-pass filter appears to be unnecessary.
  • This novel output amplifier which is particularly suitable for hearing aids, has a number of advantages. All pulse edges are synchronized with a known clock pulse frequency, which can also be used to synchronize the clock pulse generator required for the upstream signal processor, which operates at a significantly lower clock frequency.
  • the input signal of the output amplifier can be a digital signal and the output amplifier can be designed as a pure digital circuit. Ie. but that the entire circuit can be constructed as a digital circuit, an analog / digital converter only having to be provided at the input of the signal processor 3. This results in the further possibility of building up the entire circuit using C-MOS technology as a highly integrated circuit.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Adornments (AREA)
  • Finger-Pressure Massage (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

L'invention concerne une prothèse auditive comprenant un microphone (1), une partie de transmission (2, 3) pour la mise en forme ou le traitement des signaux, un amplificateur de sortie (4) auquel est raccordé un écouteur (10), ainsi qu'une pile pour l'alimentation en tension. L'amplificateur de sortie (4) contenu dans la prothèse auditive se présente sensiblement sous forme d'amplificateur SIGMA - DELTA et comporte un générateur d'impulsions (8) qui produit un signal pulsé de fréquence élevée, se trouvant dans la plage d'environ 1 MHz, ainsi qu'une fonction de filtre passe-bas (15) intercalé à la suite. Le signal d'entrée du convertisseur de signaux est une représentation du signal d'entrée de basse fréquence de la prothèse auditive, produite par traitement des signaux. Ce signal d'entrée peut être converti dans le convertisseur de signaux en un signal qui ne comporte que deux valeurs possibles. Le signal de sortie (14) apparaît alors, après passage à travers le filtre passe-bas, comme une reproduction sensiblement amplifiée du signal d'entrée de basse fréquence.
EP95921771A 1994-11-26 1995-05-29 Prothese auditive Expired - Lifetime EP0793897B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4441996 1994-11-26
DE4441996A DE4441996A1 (de) 1994-11-26 1994-11-26 Hörhilfsgerät
PCT/EP1995/002033 WO1996017493A1 (fr) 1994-11-26 1995-05-29 Prothese auditive

Publications (2)

Publication Number Publication Date
EP0793897A1 true EP0793897A1 (fr) 1997-09-10
EP0793897B1 EP0793897B1 (fr) 1998-05-13

Family

ID=6534142

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95921771A Expired - Lifetime EP0793897B1 (fr) 1994-11-26 1995-05-29 Prothese auditive

Country Status (9)

Country Link
US (1) US5878146A (fr)
EP (1) EP0793897B1 (fr)
JP (1) JP3274469B2 (fr)
AT (1) ATE166199T1 (fr)
AU (1) AU691001B2 (fr)
CA (1) CA2204757C (fr)
DE (2) DE4441996A1 (fr)
DK (1) DK0793897T3 (fr)
WO (1) WO1996017493A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019211187A1 (fr) 2018-04-30 2019-11-07 Widex A/S Procédé de fonctionnement d'un système d'aide auditive et système d'aide auditive

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5754131A (en) * 1996-07-01 1998-05-19 General Electric Company Low power delta sigma converter
US6044162A (en) * 1996-12-20 2000-03-28 Sonic Innovations, Inc. Digital hearing aid using differential signal representations
US6144748A (en) * 1997-03-31 2000-11-07 Resound Corporation Standard-compatible, power efficient digital audio interface
DE19736406B4 (de) * 1997-08-21 2007-05-16 Siemens Ag Einrichtung zum Steuern eines automatischen Getriebes für ein Kraftfahrzeug
US5995036A (en) * 1998-03-17 1999-11-30 Sonic Innovations, Inc. Passive switched capacitor delta analog-to-digital converter with programmable gain control
WO2000044198A1 (fr) * 1999-01-25 2000-07-27 Tøpholm & Westermann APS Systeme de correction auditive et appareil de correction auditive destine a etre assemble in situ
AU753295B2 (en) * 1999-02-05 2002-10-17 Widex A/S Hearing aid with beam forming properties
US6163287A (en) 1999-04-05 2000-12-19 Sonic Innovations, Inc. Hybrid low-pass sigma-delta modulator
US6408318B1 (en) 1999-04-05 2002-06-18 Xiaoling Fang Multiple stage decimation filter
US6445321B2 (en) 1999-04-05 2002-09-03 Sonic Innovations, Inc. Hybrid low-pass sigma-delta modulator
US6313773B1 (en) 2000-01-26 2001-11-06 Sonic Innovations, Inc. Multiplierless interpolator for a delta-sigma digital to analog converter
DE60105819T2 (de) 2000-07-05 2005-10-06 Koninklijke Philips Electronics N.V. A/d umwandler mit integrierter vorspannung für mikrofon
EP1251714B2 (fr) 2001-04-12 2015-06-03 Sound Design Technologies Ltd. Système digital de prothèse auditive
US6633202B2 (en) 2001-04-12 2003-10-14 Gennum Corporation Precision low jitter oscillator circuit
CA2382358C (fr) * 2001-04-18 2007-01-09 Gennum Corporation Detecteur numerique quasi quadratique
ATE318062T1 (de) * 2001-04-18 2006-03-15 Gennum Corp Mehrkanal hörgerät mit übertragungsmöglichkeiten zwischen den kanälen
US20020191800A1 (en) * 2001-04-19 2002-12-19 Armstrong Stephen W. In-situ transducer modeling in a digital hearing instrument
EP1284587B1 (fr) 2001-08-15 2011-09-28 Sound Design Technologies Ltd. Appareil auditif reconfigurable à faible consommation d'énergie
US7315626B2 (en) * 2001-09-21 2008-01-01 Microsound A/S Hearing aid with performance-optimized power consumption for variable clock, supply voltage and DSP processing parameters
CN1608393B (zh) 2001-11-30 2011-08-24 桑尼昂公司 一种小型扬声器的高效率驱动器
WO2007106399A2 (fr) 2006-03-10 2007-09-20 Mh Acoustics, Llc Reseau de microphones directionnels reducteur de bruit
US8098844B2 (en) * 2002-02-05 2012-01-17 Mh Acoustics, Llc Dual-microphone spatial noise suppression
US7171008B2 (en) * 2002-02-05 2007-01-30 Mh Acoustics, Llc Reducing noise in audio systems
GB2386280B (en) * 2002-03-07 2005-09-14 Zarlink Semiconductor Inc Digital microphone
EP1429455A1 (fr) * 2002-12-11 2004-06-16 Dialog Semiconductor GmbH Linéarisation d'un amplificateur PDM de classe D
DE102005006858A1 (de) * 2005-02-15 2006-09-07 Siemens Audiologische Technik Gmbh Hörhilfegerät mit einem Ausgangsverstärker, der einen Sigma-Delta-Modulator umfasst
CA2619028A1 (fr) 2005-08-23 2007-03-01 Widex A/S Prothese auditive avec bande passante acoustique accrue
EP2417778B1 (fr) 2009-04-06 2015-06-17 Widex A/S Prothèse auditive en deux parties à connexion par bus de données
US8553897B2 (en) 2009-06-09 2013-10-08 Dean Robert Gary Anderson Method and apparatus for directional acoustic fitting of hearing aids
US8879745B2 (en) * 2009-07-23 2014-11-04 Dean Robert Gary Anderson As Trustee Of The D/L Anderson Family Trust Method of deriving individualized gain compensation curves for hearing aid fitting
US9101299B2 (en) * 2009-07-23 2015-08-11 Dean Robert Gary Anderson As Trustee Of The D/L Anderson Family Trust Hearing aids configured for directional acoustic fitting
EP2544587B1 (fr) 2010-03-09 2023-05-10 T&W Engineering A/S Dispositif de surveillance d'eeg en deux parties comprenant un bus de données et procédé de communication entre les parties
WO2011110218A1 (fr) 2010-03-09 2011-09-15 Widex A/S Prothèse auditive en deux parties comprenant un bus de données et procédé de communication entre les parties
US8942397B2 (en) 2011-11-16 2015-01-27 Dean Robert Gary Anderson Method and apparatus for adding audible noise with time varying volume to audio devices
US9582452B2 (en) * 2013-06-05 2017-02-28 The Boeing Company Sensor network using pulse width modulated signals
US10142742B2 (en) 2016-01-01 2018-11-27 Dean Robert Gary Anderson Audio systems, devices, and methods
US11696083B2 (en) 2020-10-21 2023-07-04 Mh Acoustics, Llc In-situ calibration of microphone arrays
EP4315884A1 (fr) 2021-03-24 2024-02-07 Widex A/S Dispositif audio à niveau d'oreille et procédé de fonctionnement d'un dispositif audio à niveau d'oreille

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3205685A1 (de) * 1982-02-17 1983-08-25 Robert Bosch Gmbh, 7000 Stuttgart Hoergeraet
US4887299A (en) * 1987-11-12 1989-12-12 Nicolet Instrument Corporation Adaptive, programmable signal processing hearing aid
NO169689C (no) * 1989-11-30 1992-07-22 Nha As Programmerbart hybrid hoereapparat med digital signalbehandling samt fremgangsmaate ved deteksjon og signalbehandlingi samme.
EP0495328B1 (fr) * 1991-01-15 1996-07-17 International Business Machines Corporation Convertisseur sigma delta
US5448644A (en) * 1992-06-29 1995-09-05 Siemens Audiologische Technik Gmbh Hearing aid
EP0597523B1 (fr) * 1992-11-09 1997-07-23 Koninklijke Philips Electronics N.V. Convertisseur numérique-analogique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9617493A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019211187A1 (fr) 2018-04-30 2019-11-07 Widex A/S Procédé de fonctionnement d'un système d'aide auditive et système d'aide auditive

Also Published As

Publication number Publication date
AU691001B2 (en) 1998-05-07
CA2204757A1 (fr) 1996-06-06
CA2204757C (fr) 1999-08-03
DK0793897T3 (da) 1999-02-15
ATE166199T1 (de) 1998-05-15
DE4441996A1 (de) 1996-05-30
WO1996017493A1 (fr) 1996-06-06
JP3274469B2 (ja) 2002-04-15
DE59502189D1 (de) 1998-06-18
US5878146A (en) 1999-03-02
EP0793897B1 (fr) 1998-05-13
JPH10504155A (ja) 1998-04-14
AU2671495A (en) 1996-06-19

Similar Documents

Publication Publication Date Title
WO1996017493A1 (fr) Prothese auditive
DE69737235T2 (de) Digitales hörhilfegerät unter verwendung von differenzsignaldarstellungen
DE69827039T2 (de) Pulsreferenziertes Steuerverfahren zur verbesserten Leistungsverstärkung eines pulsmodulierten Signals
DE60131755T2 (de) Digitaler klasse-d-audioverstärker
DE3616752C2 (fr)
DE69737882T2 (de) Umwandlung eines pcm-signals in ein gleichmässig pulsbreitenmoduliertes signal
DE4120537A1 (de) Niederfrequenzkompensationsschaltung fuer tonsignale
DE2628626A1 (de) Amplitudenkompressions- bzw. dekompressionsschaltung
DE102017104012B4 (de) Verfahren und vorrichtung für einen delta-sigma-adc mit parallel gekoppelten integratoren
DE69725134T2 (de) Optischer empfänger mit lawinenphotodiode
CH646286A5 (de) Einrichtung fuer tonwiedergabe in einem raum mit einer unabhaengigen schallquelle.
EP1694095A2 (fr) Prothèse auditive avec un amplificateur de sortie comportant un modulateur du type Sigma-Delta
DE3406899A1 (de) Mikrofon
EP2124335A2 (fr) Procédé d'optimisation d'un banc de filtres multi-étage ainsi que banc de filtres correspondant et dispositif auditif
EP1983800B1 (fr) Appareil auditif doté d'une commande du récepteur de faible interférence et procédé correspondant
DE102008032489A1 (de) Leistungsverstärker
DE3249333T (de) System zur maximal wirksamen Übertragung modulierter Energie
EP0542710A1 (fr) Procédé de traitement de signaux
DE2747415A1 (de) Rauschunterdrueckungsvorrichtung
DE102008024534A1 (de) Hörvorrichtung mit einem Entzerrungsfilter im Filterbank-System
DE10310580A1 (de) Vorrichtung und Verfahren zur Adaption von Hörgerätemikrofonen
EP0485357B1 (fr) Prothèse auditive avec circuit de filtrage
DE1067853B (de) Schaltungsanordnung zur Unterdrueckung von niederfrequenten Stoerspannungen
DE2456577C3 (de) Breitbandige Verstärkeranordnung für intermittierende Signale
DE102006024980A1 (de) Digital-Analog-Wandler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970502

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE DK IT LI NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19971001

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE DK IT LI NL

REF Corresponds to:

Ref document number: 166199

Country of ref document: AT

Date of ref document: 19980515

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59502189

Country of ref document: DE

Date of ref document: 19980618

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060511

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110526

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110523

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59502189

Country of ref document: DE

Representative=s name: BETTEN & RESCH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59502189

Country of ref document: DE

Representative=s name: BETTEN & RESCH PATENT- UND RECHTSANWAELTE PART, DE

Effective date: 20120119

Ref country code: DE

Ref legal event code: R082

Ref document number: 59502189

Country of ref document: DE

Representative=s name: PATENTANWAELTE BETTEN & RESCH, DE

Effective date: 20120119

Ref country code: DE

Ref legal event code: R081

Ref document number: 59502189

Country of ref document: DE

Owner name: WIDEX A/S, DK

Free format text: FORMER OWNER: TOPHOLM & WESTERMANN APS, VAERLOESE, DK

Effective date: 20120119

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140521

Year of fee payment: 20

Ref country code: CH

Payment date: 20140513

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20140512

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59502189

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20150529

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL