EP0791129A1 - Pompe a pistons - Google Patents

Pompe a pistons

Info

Publication number
EP0791129A1
EP0791129A1 EP95939324A EP95939324A EP0791129A1 EP 0791129 A1 EP0791129 A1 EP 0791129A1 EP 95939324 A EP95939324 A EP 95939324A EP 95939324 A EP95939324 A EP 95939324A EP 0791129 A1 EP0791129 A1 EP 0791129A1
Authority
EP
European Patent Office
Prior art keywords
piston
injection
cylinder
rod
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95939324A
Other languages
German (de)
English (en)
Other versions
EP0791129B1 (fr
Inventor
Michel Chatelain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0791129A1 publication Critical patent/EP0791129A1/fr
Application granted granted Critical
Publication of EP0791129B1 publication Critical patent/EP0791129B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0001Fuel-injection apparatus with specially arranged lubricating system, e.g. by fuel oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/102Mechanical drive, e.g. tappets or cams

Definitions

  • the present invention relates to a piston pump intended to supply two independent liquid circuits, in particular the fuel injection circuit and the lubrication circuit of an internal combustion engine. It is more particularly a through shaft pump.
  • injection and lubrication functions are performed conventionally by two separate devices.
  • lubrication it is provided on the engines by means of an oil pump, which pump is driven directly or by means of pinions by the rotational movement of the crankshaft.
  • injection pump On the other hand, the fuel supply to each cylinder, or injection, is ensured by a so-called “injection” pump.
  • this pump includes a plurality of pistons driven by a camshaft and returned by springs. The spring return notoriously limits the maximum speed of the pump, absorbs a lot of power, makes a lot of noise and overheating.
  • injection and lubrication are provided by two separate organs, which increases the total cost, and above all limits accessibility.
  • the invention proposes to provide a pump which jointly performs the functions of an oil pump for the lubrication of an engine and an injection pump for the supply of fuel to the same engine.
  • the invention relates to a device consisting of two piston pumps intended to supply two independent liquid circuits, in particular the fuel injection circuit and the oil circuit for internal combustion engines, characterized in that it comprises:
  • each injection pump piston cooperating for the thrust and the return with an eccentric by means of a half-ring whose opening is directed towards the corresponding oil pump piston, and the ends of said half-ring respectively comprising a piston guide and a piston rod, the rod and the guide being placed in the extension of each other, each piston rod sliding in a cylinder comprising a light which defines the start of injection with one end of the rod in the form of an inclined ramp and the end of injection with a hole made on the rod.
  • It also includes a one-piece injection cylinder head connecting all the cylinders by blocking on the one-piece casing;
  • Each cylinder is movable inside a cylinder cover whose position relative to the cylinder is adjusted by a screw;
  • the one-piece injection cylinder head comprises, opposite the cylinder, a compression chamber receiving the valve and its spring, and leading to the departure of two injectors;
  • the housing includes a cover fixed on the rest of the housing and which includes a slide and a light capable of letting the finger pass from the rack towards the regulator;
  • - the rack finger is controlled by a speed regulator fixed on the housing cover;
  • - the inclined ramp of the rod, the hole made on the rod, and the lumen of the cylinder, are arranged in such a way that the injection takes place on either side of the mid-stroke of the piston, when its linear speed is the largest;
  • one end of the eccentric shaft can be connected directly to the crankshaft, while the other end can receive a pulley to drive additional equipment such as a water pump or alternator.
  • the oil pump body and the injection pump bodies are arranged perpendicularly to each other on the outside of the same casing filled with fuel which serves as a housing for the eccentric shaft which controls them together and with the same eccentrics.
  • the oil pump pistons are returned with compression springs while the injection pump piston drive is of the desmodromic type by means of a half-ring terminated at its ends by two internal bearing elements, flat, perpendicular to the movement of the piston and intended to be in contact with the eccentric.
  • a rod corresponds to each internal bearing: for one side, it is the pump piston and for the other, it is a guide which ensures perfect guidance of the monobloc assembly constituted by the half-ring and the two rods .
  • the casing which receives all the pump bodies is in two parts: the first part constitutes the body of the casing and it serves essentially as housing for the eccentric and the half-rings of the injection pump pistons.
  • the injection pistons are mounted at an angle from the opening and the position of the pistons is given by the housing of the injection piston guides in the housing. In contrast, the position of the injection cylinders on the housing is given by the piston and from the guide.
  • the hole in the housing around the injection piston has a very large clearance to facilitate assembly and to allow the return of uninjected fuel at the end of injection. This return takes place between the cylinder and the cylinder cover and through cross-shaped slots under the cylinder towards the hole in the casing around the piston.
  • the position of the cylinders on the casing is given by the pistons using the guide mounted with very little play in its housing at the bottom of the casing.
  • the cylinder covers are made integral with the cylinders by two screws which also serve to make them turn slightly on themselves when the pump is adjusted on the test bench, to have an angularly identical start of injection on all the pistons. .
  • This adjustment is made with the cylinder head slightly unlocked to release the cylinders which are sealed without a seal and the cylinder covers which are sealed with two O-rings.
  • One O-ring seals with the housing and the other with the cylinder head.
  • the cylinder head is a distribution part common to all the injection cylinders. This arrangement ensures better rigidity and stability of the assembly.
  • each piston corresponds to a conical chamber which receives the ball valve with its return spring. The ball has its seat directly in the cylinder.
  • two outlets are machined to communicate with two injectors, not shown, which in turn supply fuel to an engine cylinder or an explosion chamber. This arrangement is remarkable and the distribution is equal in volume over the two injectors with the same injection pressure setting.
  • the flow rate of the injection pump is variable while the engine is running. This variation in flow is obtained by an inclined ramp at the piston head. This inclined ramp closes an orifice on the piston cylinder. By rotating the piston on itself, we change the position of this closure and as a result, we inject more or less fuel.
  • the volume of fuel injected by a piston rise is between a closure, given by the inclined ramp which puts the volume under pressure, and an opening which puts the volume in flight and which corresponds to the end of injection.
  • the end of injection is a point which always remains fixed.
  • the start of injection is a point which varies with the inclined ramp; the more the closure is advanced in the rise of the piston, the greater the flow, the more the closure is moved back in the rise of the piston, the smaller the flow.
  • This variation in flow is given by the rotation of the piston on its axis to change the position of the inclined ramp relative to the light on the pump cylinder.
  • This light controls by one end the start of injection and by the other end the end of injection.
  • the control of rotation of the pump piston on its axis is obtained by a needle which is welded on the half-ring of each piston.
  • This needle is perfectly parallel at constant distance from the axis of the piston. This needle meshes with the rack which simultaneously controls all the pistons.
  • the stroke of the injection pump pistons is fixed and the variation in flow rate is given by varying the point of injection start over the stroke of the piston, as is the case with many injection pumps.
  • the stroke of the oil pump pistons is the same as that of the injection pump pistons, but the flow is constant for a given speed.
  • the variation of the injection pump flow is done by an electronic regulator which avoids the runaway of the engine.
  • the electronic regulator which is placed on the side of the pump, in turn controls the rack which in turn controls the rotation of the pistons to vary the flow.
  • the second part of the housing is formed by a cover which serves as a housing for the rack. This arrangement is remarkable because:
  • the rack housing is very easy to machine with precision; - The mounting of the rack in its housing and on the needles which make the connection between the rack and the pistons, is done very easily by closing the housing with a few locking screws of the two parts of the housing.
  • an electronic speed regulator is attached.
  • This regulator is placed behind the rack and they are connected together by a finger which is part of the rack and which is housed in the regulator.
  • the rack finger is perpendicular to the back of the rack and is located in the middle of the back of the rack.
  • the oil pump bodies are placed without adjusting the flow rate. They suck in and discharge over the entire travel of the eccentric with damping of the speed at top and bottom dead centers, which allows operation with return spring even at high speed.
  • the piston heads and oil pump cylinders are independent and the circuit is independent on each cylinder. The operation of the injection pistons is remarkable because the injection occurs with the use of a small part of the stroke.
  • This part of the stroke used for injection is located on either side of the mid-stroke of the injection piston in the period when the linear speed is the greatest.
  • the rest of the stroke causes leaks which return to the crankcase through the light and the notches on the cylinder of the injection pump piston.
  • the free volume between the cylinder and the cylinder cover also participates in the fuel return circuit to the crankcase and this is the role of the cylinder cover.
  • the injection device itself is of the drawer type.
  • the piston head is cylindrical and hollow.
  • the central hole connects the compression chamber with a radial hole which opens with the stroke of the piston in a hole on the cylinder.
  • On the piston head there is an inclined ramp which regulates the start of injection with regard to the same light on the cylinder.
  • the start of injection is a moving point which varies with the position of the inclined ramp at the piston head.
  • the pump Once the pump has been adjusted to the bench, it can be mounted directly at the end of the crankshaft on the engine.
  • Figure 1 is a perspective view of the eccentric shaft fitted with injection pump pistons.
  • Figure 2 is a side view of an injection pump piston.
  • Figure 3 is a top view of the same piston.
  • Figure 4 is an enlarged detail of the head of the piston rod.
  • Figure 5 is a general section along a plane perpendicular to the eccentric shaft.
  • the invention combines an oil pump and an injection pump used in particular in a diesel engine, the number of pistons of this pump is not limited.
  • This assembly comprises an eccentric through shaft (10), a set of pistons (20) of oil pump of cylindrical shape with valves, and a set of pistons (30) of injection pump having the general form of a half-ring (31), carrying at its ends a piston rod (32) and a guide (33) coaxial.
  • This assembly is trapped in a casing (15) not shown in FIG. 1.
  • the oil pump pistons (20) slide inside the oil pump cylinders (21) fixed by a cylinder head (22) not shown in this figure.
  • the injection pump piston guides slide inside the same casing (15).
  • the injection pump piston rods (32) slide, in their end part, in a piston cylinder (35) surrounded by a cylinder cover (36) and surmounted by an injection cylinder head (37) not shown.
  • FIG. 5 the different parts are better identified in the assembled state.
  • the eccentric shaft (10) (11) comprising as shown (1) an eccentric (11).
  • an oil pump piston (20) of a hollow cylindrical shape, shown here in the position closest to the axis (12) of rotation.
  • This piston can slide inside a piston cylinder (21), the sending being generated by the movement of the eccentric (11) and the return (in this maximum figure) is ensured by a spring (23) .
  • the chamber of this piston communicates with a cylinder head (22) equipped with valves not shown ensuring the passage of the oil according to the arrows referenced.
  • the injection pump piston (30) moves in a direction perpendicular to the oil pump piston (20).
  • This piston (30) is composed of three separate portions, namely a piston rod (32), a half-ring (31) for driving and connecting, and a guide (33).
  • the piston rod (32) moves inside a piston cylinder (35) to cause the compression of a quantity of fuel and send it into the cylinder head (37) and up to the injector at through a ball valve (38).
  • This piston rod (32) is pierced with an axial hole (40) connected in the axis of the half-ring (31) by a radial hole (42) which opens onto the diameter of the piston and which controls the end of injection when it leads to the light (45) of the cylinder.
  • the cylinder (35) is sealed with a cylinder cover (36). They are made integral by a screw (46). This screw (46) is used to change the position of the cylinder on the test bench and unlocked cylinder head (37) to angularly obtain the same start of injection on all the pistons for the same arbitrary position of the rack.
  • the cylinder cover (36) is used to contain leaks at the end of injection towards the casing according to arrow F.
  • the piston guide (33) is placed in the extension of the piston rod (32) on the other side of the eccentric shaft (10).
  • This guide (33) is slidably mounted inside the casing (15).
  • the guide (33) and the rod (32) are connected by a half-ring (31) whose internal shape cooperates with the eccentric (11).
  • the eccentric (11) rotates
  • the most eccentric part (13) of the axis (12) of rotation of the shaft sometimes pushes the rod (32) to ensure the compression movement and the sending the piston, sometimes push the guide (32) to ensure the piston returns.
  • This advantageous form makes it possible to dispense with the use of a return spring.
  • the half-ring (31) carries on its external face (50) an axis parallel (51) to the axis of the movement of the piston and is separated from the external face (50) of the half-ring (31) by two arms ( 52.53).
  • This axis (51) is intended to be translated by a recess (55) on the rack (56) driven by a speed regulator (57).
  • a speed regulator 57
  • this rack 56) makes it possible to pivot the piston (30) about its axis of alternating movement.
  • the various pistons (30) placed along the eccentric shaft (11) are driven simultaneously by this speed regulator (57) and by the rack (56).
  • the eccentric shaft (11) rotates on itself, causing a longitudinal reciprocating movement of the oil pump piston (20) which thus ensures its function.
  • the piston (30) of the injection pump also describes a reciprocating longitudinal movement which allows it to create the compression of the fuel at the level of the compression chamber which is located under the ball valve placed on the cylinder ( 35).
  • the head (41) of the piston rod (32) is opposite the light (45) located on the piston cylinder (35).
  • the entire casing, the space between the cylinder cover (36) and the cylinder (35), the cylinder light (45) and the interior (40) of the piston rod are in communication, therefore at low pressure.
  • the piston rod (32) begins its movement inside the cylinder (35) and the head (41) of the rod leaves the light (45) of the piston cylinder (35). From this moment, the fuel trapped inside (40) of the piston rod and below the valve (38), is compressed. Then, the movement of the piston (30) continuing in the same direction, the hole (42) located on the rod (32) of the piston arrives opposite the light (45) of the cylinder (35). At this time, the compression chamber (40) finds itself in communication with the casing (15) and the pressure drops.
  • the flow rate is adjusted by rotation of the piston rod (32) inside the cylinder (35). This rotation is obtained by the action of the rack (56) on the half-ring (31) which causes the pivoting.
  • an inclined ramp (47) is arranged at the head (41) of the piston rod (32). Depending on the angle of the piston (30) relative to the cylinder (35), and therefore to the light (45), the instant of facing of the ramp (47) and the light (45) will be variable . This allows the flow rate and the injection advance to be adjusted.
  • this assembly makes it possible to have two pumps with a single drive, which reduces the mass and the cost of such an embodiment.
  • a pump not using return springs for its injection function makes it possible to have rotation speeds significantly higher than all the pumps currently existing, with less noise, less heating and less dissipated power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Dispositif constitué de deux pompes à pistons destinées à alimenter deux circuits liquides indépendants, notamment le circuit d'injection de carburant et le circuit d'huile pour moteurs à combustion interne, caractérisé en ce qu'il comprend: un seul carter dans lequel sont fixés les corps de pompes; un seul arbre (10) d'entraînement à excentriques (11) pour commander les deux pompes; un ensemble de pistons (20) de pompe à huile, chaque piston (20) de pompe à huile coopérant avec l'excentrique (11) pour le mouvement en l'éloignant de l'arbre (10), et dont le rappel est assuré par un ressort (23); un ensemble de pistons (30) de pompe à injection dont le mouvement est perpendiculaire au mouvement des pistons (20) de pompe à huile, chaque piston (30) de pompe à injection coopérant pour la poussée et le rappel avec un excentrique (11) au moyen d'un demi-anneau (31) dont l'ouverture est dirigée vers le piston (20) de pompe à huile correspondant, et les extrémités dudit demi-anneau (31) comportant respectivement un guide (33) de piston et une tige (32) de piston, la tige et le guide étant placés dans le prolongement l'un de l'autre, chaque tige (32) de piston coulissant dans un cylindre (35) comportant une lumière (45) qui définit le début d'injection avec une extrémité de la tige (32) en forme de rampe inclinée (47) et la fin d'injection avec un trou (42) ménagé sur la tige (32).

Description

POMPE A PISTONS
Domaine Technique
La présente invention concerne une pompe à pistons destinée à alimenter deux circuits liquides indépendants, notamment le circuit d'injection de carburant et le circuit de lubrification d'un moteur à combustion interne. Il s'agit plus particulièrement d'une pompe à arbre traversant.
Technique antérieure
Les fonctions d'injection et de lubrification sont assurées de manière conventionnelle par deux dispositifs distincts.
En ce qui concerne la lubrification, elle est assurée sur les moteurs au moyen d'une pompe à huile, laquelle pompe est entraînée directement ou au moyen de pignons par le mouvement de rotation du vilebrequin.
D'autre part, l'alimentation en combustible de chaque cylindre, ou injection, est assurée par une pompe dite "à injection". Sur les moteurs de conception traditionnelle, cette pompe comporte une pluralité de pistons entraînés par un arbre à cames et rappelés par des ressorts. Le rappel par ressorts limite notoirement la vitesse maximale de la pompe, absorbe beaucoup de puissance, fait beaucoup de bruit et d'échauffement.
En résumé, de manière connue, l'injection et la lubrification sont assurées par deux organes distincts, ce qui augmente le coût total, et surtout en limite l'accessibilité.
L'invention pallie ces inconvénients. Description de l'Invention
L'invention se propose de fournir une pompe assurant conjointement les fonctions de pompe à huile pour la lubrification d'un moteur et de pompe à injection pour l'alimentation en carburant du même moteur.
L'invention concerne un dispositif constitué de deux pompes à pistons destinées à alimenter deux circuits liquides indépendants, notamment le circuit d'injection de carburant et le circuit d'huile pour moteurs à combustion interne, caractérisé en ce qu'il comprend :
- un seul carter dans lequel sont fixés les corps de pompes ;
- un seul arbre d'entraînement à excentriques pour commander les deux pompes ; - un ensemble de pistons de pompe à huile, chaque piston de pompe à huile coopérant avec l'excentrique pour le mouvement en l'éloignant de l'arbre, et dont le rappel est assuré par un ressort ;
- un ensemble de pistons de pompe à injection dont le mouvement est perpendiculaire au mouvement des pistons de pompe à huile, chaque piston de pompe à injection coopérant pour la poussée et le rappel avec un excentrique au moyen d'un demi-anneau dont l'ouverture est dirigée vers le piston de pompe à huile correspondant, et les extrémités dudit demi-anneau comportant respectivement un guide de piston et une tige de piston, la tige et le guide étant placés dans le prolongement l'un de l'autre, chaque tige de piston coulissant dans un cylindre comportant une lumière qui définit le début d'injection avec une extrémité de la tige en forme de rampe inclinée et la fin d'injection avec un trou ménagé sur la tige. Avantageusement, en pratique :
- il comprend également une culasse d'injection monobloc reliant tous les cylindres par blocage sur le carter monobloc ;
- chaque cylindre est mobile à l'intérieur d'un cache-cylindre dont la position par rapport au cylindre est réglée par une vis ;
- la culasse d'injection monobloc comporte en regard du cylindre une chambre de compression recevant le clapetet son ressort, et débouchant sur le départ de deux injecteurs ;
- la commande de variation du débit de la pompe à injection est obtenue par rotation des pistons sur leur axe, laquelle rotation est commandée depuis le dos des demi-anneaux sur lesquels deux bras usinés avec une gorge reçoivent une aiguille soudée parallèle à l'axe du piston, et apte à coopérer avec une crémaillère disposée parallèlement à l'arbre à excentriques ; - le carter comprend un couvercle fixé sur le reste du carter et qui comporte une glissière et une lumière apte à laisser passer le doigt de la crémaillère vers le régulateur ;
- le doigt de la crémaillère est commandé par un régulateur de vitesse fixé sur le couvercle du carter ; - la rampe inclinée de la tige, le trou ménagé sur la tige, et la lumière du cylindre, sont disposés de telle manière que l'injection se fait de part et d'autre de la mi-course du piston, lorsque sa vitesse linéaire est la plus grande ;
- une des extrémités de l'arbre excentrique peut être connectée directement au vilebrequin, tandis que l'autre extrémité peut recevoir une poulie pour entraîner un équipement supplémentaire tel que pompe à eau ou alternateur. Le corps de pompe à huile et les corps de pompe à injection sont disposés perpendiculairement les uns par rapport aux autres sur l'extérieur d'un même carter rempli de carburant qui sert de logement à l'arbre à excentriques qui les commande ensemble et avec les mêmes excentriques. Le rappel des pistons de pompe à huile s'effectue avec des ressorts de compression alors que l'entraînement des pistons de pompe à injection est du type desmodromique au moyen d'un demi-anneau terminé à ses extrémités par deux éléments de portées internes, planes, perpendiculaires au mouvement du piston et destinées à être en contact avec l'excentrique. A chaque portée interne correspond une tige : pour un côté, c'est le piston de pompe et pour l'autre, c'est un guide qui assure un parfait guidage de l'ensemble monobloc constitué par le demi-anneau et les deux tiges.
Le carter qui reçoit tous les corps de pompe est en deux pièces : la première pièce constitue le corps du carter et elle sert de logement essentiellement à l'excentrique et aux demi-anneaux des pistons de pompe d'injection. Le montage des pistons d'injection se fait en biais depuis l'ouverture et la position des pistons est donnée par le logement des guides de piston d'injection dans le carter. A l'opposé, la position des cylindres d'injection sur le carter est donnée par le piston et à partir du guide. Le trou du carter autour du piston d'injection a un jeu très important pour faciliter le montage et pour laisser passer le retour de carburant non injecté en fin d'injection. Ce retour se fait entre le cylindre et le cache-cylindre et à travers des fentes en croix sous le cylindre vers le trou dans le carter autour du piston.
Comme on vient de le voir, la position des cylindres sur le carter est donnée par les pistons à l'aide du guide monté avec très peu de jeu dans son logement au fond du carter. Les cache-cylindres sont rendus solidaires des cylindres par deux vis qui servent aussi à les faire légèrement tourner sur eux-mêmes quand la pompe est au réglage sur le banc d'essai, pour avoir un début d'injection angulairement identique sur tous les pistons. Ce réglage se fait avec la culasse légèrement débloquée pour libérer les cylindres qui sont étanches sans joint et les cache-cylindres qui sont étanches avec deux joints toriques. Un joint torique assure l'étanchéité avec le carter et l'autre avec la culasse. Au serrage, la culasse monobloc pour tous les cylindres, vient à bloc sur les cylindres et le carter, les joints toriques assurant une étanchéité souple avec les cache-cylindres.
La culasse est une pièce de distribution commune à tous les cylindres d'injection. Cette disposition assure une meilleure rigidité et stabilité de l'ensemble. Dans cette culasse, à chaque piston correspond une chambre conique qui reçoit le clapet à bille avec son ressort de rappel. La bille a son siège directement dans le cylindre. Sur cette chambre conique, deux sorties sont usinées pour communiquer avec deux injecteurs non représentés qui vont alimenter à leur tour en carburant un cylindre moteur ou une chambre d'explosion. Cette disposition est remarquable et la distribution est égale en volume sur les deux injecteurs avec le même tarage de pression d'injection.
Le débit de la pompe à injection est variable pendant la marche du moteur. Cette variation de débit est obtenue par une rampe inclinée en tête de piston. Cette rampe inclinée obture un orifice sur le cylindre du piston. En faisant tourner le piston sur lui-même, on change la position de cette obturation et en conséquence, on injecte plus ou moins de carburant. Le volume de carburant injecté par une montée de piston est compris entre une fermeture, donnée par la rampe inclinée qui met le volume sous pression, et une ouverture qui met le volume en fuite et qui correspond à la fin d'injection. La fin d'injection est un point qui reste toujours fixe. Le début d'injection est un point qui varie avec la rampe inclinée ; plus la fermeture est avancée dans la montée du piston, plus le débit est grand, plus la fermeture est reculée dans la montée du piston, plus le débit est petit. Cette variation de débit est donnée par la rotation du piston sur son axe pour changer la position de la rampe inclinée par rapport à la lumière sur le cylindre de pompe.
Cette lumière commande par une extrémité le début d'injection et par l'autre extrémité la fin d'injection. La commande de rotation du piston de pompe sur son axe est obtenue par une aiguille qui est soudée sur le demi-anneau de chaque piston.
Cette aiguille est parfaitement parallèle à distance constante de l'axe du piston. Cette aiguille engrène avec la crémaillère qui commande simultanément tous les pistons.
Autrement dit, la course des pistons de la pompe à injection est fixe et la variation de débit est donnée en faisant varier sur la course du piston le point de début d'injection, comme c'est le cas sur beaucoup de pompes à injection.
La course des pistons de la pompe à huile est la même que celle des pistons de la pompe à injection, mais le débit est constant pour un régime donné. La variation de débit de pompe à injection se fait par un régulateur électronique qui permet d'éviter l'emballement du moteur. Le régulateur électronique qui est placé sur le côté de la pompe, commande à son tour la crémaillère qui à son tour commande la rotation des pistons pour faire varier le débit.
La deuxième partie du carter est formée par un couvercle qui sert de logement à la crémaillère. Cette disposition est remarquable parce que :
- le logement de la crémaillère est très facile à usiner avec précision ; - le montage de la crémaillère dans son logement et sur les aiguilles qui font la liaison entre la crémaillère et les pistons, se fait très facilement en fermant le carter avec quelques vis de blocage des deux parties du carter.
En déplaçant la crémaillère longitudinalement dans son logement, on fait tourner les pistons sur leur axe et on change la position de la rampe inclinée qui se trouve en tête de piston et par le fait qu'on modifie le débit. Dans son déplacement vers le haut, le trou intérieur du piston va déboucher sur la lumière et c'est la fin d'injection.
A l'extérieur du couvercle du carter, se fixe un régulateur de vitesse électronique.
Ce régulateur est placé derrière la crémaillère et ils sont reliés entre eux par un doigt qui fait partie de la crémaillère et qui vient se loger dans le régulateur.
Le doigt de la crémaillère est perpendiculaire au dos de la crémaillère et il se situe au milieu du dos de la crémaillère. Sur la face du carter opposée au régulateur et au regard des parties ouvertes des demi-anneaux de pistons de pompes d'injection, sont placés les corps de pompe à huile sans réglage de débit. Ils aspirent et refoulent sur toute la course de l'excentrique avec amortissement de la vitesse aux points morts haut et bas, ce qui permet un fonctionnement avec ressort de rappel même à grande vitesse. Les culasses pistons et cylindres de pompe à huile sont indépendants et le circuit est indépendant sur chaque cylindre. Le fonctionnement des pistons d'injection est remarquable parce que l'injection se produit avec l'utilisation d'une petite partie de la course.
Cette partie de course utilisée pour l'injection se situe de part et d'autre de la mi-course du piston d'injection dans la période où la vitesse linéaire est la plus grande. Le reste de la course provoque des fuites qui retournent au carter par la lumière et les encoches pratiquées sur le cylindre du piston de pompe d'injection. Le volume libre entre le cylindre et le cache cylindre participe aussi dans le circuit de retour du carburant vers le carter et c'est le rôle du cache cylindre.
Le dispositif d'injection proprement dit est du type à tiroir. La tête de piston est cylindrique et creuse. Le trou central met en relation la chambre de compression avec un trou radial qui débouche avec la course du piston dans une lumière sur le cylindre. Sur la tête du piston, il y a une rampe inclinée qui règle le début d'injection au regard de la même lumière sur le cylindre.
La fin d'injection est un point fixe et identique sur tous les cylindres et pistons. /14496 PCI7FR95/01452
Le début d'injection est un point mobile qui varie avec la position de la rampe inclinée en tête de piston. Quand le début d'injection avance et que la fin d'injection reste fixe, le débit augmente et inversement quand le début d'injection recule sur la course du piston, le débit diminue. A mesure que le débit augmente, l'avance à l'injection augmente aussi.
Une fois la pompe réglée au banc, celle-ci peut se monter directement en bout de vilebrequin sur le moteur.
Son entraînement est asuré par de petites cannelures qui permettent de positionner facilement le début d'injection sur chaque chambre de combustion avec l'avance à l'injection voulue. Ce réglage final est obtenu en faisant pivoter la pompe sur elle-même grâce aux lumières sur le carter, qui reçoivent les deux vis de blocage de la pompe. La finesse de ce réglage peut se faire en marche en débloquant légèrement les deux vis et en maintenant la pompe en fonctionnement à l'aide d'une tige filetée qui se visse sur le carter. Ce bras de levier sert à vaincre la force d'entraînement de la pompe afin de trouver avec le moteur en rotation le meilleur point d'injection avant de rebloquer les deux vis et de dévisser le levier.
Cette possibilité de réglage final est remarquable parce qu'il ne peut pas se pratiquer avec une pompe à injection classique sur laquelle la force dissipée pour son entraînement est environ quatre à cinq fois supérieure à la pompe suivant l'invention. Brève description des figures
La manière dont l'invention peut être réalisée et les avantages qui en découlent ressortiront mieux de l'exemple de réalisation qui suit à l'appui des figures annexées.
La figure 1 est une vue en perspective de l'arbre à excentriques équipé de pistons de pompe à injection.
La figure 2 est une vue latérale d'un piston de pompe à injection.
La figure 3 est une vue de dessus de ce même piston.
La figure 4 est un détail agrandi de la tête de la tige du piston.
La figure 5 est une coupe générale selon un plan perpendiculaire à l'arbre à excentriques.
Manière de réaliser VInvention
L'invention, telle que représentée sommairement à la figure 1, combine une pompe à huile et une pompe à injection utilisée notamment dans un moteur diesel, le nombre de pistons de cette pompe n'étant pas limité. Cet ensemble comprend un arbre (10) traversant à excentriques, un ensemble de pistons (20) de pompe à huile de forme cylindrique avec clapets, et un ensemble de pistons (30) de pompe à injection se présentant sous la forme générale d'un demi-anneau (31), portant à ses extrémités une tige de piston (32) et un guide (33) coaxiaux. Cet ensemble est emprisonné dans un carter (15) non représenté sur la figure 1. Les pistons (20) de pompe à huile coulissent à l'intérieur de cylindres (21) de pompe à huile fixés par une culasse (22) non représentée sur cette figure. De même, les guides de pistons de pompe à injection coulissent à l'intérieur du même carter (15). Enfin, les tiges (32) de piston de pompe à injection coulissent, dans leur partie terminale, dans un cylindre (35) de piston entouré d'un cache-cylindre (36) et surmonté d'une culasse (37) d'injection non représentée.
Sur la figure 5, on repère mieux les différentes pièces à l'état assemblé. Sur cette coupe, on observe l'arbre (10) à excentriques (11), comportant tel que figuré (1) un excentrique (11). Sur un côté de cet excentrique, prend appui un piston (20) de pompe à huile d'une forme cylindrique creuse, représenté ici dans la position la plus proche de l'axe (12) de rotation. Ce piston peut coulisser à l'intérieur d'un cylindre de piston (21), l'envoi étant engendré par le mouvement de l'excentrique (11) et le rappel (sur cette figure maximum) est assuré par un ressort (23). La chambre de ce piston communique avec une culasse (22) équipée de clapets non représentée assurant le passage de l'huile selon les flèches référencées. Le piston (30) de pompe à injection se déplace selon une direction perpendiculaire au piston (20) de la pompe à huile. Ce piston (30) est composé de trois portions distinctes, à savoir une tige de piston (32), un demi-anneau (31) d'entraînement et de liaison, et un guide (33). La tige de piston (32) se déplace à l'intérieur d'un cylindre (35) de piston pour provoquer la compression d'une quantité de carburant et l'envoyer dans la culasse (37) et jusqu'à l'injecteur à travers un clapet (38) à bille.
Cette tige (32) de piston est percée d'un trou axial (40) raccordé dans l'axe du demi-anneau (31) par un trou radial (42) qui débouche sur le diamètre du piston et qui commande la fin d'injection quand il débouche sur la lumière (45) du cylindre.
Le cylindre (35) est entouré étanche par un cache cylindre (36). Ils sont rendus solidaires par une vis (46). Cette vis (46) sert à changer la position du cylindre au banc d'essai et culasse (37) débloquée pour obtenir angulairement le début d'injection identique sur tous les pistons pour une même position quelconque de la crémaillère. Le cache cylindre (36) sert à contenir les fuites de fin d'injection vers le carter selon la flèche F.
D'autre part, le guide (33) de piston est placé dans le prolongement de la tige (32) du piston de l'autre côté de l'arbre (10) à excentriques. Ce guide (33) est monté coulissant à l'intérieur du carter (15). Le guide (33) et la tige (32) sont reliés par un demi-anneau (31) dont la forme intérieure coopère avec l'excentrique (11). De la sorte, lorsque l'excentrique (11 ) tourne, la partie (13) la plus excentrée de l'axe (12) de rotation de l'arbre pousse tantôt la tige (32) pour assurer le mouvement de compression et l'envoi du piston, tantôt pousse le guide (32) pour assurer le rappel du piston. Cette forme avantageuse permet de s'affranchir de l'utilisation d'un ressort de rappel. Le demi-anneau (31) porte en sa face extérieure (50) un axe parallèle (51) à l'axe du mouvement du piston et est écarté de la face externe (50) du demi-anneau (31) par deux bras (52,53). Cet axe (51) est destiné à être translaté par un creux (55) sur la crémaillère (56) entraîné par un régulateur (57) de vitesse. Ainsi, l'action de cette crémaillère (56) permet de faire pivoter le piston (30) autour de son axe de mouvement alternatif. Les différents pistons (30) placés tout au long de l'arbre (11) à excentriques, sont entraînés simultanément par ce régulateur (57) de vitesse et par la crémaillère (56).
Lors du fonctionnement, l'arbre (11) à excentriques tourne sur lui- même, entraînant un mouvement alternatif longitudinal du piston (20) de pompe à huile qui ainsi assure sa fonction. Dans le même temps, le piston (30) de pompe à injection décrit lui aussi un mouvement alternatif longitudinal qui lui permet de créer la compression du carburant au niveau de la chambre de compression qui se trouve sous le clapet à bille placé sur le cylindre (35).
En partant de la position la plus retirée du piston (30), le mouvement suit les phases suivantes.
Tout d'abord, la tête (41) de la tige (32) du piston est en regard de la lumière (45) située sur le cylindre (35) de piston. Ainsi, tout le carter, l'espace compris entre le cache-cylindre (36) et le cylindre (35), la lumière (45) de cylindre et l'intérieur (40) de la tige du piston, sont en communication, donc à une pression basse.
Ensuite, la tige (32) de piston commence son mouvement à l'intérieur du cylindre (35) et la tête (41) de la tige quitte la lumière (45) du cylindre (35) de piston. A partir de ce moment, le carburant emprisonné à l'intérieur (40) de la tige de piston et en deçà du clapet (38), est comprimé. Ensuite, le mouvement du piston (30) se continuant dans le même sens, le trou (42) situé sur la tige (32) du piston arrive en regard de la lumière (45) du cylindre (35). A ce moment, la chambre (40) de compression se retrouve en communication avec le carter (15) et la pression retombe.
Le réglage du débit se fait par rotation de la tige (32) de piston à l'intérieur du cylindre (35). Cette rotation est obtenue par l'action de la crémaillère (56) sur le demi-anneau (31) qui entraîne le pivotement. A cet effet, une rampe inclinée (47) est disposée à la tête (41) de la tige (32) de piston. En fonction de l'angle du piston (30) par rapport au cylindre (35), et donc à la lumière (45), l'instant de mise en regard de la rampe (47) et de la lumière (45) sera variable. Ceci permet de régler le débit et l'avance à l'injection.
Les multiples avantages de l'invention ressortent clairement de la description qui précède. Tout d'abord, cet ensemble permet d'avoir deux pompes avec un seul entraînement, ce qui diminue la masse et le coût d'une telle réalisation. De plus, une telle pompe n'utilisant pas de ressorts de rappel pour sa fonction d'injection, permet d'avoir des vitesses de rotation nettement supérieures à toutes les pompes existant actuellement, avec moins de bruit, moins d'échauffement et moins de puissance dissipée.
En outre, l'utilisation d'un arbre traversant permet d'utiliser une extrémité de cet arbre pour entraîner d'autres organes.

Claims

i 5
REVENDICAΉONS
1 / Dispositif constitué de deux pompes à pistons destinées à alimenter deux circuits liquides indépendants, notamment le circuit d'injection de carburant et le circuit d'huile pour moteurs à combustion interne, caractérisé en ce qu'il comprend :
- un seul carter (15) dans lequel sont fixés les corps de pompes ;
- un seul arbre (10) d'entraînement à excentriques (11) pour commander les deux pompes ; - un ensemble de pistons (20) de pompe à huile, chaque piston (20) de pompe à huile coopérant avec l'excentrique (11) pour le mouvement en l'éloignant de l'arbre (10), et dont le rappel est assuré par un ressort (23) ;
- un ensemble de pistons (30) de pompe à injection dont le mouvement est perpendiculaire au mouvement des pistons (20) de pompe à huile, chaque piston (30) de pompe à injection coopérant pour la poussée et le rappel avec un excentrique (11) au moyen d'un demi- anneau (31) dont l'ouverture est dirigée vers le piston (20) de pompe à huile correspondant, et les extrémités dudit anneau (31) comportant respectivement un guide (33) de piston et une tige (32) de piston, la tige et le guide étant placés dans le prolongement l'un de l'autre, chaque tige (32) de piston coulissant dans un cylindre (35) comportant une lumière (45) qui définit le début d'injection avec une extrémité de la tige (32) en forme de rampe inclinée (47) et la fin d'injection avec un trou (42) ménagé sur la tige (32).
2/ Dispositif selon la revendication 1, caractérisé en ce qu'il comprend également une culasse (37) d'injection monobloc reliant tous les cylindres (35) par blocage sur le carter (15) monobloc. 3/ Dispositif selon l'une des revendications 1 et 2, caractérisé en ce que chaque cylindre (35) est mobile à l'intérieur d'un cache-cylindre (36) dont la position par rapport au cylindre (35) est réglée par une vis (46).
4/ Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que la culasse d'injection monobloc (37) comporte en regard du cylindre (35) une chambre de compression (27) recevant le clapet (38) et son ressort (39), et débouchant sur le départ (28) de deux injecteurs.
5/ Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que la commande de variation du débit de la pompe à injection est obtenue par rotation des pistons (30) sur leur axe, laquelle rotation est commandée depuis le dos des demi-anneaux(31) sur lesquels deux bras (52,53) usinés avec une gorge reçoivent une aiguille (51) soudée parallèle à l'axe du piston, et apte à coopérer avec une crémaillère (55) disposée parallèlement à l'arbre à excentriques (11).
6/ Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que le carter (15) comprend un couvercle (16) fixé sur le reste du carter (15) et qui comporte une glissière pour la crémaillère et une lumière apte à laisser passer le doigt (55) de la crémaillère.
7/ Dispositif selon l'une des revendications 1 à 6, caractérisé en ce que le doigt de la crémaillère est commandé par un régulateur de vitesse (57) fixé sur le couvercle (16) du carter (15).
8/ Dispositif selon l'une des revendications 1 à 7, caractérisé en ce que la rampe inclinée (47) de la tige, le trou (42) ménagé sur la tige (32), et la lumière (45) du cylindre (35), sont disposés de telle manière que l'injection se fait de part et d'autre de la mi-course du piston (30), lorsque sa vitesse linéaire est la plus grande. 9/ Dispositif selon l'une des revendications 1 à 8, caractérisé en ce qu'une des extrémités de l'arbre excentrique (10) peut être connectée directement au vilebrequin, tandis que l'autre extrémité peut recevoir une poulie pour entraîner un équipement supplémentaire tel que pompe à eau ou alternateur.
EP95939324A 1994-11-07 1995-11-06 Pompe a pistons Expired - Lifetime EP0791129B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9413507 1994-11-07
FR9413507A FR2726606B1 (fr) 1994-11-07 1994-11-07 Pompe a pistons
PCT/FR1995/001452 WO1996014496A1 (fr) 1994-11-07 1995-11-06 Pompe a pistons

Publications (2)

Publication Number Publication Date
EP0791129A1 true EP0791129A1 (fr) 1997-08-27
EP0791129B1 EP0791129B1 (fr) 1998-09-02

Family

ID=9468696

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95939324A Expired - Lifetime EP0791129B1 (fr) 1994-11-07 1995-11-06 Pompe a pistons

Country Status (6)

Country Link
US (1) US6109894A (fr)
EP (1) EP0791129B1 (fr)
CN (1) CN1171833A (fr)
DE (1) DE69504531D1 (fr)
FR (1) FR2726606B1 (fr)
WO (1) WO1996014496A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2797658B1 (fr) 1999-08-18 2002-08-23 Snecma Aube de turbine a profil ameliore
DE10010945B4 (de) * 2000-03-06 2004-07-22 Robert Bosch Gmbh Pumpe zur Versorgung eines Kraftstoffeinspritzsystems und einer hydraulischen Ventilsteuerung für Brennkraftmaschinen
US6461117B2 (en) * 2001-02-27 2002-10-08 International Truck Intellectual Property Company, L.L.C. Reversible volume oil pump
ITMI20040032A1 (it) * 2004-01-14 2004-04-14 Piaggio & C Spa Gruppo pompa carburante a portata variabile
US7134846B2 (en) * 2004-05-28 2006-11-14 Stanadyne Corporation Radial piston pump with eccentrically driven rolling actuation ring
US20060127228A1 (en) * 2004-12-09 2006-06-15 Steve Rohring High pressure open discharge pump system
US8182246B1 (en) 2004-12-09 2012-05-22 Steve Rohring High pressure open discharge pump system
CN100445519C (zh) * 2006-09-22 2008-12-24 郑国璋 多种燃料柴油机机油增压泵
US20080115770A1 (en) * 2006-11-16 2008-05-22 Merchant Jack A Pump with torque reversal avoidance feature and engine system using same
AT503752B1 (de) * 2007-05-10 2008-10-15 Avl List Gmbh Brennkraftmaschine
US8506267B2 (en) * 2007-09-10 2013-08-13 Schlumberger Technology Corporation Pump assembly
US8113805B2 (en) * 2007-09-26 2012-02-14 Torad Engineering, Llc Rotary fluid-displacement assembly
EP2184491A1 (fr) * 2008-11-07 2010-05-12 Delphi Technologies Holding S.à.r.l. Tête de pompe pour ensemble de pompe à carburant
CN102840128A (zh) * 2012-09-10 2012-12-26 浙江大学 一种新型柱塞泵装置
EP3350447B1 (fr) 2015-09-14 2020-03-25 Torad Engineering, LLC Dispositif d'hélice à aubes multiples
CN105545549A (zh) * 2016-01-28 2016-05-04 全椒县全动机械有限公司 一种带输油泵的双轴平衡单缸柴油机
CN107387387B (zh) * 2017-08-30 2020-01-14 王湫锂 用于调量注入泵的低压变容流量调节方法及其调节机构
DE102019106531A1 (de) * 2019-03-14 2020-09-17 Baier & Köppel GmbH & Co. KG Schmierstoffpumpe mit automatisch ankoppelnder Pumpeinheit und Verfahren zum Ankoppeln einer Pumpeinheit an eine Schmierstoffpumpe
CN110425405A (zh) * 2019-08-22 2019-11-08 江苏中科朗润智能科技有限公司 一种正反转高压油泵
CN112761842A (zh) * 2020-12-29 2021-05-07 余姚市舒春机械有限公司 一种电喷柴油机一体式燃油泵

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR677993A (fr) * 1928-08-13 1930-03-17 Commande pour organes distributeurs animés d'un mouvement alternatif d'amplitude constante
US2059758A (en) * 1932-10-11 1936-11-03 Stearns Frank Ballon Fuel pump for internal combustion engines
US2697403A (en) * 1949-06-06 1954-12-21 Melba L Benedek Hydraulic pump or motor
US2980023A (en) * 1957-10-07 1961-04-18 Holley Carburetor Co Fluid pumps
US3385221A (en) * 1967-03-07 1968-05-28 Caterpillar Tractor Co Multi-plunger engine fuel oil pump
IT1086329B (it) * 1977-05-26 1985-05-28 Riva Calzoni Spa Dispositivo di aggancio dei pistoni al rotore in un motore idraulico a pistoni radiali
DE3700599C2 (de) * 1987-01-10 1997-12-04 Hugo Dipl Ing Fiedler Einspritzvorrichtung für Dieselmotoren
NL9301011A (nl) * 1993-06-11 1995-01-02 Applied Power Inc Radiale-plunjerpomp.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9614496A1 *

Also Published As

Publication number Publication date
FR2726606B1 (fr) 1996-12-06
WO1996014496A1 (fr) 1996-05-17
CN1171833A (zh) 1998-01-28
FR2726606A1 (fr) 1996-05-10
DE69504531D1 (de) 1998-10-08
EP0791129B1 (fr) 1998-09-02
US6109894A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
EP0791129B1 (fr) Pompe a pistons
EP0980466B1 (fr) Dispositif permettant de faire varier la cylindree et/ou le rapport volumetrique effectifs d'un moteur a pistons pendant son fonctionnement
EP1884656B1 (fr) Pompe transfert pour injection d'essence à haute pression
FR2882575A1 (fr) Dispositif tres compact pour ajuster le taux de compression d'un moteur a combustion interne
EP0526616B1 (fr) Dispositif d'injection de combustible pour moteurs a combustion interne
FR2815086A1 (fr) Dispositif d'alimentation en carburant a debit variable
FR2596805A1 (fr) Dispositif de reglage du debut de l'injection dans une pompe d'injection de carburant avec avance du debut d'injection
FR2508556A1 (fr) Appareil de pompage pour l'alimentation en combustible de moteurs a combustion interne
FR2741672A1 (fr) Systeme d'alimentation de carburant
FR3023319B1 (fr) Dispositif d'alimentation en huile pour le refroidissement des pistons d'un moteur a combustion interne
EP0498682A1 (fr) Dispositif de commande de soupape à fonction de mise à l'arrêt pour moteur à combustion interne
FR2498686A1 (fr) Dispositif d'alimentation en carburant d'un moteur a combustion interne
CH512672A (fr) Procédé et dispositif d'injection d'un combustible liquide dans un moteur à combustion interne
FR2487011A1 (fr) Pompe a injection de carburant liquide
FR2790301A1 (fr) Soupape a section de passage variable
EP3080433B1 (fr) Groupe motopropulseur qui est équipe d'un poussoir d'actionnement commandé par un chemin de came porté par une bielle
FR2602826A1 (fr) Pompe d'injection de carburant
FR2508549A3 (fr) Systeme de commande de soupape d'admission de combustible pour un moteur a explosion
FR2474100A1 (fr)
FR2586758A1 (fr) Injecteur de carburant et installation d'injection de carburant
CH524063A (fr) Pompe d'injection de combustible permettant de réaliser deux injections par cycle dans les moteurs
WO2004031538A1 (fr) Moteur a pistons alternatifs
FR2716239A1 (fr) Pompe à cylindrée variable et à pistons et barillet.
BE342240A (fr)
FR2594492A1 (fr) Pompe d'injection et de repartition du carburant pour moteurs a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970929

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19980902

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980902

REF Corresponds to:

Ref document number: 69504531

Country of ref document: DE

Date of ref document: 19981008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981203

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19980902

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed