EP0780656B1 - Wärmetauscher - Google Patents

Wärmetauscher Download PDF

Info

Publication number
EP0780656B1
EP0780656B1 EP96119514A EP96119514A EP0780656B1 EP 0780656 B1 EP0780656 B1 EP 0780656B1 EP 96119514 A EP96119514 A EP 96119514A EP 96119514 A EP96119514 A EP 96119514A EP 0780656 B1 EP0780656 B1 EP 0780656B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
tube
tubes
protective
tube plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96119514A
Other languages
English (en)
French (fr)
Other versions
EP0780656A3 (de
EP0780656A2 (de
Inventor
Miroslan Dr.-Ing. Podhorsky
Wilhelm Dipl.-Ing. Bruckmann (Fh)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balcke Duerr GmbH
Original Assignee
Balcke Duerr GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7781383&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0780656(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Balcke Duerr GmbH filed Critical Balcke Duerr GmbH
Publication of EP0780656A2 publication Critical patent/EP0780656A2/de
Publication of EP0780656A3 publication Critical patent/EP0780656A3/de
Application granted granted Critical
Publication of EP0780656B1 publication Critical patent/EP0780656B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/002Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using inserts or attachments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0229Double end plates; Single end plates with hollow spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/185Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding with additional preformed parts

Definitions

  • the invention relates in particular to the use of waste heat in the chemical industry Industry-specific heat exchangers with at least their ends in holes a tube plate pressure-tightly attached heat exchanger tubes made of ferritic Material in a heat exchanger housing through which a cooling medium flows are arranged, the at least in the high temperature range Heat exchanger tubes each have a protective tube made of insensitive to embrittlement Material, for example chrome nickel steel is arranged.
  • EP 0 042 028 shows a heat exchanger in which the heat exchanger tubes are welded on one side to a tube sheet, the tube opening with a aligned bore in the tube sheet.
  • the heat exchanger tubes are included made of a ferritic steel.
  • each tube sheet hole is coated made of nitride-resistant material.
  • nitride-resistant material According to one embodiment can be made of a nitride-resistant material Protective sleeve through the hole in the tube sheet through to the heat exchanger tube be introduced. Between the pipe bore and the wall of the The protective sleeve is left in a cavity filled with a heat insulating material.
  • DE 1 958 566 describes a heat exchanger for use in chemical processes is known in which the heat exchanger tubes in holes in a base plate are set. To avoid thermal stress is in the area the bottom plate inserted into each heat exchanger tube, wherein between the wall of the inner tube and the wall of the heat exchanger tube in the area of the tube sheet, a space filled with a thermal insulation material is left.
  • US 4,368,571 shows a method for repairing a damaged pipe in a steam generator of a nuclear power plant, being in the area of the damaged area introduced a repair sleeve and countered by hydraulic expansion the inner wall of the heat exchanger tube is pressed leak-tight.
  • the invention has for its object to protect the heat exchanger tubes made of ferritic material of such heat exchangers from embrittlement and the tube plate from thermal shock loads.
  • each protective tube is fastened by hydraulic expansion in the area of the tube plate in the heat exchanger tube and that in the inlet area of the protective tubes there is in each case an additional insert tube, provided on the outside with insulation, made of material which is insensitive to embrittlement, for example chromium-nickel steel is arranged, which is fixed outside of the tube plate by hydraulic expansion on the protective tube.
  • protective tubes made of brittle-insensitive material, For example, chrome nickel steel will diffuse the gas molecules heat-emitting medium in the ferritic material of the heat exchanger tubes prevented so that they are effectively protected against embrittlement.
  • By hydraulic expansion of the protective tubes in the area of the tube plate this in a particularly simple but effective manner in the respective heat exchanger tube attached.
  • To the tube plate of the heat exchanger during the on and Shutdown processes of the heat exchanger before thermal shock-like loads Protection is an additional one in the entrance area of the protective tubes, on his Insulated insert tube made of insensitive to embrittlement on the outside Material, such as chrome nickel steel, arranged outside the tube plate is fixed by hydraulic expansion on the protective tube.
  • the heat exchanger tubes can also be hydraulic in a manner known per se Widening can be fixed in the tube plate. This ensures reliable Attachment of the heat exchanger tubes in the tube plate without one According to a further feature of the invention, the front ends of the heat exchanger tubes with the pipe plate sealing weld seam with axial Pipe forces is loaded.
  • the protective tubes in the Hydraulic expansion area of the heat exchanger tubes expanded hydraulically, this expansion process of the heat exchanger tubes on the one hand and the Protection tubes, on the other hand, either simultaneously or in succession can be done.
  • the insulation of the insert tubes preferably has at least the thickness of the Pipe plate corresponding axial extension.
  • the protective tubes and the insert tubes protrude on the inflow side out of the tube plate and the heat exchanger tubes and are attached at their ends to an intermediate floor of an entry collector, preferably by welding. In this way, an additional backup can be made achieve the tube plate against an excessive temperature load.
  • the tube plate can be clad on the inflow side made of material that is insensitive to embrittlement, e.g. chrome nickel steel in order to apply hot gas directly to the tube plate Avoid embrittlement of the tube plate.
  • material that is insensitive to embrittlement e.g. chrome nickel steel
  • the heat exchanger shown only schematically in FIG. 1, for example used for waste heat in the chemical industry, comprises a gas line 1 from which the nitrogen-containing gas G h, for example 480 ° C., is fed to an inlet collector 2. From this inlet header 2, the hot gas G h enters heat exchanger tubes 3, which are U-shaped in the exemplary embodiment and are pressure-tightly fastened in a tube plate 4 with both ends.
  • the heat exchanger tubes 3 are surrounded by a housing 5 which is provided with connections (not shown in the drawing) for the supply and discharge of a medium which absorbs heat from the hot gas G h .
  • the upstream ends 3a of the heat exchanger tubes 3 protrude from the tube plate 4. They are fastened in a pressure-tight manner in a wall of the inlet header 2 to be regarded as an intermediate floor 2a to the tube plate 4, so that the hot gas G h enters the ends 3a of the heat exchanger tubes 3 from the inlet header 2.
  • the hot gas G h flows through the heat exchanger tubes 3 arranged in the housing 5, heat is extracted from the gas, so that in the selected exemplary embodiment it leaves the heat exchanger tubes 3 ending on the underside of the tube plate 4, for example at a temperature of 330 ° C.
  • This cooled gas G k is symbolized by an arrow in FIG. 1.
  • embrittlement favored by the high temperatures to prevent the heat exchanger tubes 3 made of ferritic material is, as can be seen from FIGS. 2 and 3, in the high temperature range of the heat exchanger tubes 3 a protective tube 6 is arranged in each heat exchanger tube 3, that is made of a material that is insensitive to embrittlement, for example chrome nickel steel consists.
  • This protective tube 6 is in the area of the tube plate 4 by hydraulic Widening in the respective heat exchanger tube 3 attached.
  • the heat exchanger tubes 3 by hydraulic Widening into corresponding annular recesses in the holes the tube plate 4 attached to this.
  • the resulting annular Recesses inside the heat exchanger tubes 3 were made for the hydraulic Widening the protective tubes 6 used.
  • the hydraulic expansion of the one hand Heat exchanger tubes 3 and on the other hand, the protective tubes 6 can be consecutive in time or take place simultaneously.
  • Protective tubes 6 made of material that is insensitive to embrittlement will Diffusion of gas molecules of the heat-emitting medium, in particular one nitrogenous gas in the ferritic material of the heat exchanger tubes 3 prevented, so that they are effectively protected against embrittlement.
  • the axial The length of the protective tubes 6 essentially depends on the temperature profile in axial direction of the heat exchanger tubes 3 and thus the intensity of the cooling the heat exchanger tubes 3. In the illustrated embodiment, the Cooling so intense that the protective tubes 6 with only a slight axial Extend beyond the tube plate 4 on the downstream side.
  • an additional, Insert tube 10 provided on its outside with insulation 9 arranged, which also consists of an embrittlement-insensitive material.
  • insulation 9 preferably extends at least over an axial length corresponding to the thickness of the tube plate 4.
  • the tube plate 4 is, as can be seen in FIGS. 2 and 3, a cladding on the inflow side 4a provided.
  • this is a with ferritic material weldable material, so that between plating 4a and the end face of each heat exchanger tube 3 a sealing weld 8 placed can be. Due to the definition of the heat exchanger tube 3 on the tube plate 4 by hydraulic expansion, this is particularly the better seal Serving sealing weld 8 relieved of axial pipe forces.
  • the protective tubes 6 protrude on the inflow side out of the tube plate 4.
  • This upstream ends 6a of the Protective tubes 6 are attached to an intermediate floor 2a, which is part according to FIG. 1 an entry collector 2 can be.
  • the attachment of the protective tube 6 to the intermediate floor 2a is pressure-tight in the embodiment according to FIG. 2 a weld seam 7.
  • Figure 2 shows a manufacturing stage before insertion of the additional tube 10 provided with the insulation 9 into the protective tube 6.
  • the tube plate 4 is on the inflow side provided with a cladding 4a between and the heat exchanger tube 3 a sealing weld 8 is placed in each case.
  • a sealing weld 8 is placed in each case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die Erfindung betrifft einen insbesondere zur Abwärmenutzung in der chemischen Industrie bestimmten Wärmetauscher mit an ihren Enden in Bohrungen mindestens einer Rohrplatte druckdicht befestigten Wärmetauscherrohren aus ferritischem Werkstoff, die in einem von einem Kühlmedium durchflossenen Wärmetauschergehäuse angeordnet sind, wobei zumindest im hohen Temperaturbereich der Wärmetauscherrohre jeweils ein Schutzrohr aus versprödungsunempfindlichem Material, beispielsweise Chromnickelstahl angeordnet ist.
Bei derartigen Wärmetauschern besteht die Gefahr der Versprödung des ferritischen Rohrwerkstoffes, wenn das in den Rohren strömende gasförmige Medium, beispielsweise stickstoffhaltige Gase, Temperaturen oberhalb 350°C aufweist. Aus diesem Grund sind aus der Praxis verschiedene Maßnahmen bekannt, um diese Versprödung zu vermeiden.
Die EP 0 042 028 zeigt einen Wärmetauscher, bei dem die Wärmetauscherrohre einseitig an einem Rohrboden angeschweißt sind, wobei die Rohröffnung mit einer in dem Rohrboden geführten Bohrung fluchten. Die Wärmetauscherrohre sind dabei aus einem ferritischen Stahl gefertigt. Zur Vermeidung von Schäden durch Nitrierung der mit dem zu kühlenden Medium im Bereich hoher Temperatur in Kontakt kommenden Vorrichtungsteile ist jede Rohrbodenbohrung mit einer Beschichtung aus nitrierbeständigem Werkstoff versehen. Gemäß einem Ausführungsbeispiel kann hierzu eine aus einem nitrierbeständigem Werkstoff gefertigte Schutzhülse durch die Bohrung in dem Rohrboden hindurch bis in das Wärmetauscherrohr hineingeführt sein. Zwischen der Rohrbohrung und der Wandung der Schutzhülse ist dabei ein mit einem Wärmeisoliermaterial gefüllter Hohlraum belassen.
Aus der DE 1 958 566 ist ein Wärmetauscher zum Einsatz in chemischen Verfahren bekannt, bei welchem die Wärmetauscherrohre in Bohrungen einer Bodenplatte festgelegt sind. Zur Vermeidung von thermischen Spannungen ist im Bereich der Bodenplatte in jedes Wärmetauscherrohr ein Innenrohr eingesetzt, wobei zwischen der Wandung des Innenrohres und der Wand des Wärmetauscherrohrs im Bereich des Rohrbodens ein mit einem Wärmeisoliermaterial gefüllter Zwischenraum belassen ist.
Die US 4,368,571 zeigt ein Verfahren zum Reparieren eines schadhaften Rohrs in einem Dampfgenerator eines Kernkraftwerkes, wobei in den Bereich der Schadstelle eine Reparaturhülse eingebracht und durch hydraulisches Aufweiten gegen die Innenwandung des Wärmetauscherrohrs leckdicht verpreßt wird.
Der Erfindung liegt die Aufgabe zugrunde, die aus ferritischem Werkstoff bestehenden Wärmetauscherrohre derartiger Wärmetauscher vor Versprödung und die Rohrplatte vor thermoschockartigen Belastungen zu schützen.
Die Lösung dieser Aufgabenstellung durch die Erfindung ist dadurch gekennzeichnet, daß jedes Schutzrohr durch hydraulisches Aufweiten im Bereich der Rohrplatte im Wärmetauscherrohr befestigt ist und, daß im Eintrittsbereich der Schutzrohre jeweils ein zusätzliches, auf seiner Außenseite mit einer Isolierung versehenes Einsatzrohr aus versprödungsunempfindlichem Material, beispielsweise Chromnickelstahl angeordnet ist, das außerhalb der Rohrplatte durch hydraulisches Aufweiten am Schutzrohr festgelegt ist.
Durch die zumindest im hohen Temperaturbereich innerhalb der Wärmetauscherrohre angeordneten Schutzrohre aus versprödungsunempfindlichem Material, beispielsweise Chromnickelstahl wird die Diffusion von Gasmolekülen des wärmeabgebenden Mediums in den ferritischen Werkstoff der Wärmetauscherrohre verhindert, so daß diese wirksam vor Versprödung geschützt sind. Durch hydraulisches Aufweiten der Schutzrohre im Bereich der Rohrplatte werden diese auf besonders einfache, aber wirksame Weise im jeweiligen Wärmetauscherrohr befestigt. Um die Rohrplatte des Wärmetauschers während der An- und Abfahrvorgänge des Wärmetauschers vor thermoschockartigen Belastungen zu schützen ist im Eintrittsbereich der Schutzrohre jeweils ein zusätzliches, auf seiner Außenseite mit einer Isolierung versehenes Einsatzrohr aus versprödungsunempfindlichem Material, beispielsweise Chromnickelstahl angeordnet, das außerhalb der Rohrplatte durch hydraulisches Aufweiten am Schutzrohr festgelegt ist. Mit diesem Vorschlag ergibt sich zusätzlich zum Schutz der Wärmetauscherrohre gegen Versprödung ein Schutz der Rohrplatte gegen thermoschockartige Belastungen, wobei die Festlegung der Einsatzrohre am Schutzrohr durch außerhalb der Rohrplatte erfolgendes hydraulisches Aufweiten sicherstellt, daß die gegen Belastungen empfindliche Isolierung zwischen Schutzrohr und Einsatzrohr nicht überbelastet wird.
Auch die Wärmetauscherrohre können in an sich bekannter Weise durch hydraulisches Aufweiten in der Rohrplatte befestigt werden. Hierdurch erfolgt eine zuverlässige Befestigung der Wärmetauscherrohre in der Rohrplatte, ohne daß eine gemäß einem weiteren Merkmal der Erfindung die stirnseitigen Enden der Wärmetauscherrohre mit der Rohrplatte verbindende Dichtschweißnaht mit axialen Rohrkräften belastet wird.
Bei einer bevorzugten Ausführungsform der Erfindung werden die Schutzrohre im Bereich der hydraulischen Aufweitung der Wärmetauscherrohre hydraulisch aufgeweitet, wobei dieser Aufweitvorgang der Wärmetauscherrohre einerseits und der Schutzrohre andererseits entweder gleichzeitig oder zeitlich aufeinanderfolgend erfolgen kann.
Die Isolierung der Einsatzrohre weist vorzugsweise eine mindestens der Dicke der Rohrplatte entsprechende axiale Erstreckung auf.
Bei einer bevorzugten Ausführungsform ragen die Schutzrohre und die Einsatzrohre einströmseitig aus der Rohrplatte und den Wärmetauscherrohren heraus und sind mit ihrem Ende an einem Zwischenboden eines Eintrittsammlers befestigt, vorzugsweise durch Schweißen. Auf diese Weise läßt sich eine zusätzliche Sicherung der Rohrplatte gegen eine zu hohe Temperaturbelastung erzielen.
In an sich bekannter Weise kann die Rohrplatte einströmseitig mit einer Plattierung aus versprödungsunempfindlichem Material, beispielsweise Chromnickelstahl versehen sein, um bei einer direkten Beaufschlagung der Rohrplatte mit heißem Gas Versprödungen der Rohrplatte zu vermeiden.
Auf der Zeichnung sind zwei Ausführungsbeispiele des erfindungsgemäßen Wärmetauschers dargestellt, und zwar zeigen:
Fig. 1
eine schematische Darstellung eines kompletten Wärmetauschers,
Fig. 2
Ausführungsbeispiel anhand eines Schnittes durch ein in der Rohrplatte druckdicht befestigtes Wärmetauscherrohr mit Schutzrohr, vor dem Einsetzen eines Einsatzrohres und
Fig. 3
eine der Fig. 2 entsprechende Schnittdarstellung des Ausführungsbeispiels mit in das Schutzrohr eingefügtem Einsatzrohr.
Der in Fig. 1 nur schematisch dargestellte, beispielsweise zur Abwärmenutzung in der chemischen Industrie eingesetzte Wärmetauscher umfaßt eine Gasleitung 1, aus der das beispielsweise 480° C heiße, stickstoffhaltige Gas Gh einem Eintrittsammler 2 zugeführt wird. Aus diesem Eintrittsammler 2 gelangt das heiße Gas Gh in Wärmetauscherrohre 3, die beim Ausführungsbeispiel U-förmig ausgeführt und mit beiden Enden in einer Rohrplatte 4 druckdicht befestigt sind. Die Wärmetauscherrohre 3 sind hierbei von einem Gehäuse 5 umgeben, das mit auf der Zeichnung nicht dargestellten Anschlüssen für die Zufuhr und Abfuhr eines aus dem heißen Gas Gh Wärme aufnehmenden Mediums versehen ist.
Beim Ausführungsbeispiel (siehe Fig. 1) ragen die zuströmseitigen Enden 3a der Wärmetauscherrohre 3 aus der Rohrplatte 4 heraus. Sie sind in einer als Zwischenboden 2a zur Rohrplatte 4 anzusehenden Wand des Eintrittsammlers 2 druckdicht befestigt, so daß das heiße Gas Gh aus dem Eintrittsammler 2 in die Enden 3a der Wärmetauscherrohre 3 eintritt. Bei der Durchströmung des heißen Gases Gh durch die im Gehäuse 5 angeordneten Wärmetauscherrohre 3 wird dem Gas Wärme entzogen, so daß es beim gewählten Ausführungsbeispiel die auf der Unterseite der Rohrplatte 4 endenden Wärmetauscherrohre 3 beispielsweise mit einer Temperatur von 330° C verläßt. Dieses abgekühlte Gas Gk ist durch einen Pfeil in Fig. 1 symbolisiert.
Um eine insbesondere durch die hohen Temperaturen begünstigte Versprödung der aus ferritischem Werkstoff bestehenden Wärmetauscherrohre 3 zu verhindern, ist, wie aus Fig. 2 und 3 ersichtlich, im hohen Temperaturbereich der Wärmetauscherrohre 3 in jedem Wärmetauscherrohr 3 jeweils ein Schutzrohr 6 angeordnet, das aus einem versprödungsunempfindlichen Material, beispielsweise Chromnikkelstahl besteht. Dieses Schutzrohr 6 ist im Bereich der Rohrplatte 4 durch hydraulisches Aufweiten im jeweiligen Wärmetauscherrohr 3 befestigt. beim Ausführungsbeispiel sind auch die Wärmetauscherrohre 3 durch hydraulisches Aufweiten in entsprechende ringförmige Ausnehmungen in den Bohrungen der Rohrplatte 4 an dieser befestigt. Die sich hierbei ergebenden ringförmigen Vertiefungen im Inneren der Wärmetauscherrohre 3 wurden für das hydraulische Aufweiten der Schutzrohre 6 benutzt. Das hydraulische Aufweiten einerseits der Wärmetauscherrohre 3 und andererseits der Schutzrohre 6 kann zeitlich aufeinanderfolgend oder gleichzeitig erfolgen.
Durch die im hohen Temperaturbereich innerhalb der Wärmetauscherrohre 3 angeordneten Schutzrohre 6 aus versprödungsunempfindlichem Material wird die Diffusion von Gasmolekülen des wärmeabgebenden Mediums, insbesondere eines stickstoffhaltigen Gases in den ferritischen Werkstoff der Wärmetauscherrohre 3 verhindert, so daß diese wirksam vor Versprödung geschützt sind. Die axiale Länge der Schutzrohre 6 hängt hierbei im wesentlichen vom Temperaturverlauf in axialer Richtung der Wärmetauscherrohre 3 und damit von der Intensität der Kühlung der Wärmetauscherrohre 3 ab. Beim dargestellten Ausführungsbeispiel ist die Kühlung derart intensiv, daß die Schutzrohre 6 mit einer nur geringfügigen axialen Erstreckung abströmseitig die Rohrplatte 4 überragen.
Um die Rohrplatte 4 bei Anfahr- und Abfahrvorgängen gegen thermoschockartige Belastungen zu schützen, ist wie in Fig. 3 ersichtlich im Eintrittsbereich der Schutzrohre 6 jeweils ein zusätzliches, auf seiner Außenseite mit einer Isolierung 9 versehenes Einsatzrohr 10 angeordnet, das ebenfalls aus einem versprödungsunempfindlichen Material besteht. Die zwischen dem innenliegenden Einsatzrohr 10 und dem außenliegenden Schutzrohr 6 angeordnete Isolierung 9 erstreckt sich vorzugsweise mindestens über eine der Dicke der Rohrplatte 4 entsprechende axiale Länge. Um die empfindliche Isolierung 9 vor Beschädigungen oder Zerstörungen zu schützen, erfolgt die Festlegung jedes Einsatzrohres 10 am Schutzrohr 6 durch außerhalb der Rohrplatte 4 erfolgendes hydraulisches Aufweiten, d.h. durch ein Aufweiten in einem Bereich, in dem die Einsatzrohre 10 und Schutzrohre 6 unmittelbar, d.h. ohne zwischenliegende Isolierung 9 aneinanderliegen.
Damit auch die ungekühlte Oberfläche der Rohrplatte 4 vor einer unerwünschten Versprödung geschützt wird, ist die Rohrplatte 4 wie in den Fig. 2+3 ersichtlich einströmseitig mit einer Plattierung 4a versehen. Beim Ausführungsbeispiel handelt es sich hierbei um ein mit ferritischem Material verschweißbares Material, so daß zwischen Plattierung 4a und der Stirnseite jedes Wärmetauscherrohres 3 eine Dichtschweißnaht 8 gelegt werden kann. Aufgrund der Festlegung des Wärmetauscherrohres 3 an der Rohrplatte 4 durch hydraulisches Aufweiten ist diese insbesondere der besseren Abdichtung dienende Dichtschweißnaht 8 von axialen Rohrkräften entlastet.
Beim Ausführungsbeispiel nach Fig. 2 und 3 ragen die Schutzrohre 6 einströmseitig aus der Rohrplatte 4 heraus. Diese zuströmseitigen Enden 6a der Schutzrohre 6 sind an einem Zwischenboden 2a befestigt, der gemäß Fig. 1 Teil eines Eintrittsammlers 2 sein kann. Die Befestigung des Schutzrohres 6 am Zwischenboden 2a erfolgt beim Ausführungsbeispiel gemäß Fig. 2 druckdicht durch eine Schweißnaht 7. Die Abbildung Fig. 2 zeigt eine Fertigungsstufe vor dem Einsetzen des mit der Isolierung 9 versehenen Zusatzrohres 10 in das Schutzrohr 6.
In Fig. 3 ist die Rohrplatte 4 einströmseitig mit einer Plattierung 4a versehen, zwischen der und dem Wärmetauscherrohr 3 jeweils eine Dichtschweißnaht 8 gelegt ist. Wie dieser Darstellung des fertigen Wärmetauscherrohres 3 zeigt, ragt außer dem Schutzrohr 6 auch das Einsatzrohr 10 aus der Rohrplatte 4 heraus, wobei bei dieser Ausführungsform das konisch aufgeweitete Einsatzrohr 10 mittels einer Schweißnaht 7 am Zwischenboden 2a des Eintrittsammlers 2 befestigt ist.
Bezugszeichenliste:
1
Gasleitung
2
Eintrittsammler
2a
Zwischenboden
3
Wärmetauscherrohr
3a
zustömseitiges Ende
4
Rohrplatte
4a
Plattierung
5
Gehäuse
6
Schutzrohr
6a
zuströmseitiges Ende
7
Schweißnaht
8
Dichtschweißnaht
9
Isolierung
10
Einsatzrohr
Ga
heißes Gas
Gk
abgekühltes Gas

Claims (7)

  1. Wärmetauscher, insbesondere zur Abwärmenutzung in der chemischen Industrie, mit an ihren Enden in Bohrungen mindestens einer Rohrplatte druckdicht befestigten Wärmetauscherrohren (3) aus ferritischem Werkstoff, die in einem von einem Kühlmedium durchflossenen Wärmetauschergehäuse (5) angeordnet sind, wobei zumindest im hohen Temperaturbereich der Wärmetauscherrohre (3) jeweils ein Schutzrohr (6) aus versprödungsunempfindlichem Material, beispielsweise Chromnickelstahl angeordnet ist,
    dadurch gekennzeichnet, daß jedes Schutzrohr (6) durch hydraulisches Aufweiten im Bereich der Rohrplatte (4) im Wärmetauscherrohr (3) befestigt ist und, daß im Eintrittsbereich der Schutzrohre (6) jeweils ein zusätzliches, auf seiner Außenseite mit einer Isolierung (9) versehenes Einsatzrohr (10) aus versprödungsunempfindlichem Material, beispielsweise Chromnickelstahl angeordnet ist, das außerhalb der Rohrplatte (4) durch hydraulisches Aufweiten am Schutzrohr (6) festgelegt ist.
  2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß die Isolierung (9) eine mindestens der Dicke der Rohrplatte (4) entsprechende axiale Erstreckung hat.
  3. Wärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die stirnseitigen Enden der Wärmetauscherrohre (3) mit der Rohrplatte (4) durch eine Dichtschweißnaht (8) verbunden sind.
  4. Wärmetauscher nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Wärmetauscherrohre (3) durch hydraulisches Aufweiten in der Rohrplatte (4) befestigt sind.
  5. Wärmetauscher nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Schutzrohre (6) im Bereich der hydraulischen Aufweitung der Wärmetauscherrohre (3) hydraulisch aufgeweitet sind.
  6. Wärmetauscher nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Schutzrohre (6) und die Einsatzrohre (10) einströmseitig aus der Rohrplatte (4) und den Wärmetauscherrohren (3) herausragen und mit diesem Ende an einem Zwischenboden (2a) eines Eintrittsammlers (2) befestigt sind.
  7. Wärmetauscher nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Rohrplatte (4) einströmseitig mit einer Plattierung (4a) versehen ist.
EP96119514A 1995-12-23 1996-12-05 Wärmetauscher Expired - Lifetime EP0780656B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19548688 1995-12-23
DE19548688A DE19548688C2 (de) 1995-12-23 1995-12-23 Wärmetauscher zum Kühlen von stickstoffhaltigem Gas hoher Temperatur

Publications (3)

Publication Number Publication Date
EP0780656A2 EP0780656A2 (de) 1997-06-25
EP0780656A3 EP0780656A3 (de) 1998-11-18
EP0780656B1 true EP0780656B1 (de) 2002-05-29

Family

ID=7781383

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96119514A Expired - Lifetime EP0780656B1 (de) 1995-12-23 1996-12-05 Wärmetauscher

Country Status (3)

Country Link
EP (1) EP0780656B1 (de)
JP (1) JPH09178393A (de)
DE (2) DE19548688C2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4600041B2 (ja) * 2004-12-29 2010-12-15 洋一 広瀬 冷却装置及びストリップキャスティング装置並びにネオジウム系焼結磁石用合金鋳造薄片の冷却方法
CA2634252A1 (en) 2005-12-21 2007-07-05 Exxonmobil Research And Engineering Company Corrosion resistant material for reduced fouling, heat transfer component with improved corrosion and fouling resistance, and method for reducing fouling
US8201619B2 (en) 2005-12-21 2012-06-19 Exxonmobil Research & Engineering Company Corrosion resistant material for reduced fouling, a heat transfer component having reduced fouling and a method for reducing fouling in a refinery
US8349267B2 (en) 2007-10-05 2013-01-08 Exxonmobil Research And Engineering Company Crude oil pre-heat train with improved heat transfer
JP5868761B2 (ja) * 2012-03-29 2016-02-24 三菱重工業株式会社 拡管方法
EP2881691A1 (de) 2013-12-09 2015-06-10 Balcke-Dürr GmbH Wärmeüberträger mit Rohrscheibe und eingeschobener Hülse
CN105634836B (zh) 2014-10-27 2020-03-17 香港理工大学 信息处理方法及装置
DK3355022T3 (da) * 2017-01-31 2020-02-10 Alfa Laval Corp Ab Anordning og fremgangsmåde til beskyttelse af en syngas- kredsløbskedels rørplade
JP7319139B2 (ja) * 2019-08-26 2023-08-01 株式会社アルバック 配管構造体及び熱交換器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1141239A (en) * 1967-03-16 1969-01-29 Charles B Maretzo Insert constructions for tubes of heat exchangers and condensers
US3592261A (en) * 1968-11-25 1971-07-13 Lummus Co Heat exchanger
GB1323885A (en) * 1970-01-21 1973-07-18 Clonsast Ltd Methods of making heat exchangers
DE3022480A1 (de) * 1980-06-14 1982-01-07 Uhde Gmbh, 4600 Dortmund Vorrichtung zum waermetausch zwischen einen nh (pfeil abwaerts)3(pfeil abwaerts) -konverter verlassendem kreislaufgas und wasser
US4368571A (en) * 1980-09-09 1983-01-18 Westinghouse Electric Corp. Sleeving method
US4505017A (en) * 1982-12-15 1985-03-19 Combustion Engineering, Inc. Method of installing a tube sleeve
DE3822808C2 (de) * 1988-07-06 1993-12-23 Balcke Duerr Ag Wärmetauscher mit zwischen zwei Rohrplatten angeordneten Wärmetauscherrohren

Also Published As

Publication number Publication date
DE19548688A1 (de) 1997-06-26
JPH09178393A (ja) 1997-07-11
DE19548688C2 (de) 1999-04-08
EP0780656A3 (de) 1998-11-18
EP0780656A2 (de) 1997-06-25
DE59609262D1 (de) 2002-07-04

Similar Documents

Publication Publication Date Title
EP0235277B1 (de) Vorrichtung zum verbrennen oxidierbarer bestandteile in einem zu reinigenden trägergas
EP1979699B1 (de) Rohrbündel-wärmetauscher
EP2881692B1 (de) Gasturbinenkühlluftkühler, Gasturbinen- oder Gas- und Dampfturbinen- Kraftwerk sowie Verfahren zum Kühlen von Kühlluft
DE3022480C2 (de)
DE2733611C2 (de) Transportleitung mit keramischer Innenisolierung zur Führung heißer Fluide
WO2003036214A1 (de) Wärmeübertrager
DE3343652A1 (de) Brennerflammrohr und verfahren zur herstellung desselben
EP0780656B1 (de) Wärmetauscher
EP0171583B1 (de) Reaktionsrohrsystem eines Röhrenspaltofens
DE1601571A1 (de) Gekuehlte Trennfuge fuer das Flammrohr einer Gasturbinenbrennkammer
DE2044207A1 (de) 'Wärmeaustauscher
EP0328043B1 (de) Wärmetauscher
DE3701614C2 (de) Rohrwärmetauscher
DE3714671C2 (de)
EP0994322B1 (de) Wärmetauscher mit einem Verbindungsstück
CH662634A5 (de) Mediumfuehrende leitung mit mindestens einer drosselvorrichtung.
DE10248312A1 (de) Wärmeflussmesseinrichtung für Druckrohr sowie Verfahren zum Messen eines Wärmeflusses durch Druckrohre
DE3822808C2 (de) Wärmetauscher mit zwischen zwei Rohrplatten angeordneten Wärmetauscherrohren
DE19959467B4 (de) Doppelrohrsicherheitswärmeübertrager
CH671619A5 (de)
DE3820494C2 (de) Wärmetauscher
DE102019120096A1 (de) Rohrbündelwärmetauscher
DE4119178C1 (de)
EP0070371A1 (de) Wärmeaustauscher
DE3147512A1 (de) Waermetauscher mit u-rohren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19990410

17Q First examination report despatched

Effective date: 20000222

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59609262

Country of ref document: DE

Date of ref document: 20020704

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020720

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: ALSTOM POWER ENERGY RECOVERY GMBH

Effective date: 20030227

BERE Be: lapsed

Owner name: *BALCKE-DURR G.M.B.H.

Effective date: 20021231

NLR1 Nl: opposition has been filed with the epo

Opponent name: ALSTOM POWER ENERGY RECOVERY GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

GBPC Gb: european patent ceased through non-payment of renewal fee
PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20040617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141230

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59609262

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160701