EP0792941A1 - Use of a copper-aluminium-(zinc) alloy as a corrosion-resistant material - Google Patents

Use of a copper-aluminium-(zinc) alloy as a corrosion-resistant material Download PDF

Info

Publication number
EP0792941A1
EP0792941A1 EP97102019A EP97102019A EP0792941A1 EP 0792941 A1 EP0792941 A1 EP 0792941A1 EP 97102019 A EP97102019 A EP 97102019A EP 97102019 A EP97102019 A EP 97102019A EP 0792941 A1 EP0792941 A1 EP 0792941A1
Authority
EP
European Patent Office
Prior art keywords
copper
corrosion
zinc
alloy
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97102019A
Other languages
German (de)
French (fr)
Other versions
EP0792941B1 (en
Inventor
Monika Dipl.-Ing. Dr.Rer.Nat. Breu
Gert Dipl.-Ing. Dr.rer.nat. Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP0792941A1 publication Critical patent/EP0792941A1/en
Application granted granted Critical
Publication of EP0792941B1 publication Critical patent/EP0792941B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent

Definitions

  • the invention relates to the use of a copper-aluminum (zinc) alloy as a corrosion-resistant material for pipes in installation and sanitary engineering and in the drinking water sector.
  • a copper-aluminum (zinc) alloy as a corrosion-resistant material for pipes in installation and sanitary engineering and in the drinking water sector.
  • Pipes for the purpose mentioned are widely made from oxygen-free copper (SF-Cu).
  • SF-Cu oxygen-free copper
  • a special manufacturing process can be used to create an oxidic protective layer on the inside of the pipe.
  • An alternative is an alloyed material, in which an oxidic, protective cover layer automatically forms under operating conditions.
  • a copper-magnesium-aluminum / silicon alloy (DE-PS 3,043,833), for example, has also been proposed for the purpose mentioned, but this could only partially meet the requirements.
  • the invention is therefore based on the object of specifying a corrosion-resistant material for which none There is a risk of pitting and in which the copper solubility and the mass removal are reduced.
  • the object is achieved by the use of a copper-aluminum (zinc) alloy, which consists of 1.01 to 8.8% aluminum; optionally up to a maximum of 38% zinc; The rest is copper and usual impurities (the percentages relate to the weight).
  • a copper-aluminum (zinc) alloy which consists of 1.01 to 8.8% aluminum; optionally up to a maximum of 38% zinc; The rest is copper and usual impurities (the percentages relate to the weight).
  • composition of a copper alloy of the type mentioned is known, for example, from DE-OS 2,429,754, but there is no reference to the claimed use.
  • DE-OS 4,423,635 describes an aluminum-zinc-based copper alloy.
  • the compulsory components nickel and / or chromium are prescribed there, which increase the strength but in return also significantly impair the formability.
  • the solubility of chromium in copper is very low. At the specified levels, the solubility limit is exceeded and excretion particles form. With such structural inhomogeneities, which can result in potential differences in the smallest areas, the risk of local corrosion attacks cannot be excluded.
  • a copper alloy with 1.01 to 5% aluminum; optionally up to a maximum of 5% zinc is used.
  • a copper alloy that additionally contains one or more of the elements silicon, tin, niobium in an amount that corresponds at most to that of the respective solubility limit of the mixed crystal.
  • the solubility limit should not be exceeded in order to avoid precipitates, which can be preferred points of attack for corrosion as inhomogeneities. It must be taken into account here that the precipitation behavior can be influenced within certain limits by the corresponding cooling rate, i.e.
  • Copper alloys having the compositions according to claims 3 to 7 are preferably used.
  • Phosphorus improves the pourability and acts as a deoxidizer.
  • FIG. 1 current density-potential curves (FIG. 1) and the electrochemical polarization resistance (R p ) or polarization conductance (R p -1 ) according to FIGS. 2a to d were measured on the tube samples, and the Cu non-conductivity ( Fig. 3) determined.
  • the polarization resistance R p or the reciprocal, the polarization conductance R p -1 is a measure of the rate of corrosion. The lower the polarization conductance, the greater the resistance to uniform corrosion. 2a to d compare the polarization conductance of the materials CuAl0.3Zn0.3, CuAl3Zn2 and CuAl5 with that of SF-Cu. Unalloyed Cu not only exhibits poorer behavior, but also considerable scatter.
  • the Cu nonchalance is considerably reduced compared to SF-Cu according to FIG. 3.
  • the Cu-Al (Zn) alloy used according to the invention shows a significantly better behavior than SF-Cu. Not only is the quality of the covering layer improved, but also the rate of formation is influenced and, above all, the potential range of corrosion resistance is expanded. This formation of the passive layer significantly reduces the Cu solubility.
  • Al is capable of forming reaction products in acidic media and thus contributing to the formation of an effective protective layer, the same applies to Zn in alkaline media.
  • Both additives stabilize each other and are able to cover a relatively wide pH range together in the Cu-Al-Zn system.
  • the materials to be used according to the invention cannot only be used in neutral waters. Certain pH fluctuations do not have a negative effect on the corrosion behavior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

Use of copper alloy comprising (in wt.%): 1.01-8.8 aluminium; up to 38 zinc; and a balance of copper and usual impurities, as corrosion resistant material for pipes used in the drinking water industry is claimed.

Description

Die Erfindung betrifft die Verwendung einer Kupfer-Aluminium-(Zink)-Legierung als korrosionsbeständiger Werkstoff für Rohre in der Installations- und Sanitärtechnik und auf dem Trinkwassersektor.The invention relates to the use of a copper-aluminum (zinc) alloy as a corrosion-resistant material for pipes in installation and sanitary engineering and in the drinking water sector.

Werkstoffe, die für den obigen Verwendungszweck eingesetzt werden, müssen vielfachen Anforderungen hinsichtlich ihrer Korrosionsbeständigkeit genügen. Die Mehrzahl der Schadensfälle wird durch gleichmäßige Flächenkorrosion oder Lochfraß ausgelöst. Durch unsachgemäße Montage kann es außerdem zu Korrosionsangriffen im Bereich von Lötstellen und Verbindungen kommen.Materials that are used for the above purpose have to meet multiple requirements with regard to their corrosion resistance. The majority of damage cases are caused by even surface corrosion or pitting. Improper installation can also lead to corrosion attacks in the area of solder joints and connections.

Rohre für den genannten Einsatzzweck werden verbreitet aus sauerstofffreiem Kupfer (SF-Cu) hergestellt. Durch spezielle Herstellungsverfahren kann auf der Rohrinnenfläche eine oxidische Schutzschicht erzeugt werden. Eine Alternative ist ein legierter Werkstoff, bei dem sich unter Einsatzbedingungen von selbst eine oxidische, schützende Deckschicht bildet.Pipes for the purpose mentioned are widely made from oxygen-free copper (SF-Cu). A special manufacturing process can be used to create an oxidic protective layer on the inside of the pipe. An alternative is an alloyed material, in which an oxidic, protective cover layer automatically forms under operating conditions.

Für den genannten Einsatzzweck ist weiterhin beispielsweise eine Kupfer-Magnesium-Aluminium/Silizium-Legierung (DE-PS 3.043.833) vorgeschlagen worden, welche jedoch die gestellten Anforderungen auch nur teilweise erfüllen konnte.A copper-magnesium-aluminum / silicon alloy (DE-PS 3,043,833), for example, has also been proposed for the purpose mentioned, but this could only partially meet the requirements.

Der Erfindung liegt daher die Aufgabe zugrunde, einen korrosionsbeständigen Werkstoff anzugeben, für den keine Lochfraßgefährdung besteht und bei dem die Kupfer-Löslichkeit und der Massenabtrag herabgesetzt werden.The invention is therefore based on the object of specifying a corrosion-resistant material for which none There is a risk of pitting and in which the copper solubility and the mass removal are reduced.

Die Aufgabe wird erfindungsgemäß durch die Verwendung einer Kupfer-Aluminium-(Zink)-Legierung gelöst, die aus 1,01 bis 8,8 % Aluminium; wahlweise bis maximal 38 % Zink; Rest Kupfer und üblichen Verunreinigungen besteht (die Prozentangaben beziehen sich dabei auf das Gewicht).The object is achieved by the use of a copper-aluminum (zinc) alloy, which consists of 1.01 to 8.8% aluminum; optionally up to a maximum of 38% zinc; The rest is copper and usual impurities (the percentages relate to the weight).

Die Zusammensetzung einer Kupfer-Legierung der genannten Art ist beispielsweise aus der DE-OS 2.429.754 bekannt, dort findet sich jedoch kein Hinweis auf den beanspruchten Verwendungszweck.The composition of a copper alloy of the type mentioned is known, for example, from DE-OS 2,429,754, but there is no reference to the claimed use.

In der DE-OS 4.423.635 wird eine Kupfer-Legierung auf Aluminium-Zink-Basis beschrieben. Allerdings sind dort die Zwangskomponenten Nickel und/oder Chrom vorgeschrieben, die zwar die Festigkeit steigern, aber im Gegenzug auch das Umformvermögen deutlich beeinträchtigen. Bekanntermaßen ist die Löslichkeit von Chrom in Kupfer sehr klein. Bei den angegebenen Gehalten wird die Löslichkeitsgrenze überschritten, und es bilden sich Ausscheidungspartikel. Mit derartigen Gefügeinhomogenitäten, wodurch sich Potentialunterschiede in kleinsten Bereichen ergeben können, ist die Gefahr von lokalen Korrosionsangriffen nicht auszuschließen.DE-OS 4,423,635 describes an aluminum-zinc-based copper alloy. However, the compulsory components nickel and / or chromium are prescribed there, which increase the strength but in return also significantly impair the formability. It is known that the solubility of chromium in copper is very low. At the specified levels, the solubility limit is exceeded and excretion particles form. With such structural inhomogeneities, which can result in potential differences in the smallest areas, the risk of local corrosion attacks cannot be excluded.

Bereits in der DE-PS 4.213.487 wurden niedriglegierte Werkstoffe auf Kupfer-Aluminium-Zink-Basis vorgeschlagen, die die genannten Eigenschaften aufweisen. Aus den seinerzeit durchgeführten elektrochemischen Messungen und dem hierbei erfolgten Massenabtrag ist eine klar verbesserte Korrosionsbeständigkeit gegenüber SF-Cu ersichtlich. Die höherkonzentrierten Legierungen schneiden im elektrochemischen Test ebenfalls besser ab als SF-Cu. Ein Vorteil gegenüber den niedriglegierten Werkstoffen ging aus diesen Messungen aber nicht hervor, so daß eine weitere Steigerung des Korrosionsschutzes zunächst nicht zu erwarten war. Vielmehr wurde eine Sättigung der Schutzwirkung angenommen. Erst ergänzende Untersuchungen der Kupfer-Lässigkeit im Trinkwasser zeigten den nicht unerheblichen Konzentrationseinfluß auf, der sich dadurch äußert, daß mit zunehmender Legierungskonzentration die Schutzwirkung erst unter Einsatzbedingungen deutlich verbessert wird und somit die Kupfer-Abgabe an das Wasser entsprechend stark reduziert wird. Entscheidend ist hierbei der Einsatz unter Praxisbedingungen, wodurch offensichtlich nicht nur die Bildungsgeschwindigkeit der Deckschicht, sondern auch durch den ständigen Kontakt mit dem Korrosionsmedium ein Weiterwachsen und eine Verdichtung der Schutzschicht erreicht werden.Low-alloy copper-aluminum-zinc-based materials which have the properties mentioned have already been proposed in DE-PS 4,213,487. From the electrochemical measurements carried out at the time and the mass removal that occurred, a clearly improved corrosion resistance compared to SF-Cu can be seen. The higher-concentration alloys also perform better in the electrochemical test than SF-Cu. However, these measurements gave an advantage over the low-alloy materials not apparent, so that a further increase in corrosion protection was not initially expected. Rather, the protective effect was assumed to be saturated. Only additional studies of the nonchalance of copper in drinking water showed the not inconsiderable influence of the concentration, which manifests itself in the fact that with increasing alloy concentration the protective effect is only significantly improved under operating conditions and thus the copper release to the water is correspondingly greatly reduced. The decisive factor here is the use under practical conditions, whereby obviously not only the rate of formation of the cover layer, but also the constant contact with the corrosion medium allows the protective layer to continue to grow and compact.

Nach einer bevorzugten Ausführungsform der Erfindung wird eine Kupfer-Legierung mit 1,01 bis 5 % Aluminium; wahlweise bis maximal 5 % Zink verwendet. Weiterhin empfiehlt es sich, eine Kupfer-Legierung zu verwenden, die zusätzlich ein oder mehrere der Elemente Silizium, Zinn, Niob in einer Menge, die maximal derjenigen der jeweiligen Löslichkeitsgrenze des Mischkristalls entspricht, enthält. Die Löslichkeitsgrenze soll nicht überschritten werden, damit Ausscheidungen, die als Inhomogenitäten bevorzugte Angriffspunkte für Korrosion sein können, vermieden werden. Hierbei muß berücksichtigt werden, daß das Ausscheidungsverhalten durch entsprechende Abkühlgeschwindigkeit in gewissen Grenzen beeinflußt werden kann, d. h. Ausscheidungen können bei schneller Abkühlung unterdrückt werden, bzw. daß ein Überschreiten der Löslichkeitsgrenzen bei Temperaturen < 300 °C keine Rolle mehr spielt, da infolge der Diffusionsträgheit hier in den in Frage kommenden Systemen keine unerwünschten Ausscheidungsvorgänge mehr ablaufen. Vorzugsweise werden Kupfer-Legierungen mit den Zusammensetzungen nach den Ansprüchen 3 bis 7 verwendet.According to a preferred embodiment of the invention, a copper alloy with 1.01 to 5% aluminum; optionally up to a maximum of 5% zinc is used. Furthermore, it is advisable to use a copper alloy that additionally contains one or more of the elements silicon, tin, niobium in an amount that corresponds at most to that of the respective solubility limit of the mixed crystal. The solubility limit should not be exceeded in order to avoid precipitates, which can be preferred points of attack for corrosion as inhomogeneities. It must be taken into account here that the precipitation behavior can be influenced within certain limits by the corresponding cooling rate, i.e. precipitations can be suppressed during rapid cooling, or that exceeding the solubility limits at temperatures <300 ° C no longer plays a role, because of the diffusion inertia here In the systems in question, there are no longer any undesired elimination processes. Copper alloys having the compositions according to claims 3 to 7 are preferably used.

Weiterhin ist es vorteilhaft, der Legierung maximal 0,04 % Phosphor zuzusetzen. Phosphor verbessert dabei die Gießbarkeit und wirkt als Desoxidationsmittel.It is also advantageous to add a maximum of 0.04% phosphorus to the alloy. Phosphorus improves the pourability and acts as a deoxidizer.

Die Erfindung wird anhand der folgenden Ausführungsbeispiele näher erläutert:The invention is explained in more detail using the following exemplary embodiments:

Es wurden Rohre der Abmessung 15 x 1 mm aus SF-Cu, CuAl0,3Zn0,3 und zweier erfindungsgemäßer Legierungen mit der Zusammensetzung gemäß der folgenden Tabelle hergestellt:

  • SF-Cu
  • CuAl0,3Zn0,3
  • CuAl3Zn2
  • CuAl5
Pipes measuring 15 x 1 mm were made from SF-Cu, CuAl0.3Zn0.3 and two alloys according to the invention with the composition according to the following table:
  • SF-Cu
  • CuAl0.3Zn0.3
  • CuAl3Zn2
  • CuAl5

Zur Beurteilung des Korrosionsverhaltens wurden an den Rohr-mustern Stromdichte-Potential-Kurven (Fig. 1) und der elektrochemische Polarisationswiderstand (Rp) bzw. Polarisationsleitwert (Rp -1) gemäß Fig. 2a bis d gemessen sowie die Cu-Lässigkeit (Fig. 3) ermittelt.To assess the corrosion behavior, current density-potential curves (FIG. 1) and the electrochemical polarization resistance (R p ) or polarization conductance (R p -1 ) according to FIGS. 2a to d were measured on the tube samples, and the Cu non-conductivity ( Fig. 3) determined.

Es zeigen im einzelnen
Fig. 1  die Stromdichte-Potential-Kurve der Legierungen CuAl3Zn2 und CuAl5 im Vergleich zu CuAl0,3Zn0,3 und SF-Cu. Bezugselektrode: gesättigte Kalomelektrode;
Fig. 2a bis 2 d  den Polarisationsleitwert Rp -1 als Funktion der Versuchsdauer.

  • (a) SF-Cu
  • (b) CuAl0,3Zn0,3
  • (c) CuAl3Zn2
  • (d) CuAl5

Fig. 3  die Cu-Lässigkeit im Stagnationstest in einem aggressiven Trinkwasser, wobei alle 24 h bzw. an Wochenenden alle 72 h ein Wasseraustausch mit Ermittlung der Cu-Gehalte im Stagnationswasser erfolgte und das Prüfwasser folgende mittlere Analysendaten aufwies: pH-Wert 7,3 elektr. Leitfähigkeit in µS/cm 524 Säurekapazität KS4,3 in mmol/l 5 Basekapazität KB8,2 in mmol/l 0,3 bis 0,4 Sättigungsindex SI 0 bis 0,2 Karbonathärte in °dH 14 Gesamthärte in °dH 15 Chloridgehalt in mg/l 13 Sulfatgehalt in mg/l 250 It show in detail
Fig. 1 shows the current density-potential curve of the alloys CuAl3Zn2 and CuAl5 compared to CuAl0.3Zn0.3 and SF-Cu. Reference electrode: saturated calom electrode;
2a to 2 d the polarization conductance R p -1 as a function of the test duration.
  • (a) SF-Cu
  • (b) CuAl0.3Zn0.3
  • (c) CuAl3Zn2
  • (d) CuAl5

3 shows the Cu nonchalance in the stagnation test in an aggressive drinking water, with a water exchange with determination of the Cu contents in the stagnation water taking place every 24 h or on weekends and the test water having the following average analysis data: PH value 7.3 electr. Conductivity in µS / cm 524 Acid capacity K S4.3 in mmol / l 5 Base capacity K B8.2 in mmol / l 0.3 to 0.4 Saturation index SI 0 to 0.2 Carbonate hardness in ° dH 14 Total hardness in ° dH 15 Chloride content in mg / l 13 Sulfate content in mg / l 250

In Fig. 1 sind die Stromdichte-Potentialkurven der Legierungen CuAl0,3Zn0,3, CuAl3Zn2, CuAl5 und SF-Cu im Vergleich dargestellt. Es ist zu erkennen, daß die zulegierten Elemente den Bereich der Korrosionsbeständigkeit deutlich erweitern. Die Passivstromdichte ist gegenüber SF-Cu verringert, was für die bessere Deckschichtqualität spricht. Die Durchbruchpotentiale sind zu positiveren Potentialen hin verschoben.1 shows the current density-potential curves of the alloys CuAl0.3Zn0.3, CuAl3Zn2, CuAl5 and SF-Cu in comparison. It can be seen that the alloyed elements significantly expand the range of corrosion resistance. The passive current density is reduced compared to SF-Cu, which speaks for the better cover layer quality. The breakthrough potentials have shifted towards more positive potentials.

Der Polarisationswiderstand Rp bzw. der Kehrwert, der Polarisationsleitwert Rp -1, ist ein Maß für die Korrosionsgeschwindigkeit. Je geringer der Polarisationsleitwert, desto größer ist die Beständigkeit gegen gleichmäßige Korrosion. Die Fig. 2a bis d vergleichen den Polarisationsleitwert der Werkstoffe CuAl0,3Zn0,3, CuAl3Zn2 und CuAl5 mit demjenigen von SF-Cu. Unlegiertes Cu zeigt nicht nur ein schlechteres Verhalten, sondern auch eine beträchtliche Streuung.The polarization resistance R p or the reciprocal, the polarization conductance R p -1 , is a measure of the rate of corrosion. The lower the polarization conductance, the greater the resistance to uniform corrosion. 2a to d compare the polarization conductance of the materials CuAl0.3Zn0.3, CuAl3Zn2 and CuAl5 with that of SF-Cu. Unalloyed Cu not only exhibits poorer behavior, but also considerable scatter.

Die Cu-Lässigkeit ist gegenüber SF-Cu entsprechend Fig. 3 erheblich reduziert.The Cu nonchalance is considerably reduced compared to SF-Cu according to FIG. 3.

Im Vergleich der legierten Werkstoffe untereinander, d. h. der niedriglegierten und der höherlegierten Varianten, zeigt sich bei den Stromdichte-Potential-Kurven (Fig. 1) und im Verlauf des Polarisationsleitwertes (Fig. 2b bis d) kein signifikanter Unterschied. Erst bei der Cu-Abgabe im Trinkwasser (Fig. 3) tritt das unterschiedliche Verhalten, d. h. abnehmende Cu-Lässigkeit und somit bessere Schutzwirkung mit wachsenden Legierungsgehalten, zu Tage.Comparing the alloyed materials with each other, i. H. the low-alloy and the higher-alloy variants show no significant difference in the current density-potential curves (FIG. 1) and in the course of the polarization conductance (FIGS. 2b to d). The different behavior only occurs when Cu is released in the drinking water (FIG. 3); H. Decreasing Cu nonchalance and thus better protection with increasing alloy contents, by day.

In allen Fällen zeigt die erfindungsgemäß verwendete Cu-Al-(Zn)-Legierung ein deutlich besseres Verhalten als SF-Cu. Es wird nicht nur die Deckschichtqualität verbessert, sondern auch die Bildungsgeschwindigkeit beeinflußt und vor allem der Potentialbereich der Korrosionsbeständigkeit ausgedehnt. Durch diese Ausbildung der Passivschicht wird die Cu-Löslichkeit deutlich herabgesetzt.In all cases, the Cu-Al (Zn) alloy used according to the invention shows a significantly better behavior than SF-Cu. Not only is the quality of the covering layer improved, but also the rate of formation is influenced and, above all, the potential range of corrosion resistance is expanded. This formation of the passive layer significantly reduces the Cu solubility.

Es ist weiterhin als entscheidender Vorteil anzusehen, daß durch die Kombination der Komponenten Al und Zn der pH-Wert-Bereich für die Bildung von Deckschichten erweitert wird. Während Al gemäß dem Pourbaix-Diagramm fähig ist, auch in sauren Medien Reaktionsprodukte zu bilden und somit zum Aufbau einer wirksamen Schutzschicht beizutragen, gilt entsprechendes für Zn in alkalischen Medien. Beide Zusätze stabilisieren sich wechselseitig und sind in der Lage, gemeinsam im System Cu-Al-Zn einen verhältnismäßig weiten pH-Wert-Bereich abzudecken. Somit sind die erfindungsgemäß zu verwendenden Werkstoffe nicht nur in neutralen Wässern einsetzbar. Gewisse pH-Wert-Schwankungen wirken sich nicht negativ auf das Korrosionsverhalten aus.It is also to be regarded as a decisive advantage that the combination of components Al and Zn extends the pH range for the formation of cover layers. According to the Pourbaix diagram, Al is capable of forming reaction products in acidic media and thus contributing to the formation of an effective protective layer, the same applies to Zn in alkaline media. Both additives stabilize each other and are able to cover a relatively wide pH range together in the Cu-Al-Zn system. Thus, the materials to be used according to the invention cannot only be used in neutral waters. Certain pH fluctuations do not have a negative effect on the corrosion behavior.

Verschiebt sich das Durchbruchpotential außerdem so weit in positive Richtung, daß es sich nicht mehr im Bereich des freien Korrosionspotentials befindet, so liegt ein zusätzlicher Schutz gegen Elementbildung wie z. B. Kontakt- oder Belüftungselemente vor. Zudem konnte bei den überprüften Rohrmustern keine Lochfraßgefährdung festgestellt werden.If the breakthrough potential also shifts so far in the positive direction that it is no longer in the area of the free corrosion potential, additional protection against element formation such as e.g. B. contact or ventilation elements. In addition, no risk of pitting was found in the tube samples checked.

Claims (8)

Verwendung einer Kupfer-Aluminium-(Zink)-Legierung, bestehend aus 1,01 bis 8,8 % Aluminium; wahlweise bis maximal 38 % Zink; Rest Kupfer und üblichen Verunreinigungen, als korrosionsbeständiger Werkstoff für Rohre in der Installations- und Sanitärtechnik und auf dem Trinkwassersektor.Use of a copper-aluminum (zinc) alloy consisting of 1.01 to 8.8% aluminum; optionally up to a maximum of 38% zinc; The rest is copper and usual impurities, as a corrosion-resistant material for pipes in installation and sanitary engineering and in the drinking water sector. Verwendung einer Kupfer-Legierung nach Anspruch 1 mit 1,01 bis 5 % Aluminium; wahlweise bis maximal 5 % Zink für den Zweck nach Anspruch 1.Use of a copper alloy according to claim 1 with 1.01 to 5% aluminum; optionally up to a maximum of 5% zinc for the purpose according to claim 1. Verwendung einer Kupfer-Legierung nach Anspruch 1 oder 2, die zusätzlich ein oder mehrere der Elemente Silizium, Zinn, Niob bis zu einem Maximalgehalt von insgesamt 12 % enthält, für den Zweck nach Anspruch 1.Use of a copper alloy according to claim 1 or 2, which additionally contains one or more of the elements silicon, tin, niobium up to a maximum content of 12% in total, for the purpose according to claim 1. Verwendung einer Kupfer-Legierung nach Anspruch 3 mit maximal 3,8 % Silizium für den Zweck nach Anspruch 1.Use of a copper alloy according to claim 3 with a maximum of 3.8% silicon for the purpose according to claim 1. Verwendung einer Kupfer-Legierung nach Anspruch 3 mit maximal 7 % Zinn für den Zweck nach Anspruch 1.Use of a copper alloy according to claim 3 with a maximum of 7% tin for the purpose according to claim 1. Verwendung einer Kupfer-Legierung nach Anspruch 3 mit maximal 0,1 % Niob für den Zweck nach Anspruch 1.Use of a copper alloy according to claim 3 with a maximum of 0.1% niobium for the purpose according to claim 1. Verwendung einer Kupfer-Legierung nach Anspruch 6 mit maximal 0,05 % Niob für den Zweck nach Anspruch 1.Use of a copper alloy according to claim 6 with a maximum of 0.05% niobium for the purpose according to claim 1. Verwendung einer Kupfer-Legierung nach einem oder mehreren der Ansprüche 1 bis 7 mit maximal 0,04 % Phosphor für den Zweck nach Anspruch 1.Use of a copper alloy according to one or more of claims 1 to 7 with a maximum of 0.04% phosphorus for the purpose according to claim 1.
EP97102019A 1996-02-20 1997-02-08 Use of a copper-aluminium-(zinc) alloy as a corrosion-resistant material Expired - Lifetime EP0792941B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19606162A DE19606162C2 (en) 1996-02-20 1996-02-20 Use of a copper-aluminum-zinc alloy as a corrosion-resistant material
DE19606162 1996-02-20

Publications (2)

Publication Number Publication Date
EP0792941A1 true EP0792941A1 (en) 1997-09-03
EP0792941B1 EP0792941B1 (en) 2000-05-03

Family

ID=7785832

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97102019A Expired - Lifetime EP0792941B1 (en) 1996-02-20 1997-02-08 Use of a copper-aluminium-(zinc) alloy as a corrosion-resistant material

Country Status (4)

Country Link
EP (1) EP0792941B1 (en)
DE (2) DE19606162C2 (en)
DK (1) DK0792941T3 (en)
ES (1) ES2147950T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534295A (en) * 2011-11-21 2012-07-04 宁波三旺洁具有限公司 Anticorrosion boron copper alloy
FR3064280A1 (en) * 2017-03-23 2018-09-28 Favi - Le Laiton Injecte COPPER-ZINC ALLOY FOR USE IN THE FOOD INDUSTRY

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010032007A (en) * 1997-11-11 2001-04-16 시게후치 마사토시 Metallic material, brass, and process for producing the same
EP3045740B1 (en) * 2015-01-19 2021-04-21 BTS BauTechnischeSysteme GmbH & Co. KG Fastening device for fastening a component to a thermal insulation composite system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2429754A1 (en) 1974-06-21 1976-01-02 Olin Corp Copper alloy treatment - to improve creep strength and stress degradation resistance, by cold-working, deformation, heating and cooling
DE3043833C2 (en) 1979-11-22 1988-07-14 Sumitomo Light Metal Ind
JPH03229836A (en) * 1990-02-01 1991-10-11 Kobe Steel Ltd Corrosion-resistant copper alloy tube
JPH03291341A (en) * 1990-04-06 1991-12-20 Chuetsu Gokin Chuko Kk Wear-resistant copper alloy
DE4213487C1 (en) 1992-04-24 1993-11-18 Wieland Werke Ag Use of a copper-aluminum-zinc alloy as a corrosion-resistant material
DE4423635A1 (en) 1994-07-06 1996-01-11 Prym William Gmbh & Co Kg Corrosion-resistant copper alloy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1938172A (en) * 1933-03-24 1933-12-05 Chase Companies Inc Copper-base alloys
US2224095A (en) * 1940-02-15 1940-12-03 Scovill Manufacturing Co Tube for heat exchanging apparatus
DE1127092B (en) * 1953-04-13 1962-04-05 Osnabruecker Kupfer Und Draht Use of copper alloys for the manufacture of washing kettles or interior fittings for washing machines
DK99834C (en) * 1962-09-19 1964-09-21 Aktieselkabet Nordiske Kabel T Seawater resistant brass or aluminum brass alloy suitable for plastic deformation.
LU81564A1 (en) * 1979-07-31 1981-03-24 Liege Usines Cuivre Zinc METHOD FOR MANUFACTURING TUBES, TUBES OBTAINED BY THIS PROCESS AND THEIR USE IN CONDENSERS AND HEAT EXCHANGERS
DE4324008C2 (en) * 1993-07-17 2003-03-27 Km Europa Metal Ag Use of a corrosion-resistant copper-based alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2429754A1 (en) 1974-06-21 1976-01-02 Olin Corp Copper alloy treatment - to improve creep strength and stress degradation resistance, by cold-working, deformation, heating and cooling
DE3043833C2 (en) 1979-11-22 1988-07-14 Sumitomo Light Metal Ind
JPH03229836A (en) * 1990-02-01 1991-10-11 Kobe Steel Ltd Corrosion-resistant copper alloy tube
JPH03291341A (en) * 1990-04-06 1991-12-20 Chuetsu Gokin Chuko Kk Wear-resistant copper alloy
DE4213487C1 (en) 1992-04-24 1993-11-18 Wieland Werke Ag Use of a copper-aluminum-zinc alloy as a corrosion-resistant material
DE4423635A1 (en) 1994-07-06 1996-01-11 Prym William Gmbh & Co Kg Corrosion-resistant copper alloy

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Metals Handbook 9th Edition", 1979, AMERICAN SOCIETY FOR METALS, OHIO, USA, XP002031566 *
DATABASE WPI Section Ch Week 9147, Derwent World Patents Index; Class M26, AN 91-343745, XP002031567 *
DATABASE WPI Section Ch Week 9206, Derwent World Patents Index; Class M26, AN 92-046046, XP002031568 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534295A (en) * 2011-11-21 2012-07-04 宁波三旺洁具有限公司 Anticorrosion boron copper alloy
CN102534295B (en) * 2011-11-21 2016-07-06 宁波三旺洁具有限公司 A kind of anticorrosion boron copper alloy
FR3064280A1 (en) * 2017-03-23 2018-09-28 Favi - Le Laiton Injecte COPPER-ZINC ALLOY FOR USE IN THE FOOD INDUSTRY

Also Published As

Publication number Publication date
DE19606162A1 (en) 1997-08-21
DE19606162C2 (en) 2003-01-30
ES2147950T3 (en) 2000-10-01
DE59701554D1 (en) 2000-06-08
EP0792941B1 (en) 2000-05-03
DK0792941T3 (en) 2000-10-02

Similar Documents

Publication Publication Date Title
DE3031439C2 (en) Hard-solderable cooling fin composite for heat exchangers based on aluminum alloys
DE3027768C2 (en) Clad material made of aluminum alloys for the manufacture of heat exchangers
DE60211879T2 (en) ALUMINUM ALLOY WITH INTERGRANULAR CORROSION RESISTANCE, MANUFACTURING METHOD AND USE THEREOF
DE60021619T3 (en) brazing
EP3026134B1 (en) Heat exchanger, use of an aluminium alloy and an aluminium tape and method for producing an aluminium tape
DE2734386C3 (en) Brazed, corrosion-resistant aluminum composite
DE60100251T2 (en) Multi-layer brazing sheet made of aluminum alloy
DE3518407C2 (en)
DE2928303A1 (en) ALUMINUM COMPOSITE
EP1439238B1 (en) Corrosion resistant brass alloy for parts suitable for use in drinking water service
DE69933533T2 (en) Copper foil with a glossy surface with high oxidation resistance and method of manufacture
DE2222315A1 (en) Zinc-tin coated steel objects with improved corrosion resistance
DE3138468C2 (en)
DE112017001622B4 (en) ALUMINUM ALLOY SOLDERING SHEET
DE3206298A1 (en) Method of producing an aluminium heat exchanger
EP0792941B1 (en) Use of a copper-aluminium-(zinc) alloy as a corrosion-resistant material
DE4213487C1 (en) Use of a copper-aluminum-zinc alloy as a corrosion-resistant material
DE112019001827T5 (en) ALUMINUM ALLOY HEAT EXCHANGER
EP1273671A1 (en) Dezincification resistant copper-zinc alloy and method for producing the same
DE3311960A1 (en) Copper alloy for radiators
EP3252179A1 (en) Copper alloy comprising aluminium and nickel and its use
EP0642596A1 (en) Brass alloy.
EP0579904B1 (en) Corrosion resistant copper alloy
DE3514332C2 (en)
DE19811447C2 (en) Wire based on zinc and aluminum and its use in thermal spraying as corrosion protection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK ES FI FR IT NL SE

17Q First examination report despatched

Effective date: 19980414

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK ES FI FR IT NL SE

REF Corresponds to:

Ref document number: 59701554

Country of ref document: DE

Date of ref document: 20000608

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2147950

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070204

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070206

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20070214

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20070215

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070327

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070521

Year of fee payment: 11

Ref country code: BE

Payment date: 20070416

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070208

Year of fee payment: 11

BERE Be: lapsed

Owner name: *WIELAND-WERKE A.G.

Effective date: 20080228

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080208

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080209

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100228

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59701554

Country of ref document: DE

Effective date: 20110901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110901