EP0776451A1 - Verfahren zur einstellung der statischen überhitzung an expansionsventilen fur kältemittelkreisläufe - Google Patents

Verfahren zur einstellung der statischen überhitzung an expansionsventilen fur kältemittelkreisläufe

Info

Publication number
EP0776451A1
EP0776451A1 EP95944011A EP95944011A EP0776451A1 EP 0776451 A1 EP0776451 A1 EP 0776451A1 EP 95944011 A EP95944011 A EP 95944011A EP 95944011 A EP95944011 A EP 95944011A EP 0776451 A1 EP0776451 A1 EP 0776451A1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
evaporator
adjusted
expansion valve
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95944011A
Other languages
English (en)
French (fr)
Other versions
EP0776451B1 (de
Inventor
Josef Osthues
Michael Kress
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell GmbH
Original Assignee
Ernst Flitsch GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6526743&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0776451(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ernst Flitsch GmbH and Co filed Critical Ernst Flitsch GmbH and Co
Publication of EP0776451A1 publication Critical patent/EP0776451A1/de
Application granted granted Critical
Publication of EP0776451B1 publication Critical patent/EP0776451B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/18Refrigerant conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Definitions

  • the invention relates to a method for setting the static superheat on a thermostatic expansion valve which has a condensate inlet, a valve seat connected to the condensate inlet via a valve body which is actuated by means of a control membrane and in the closed position acted upon by a prestressed actuating spring, the valve outlet connected to the condensate inlet.
  • control chamber which acts on the control diaphragms in the closed position with evaporator-side refrigerant pressure and a control chamber which is arranged on the opposite side of the control membrane and communicates with a gas space of a gaseous adsorptive and a solid adsorbent containing a gaseous adsorptive and a solid adsorbent.
  • the expansion valve throttles the refrigerant pressure in the refrigerant circuit and has the task of regulating the overheating of the refrigerant at the evaporator outlet, with the aim of protecting the compressor downstream of the evaporator against impermissible liquid impacts and of making demands on the performance adapted to cause good filling level of the evaporator.
  • Overheating causes the evaporated refrigerant to heat above the evaporation temperature also understood, which can only take place after the refrigerant has completely evaporated within the evaporator. By controlling the overheating it is achieved that the evaporator is supplied with exactly the amount of liquid refrigerant that can evaporate completely there due to the heat supply.
  • the adsorption thermal sensor contains a suitable gas or gas mixture as the adsorptive and an adsorbent consisting of a solid with a large surface area.
  • a suitable gas or gas mixture as the adsorptive
  • an adsorbent consisting of a solid with a large surface area.
  • activated carbon, silica gel or molecular sieves are suitable as adsorbents, while predominantly C0 2 and CH 4 are used as the adsorptive.
  • the adsorption of the adsorptive on the adsorbent is temperature-dependent with a largely linear pressure / temperature characteristic, which is particularly advantageous for overheating control with the aid of a thermostatic expansion valve.
  • the design of the expansion valve on the one hand and the adjustment of the adsorber charge on the other hand ensure that a largely constant static overheating of, for example, 3 occurs in a given working range of the evaporator temperature up to 6 K at the evaporator outlet.
  • the known thermostatic expansion valves are set in the factory for each refrigerant occurring in practice by selecting the parameters mentioned and, if necessary, in stock held up.
  • the refrigerants R12, R22 and R502 have been used primarily depending on the application spectrum. In the future, only R22 will be permitted from these refrigerants, and this too only as a temporary solution for a limited period of time. The main reason is the - if only slight - ozone depletion potential. In the refrigeration and air-conditioning industry, a large number of chlorine-free alternative refrigerants are therefore being investigated and tested in practice, which are intended to replace the standard refrigerants mentioned in the future. In addition to the ozone depletion potential and the direct greenhouse potential, the decisive selection criteria are also the energy requirement (indirect greenhouse effect).
  • the invention is based on the object of developing a method for adjusting the static superheating of an expansion valve which enables a switch to different replacement refrigerants with simple means.
  • the solution according to the invention makes use of the knowledge that the vapor pressure curves of different substitute refrigerants have a similar course which, by adapting a linear temperature / pressure curve of an adsorption thermal sensor to a different one in a wide range of operation, is however wide constant differential temperature profile can be implemented on the membrane of the expansion valve.
  • a linear temperature / pressure curve of an adsorption thermal sensor to a different one in a wide range of operation, is however wide constant differential temperature profile can be implemented on the membrane of the expansion valve.
  • only the pretensioning of the actuating spring needs to be adapted in a suitable manner to the vapor pressure curve of the respective replacement refrigerant.
  • the thermostatic expansion valve for a basic refrigerant by adapting the composition and filling quantity of the adsorptive and the adsorbent in the adsorber thermal sensor and the membrane dimensions to the vapor pressure curve of the Basic refrigerant and by adjusting a defined preload of the actuating spring in a predetermined working range of the evaporator temperature is adjusted to an essentially constant static superheat, and that the expansion adjustment thus adjusted valve when used in a refrigerant circuit filled with a replacement refrigerant different from the base refrigerant is adjusted with regard to the pretensioning of its actuating spring in accordance with an adjustment regulation adapted to the mutual deviation of the vapor pressure curves of the replacement refrigerant and the calibration refrigerant.
  • the pretensioning of the actuating spring is adjusted by rotating and counting a screw member acting against the actuating spring in accordance with the adjustment specification.
  • FIG. 1 shows a diagram of a refrigeration system with a thermostatic expansion valve
  • FIG. 2 shows a diagram of a thermostatic expansion valve with an adsorption thermal sensor
  • FIG. 5 shows a diagram for the adjustment instruction for the Fit of a pre-adjusted thermostatic expansion valve to different replacement refrigerants.
  • the refrigeration system shown schematically in FIG. 1 has a refrigerant circuit with an evaporator 10, a compressor 14 driven by a motor 12, a condenser 16 and a thermostatic expansion valve 18 arranged between condenser 16 and evaporator 10.
  • the gaseous refrigerant coming from the evaporator 10 is compressed in the compressor 14 and liquefied in the condenser 16 while releasing heat (arrows 17) and enters the condensate inlet 20 of the expansion valve 18 as condensate under the pressure p c .
  • the condensate is expanded in a throttle element consisting of a valve seat 22 and a valve body 24 in accordance with the temperature measured with the sensor 26 at the outlet 28 of the evaporator 10 and the pressure P 0 prevailing in the evaporator and via the evaporator-side valve outlet 30 fed to the evaporator 10 in the form of a two-phase, liquid / vapor mixture.
  • the liquid refrigerant is evaporated while absorbing heat (arrows 32), so that only gaseous and superheated refrigerant emerges at the evaporator outlet 28 and is fed to the compressor 14 via the suction line 34.
  • the task of the thermostatic expansion valve 18 is to supply the evaporator 10 with exactly the amount of liquid refrigerant that is there due to the heat supply 32 can evaporate. It regulates overheating of the suction gas at the evaporator outlet 28 and therefore forms an overheating regulator.
  • the thermostatic expansion valve 18 contains a control membrane 36, which is connected to the valve body 24 via a valve tappet 38, and on the valve side via a control chamber 40 with the evaporator-side pressure p 0 and on the opposite side
  • the sensor-side pressure p t can be applied via a control chamber 42 and a capillary line 44.
  • the valve body 24 can additionally be acted upon in the closing direction by the force of an adjusting spring 46, the pretension of which can be adjusted by means of a screw member 48.
  • the temperature sensor 26 which is designed as an adsorption thermal sensor, contains an adsorbent 50 consisting of a solid with a large surface area, and a gas filling as an adsorptive 52, which also compensates the gas space in the capillary line 44 and the control chamber 42, which pressure communicates with the sensor fills out.
  • the evaporation pressure p 0 of the refrigerant in the evaporator 10 and the spring pressure p f which the actuating spring 46 exerts on the valve body 24 thus act on the underside of the control membrane 36.
  • the gas pressure p t acts on the upper side in the thermal sensor 26, which is essentially proportional to the sensor temperature at the evaporator outlet 28 (cf. FIG. 4).
  • the expansion valve 18 is installed in a test bench which is subjected to a defined vapor pressure of the basic refrigerant R Q as a function of the evaporation temperature.
  • the adsorption thermocouple 26 is previously filled and sealed with the adsorptive in a suitable composition and filling quantity at a predetermined sensor temperature in adaptation to the membrane dimensions and to the vapor pressure curve of the basic refrigerant R g .
  • a pretension of the actuating spring By setting a defined pretension of the actuating spring, an essentially constant static superheat ⁇ t oh is adjusted in a predetermined working range of the evaporation temperature and the setting is appropriately marked on the adjusting screw 48.
  • the expansion valve adjusted in this way can be used in a refrigerant circuit which is filled with a replacement refrigerant R 2 , R 2 different from the base refrigerant R 0 , in accordance with a deviation from the vapor pressure curves of the relevant replacement refrigerant and the base refrigerant adjusted adjustment regulation without re-calibration.
  • the changeover is expediently carried out by turning the screw member 48 in a direction (+/-) and number of revolutions (U) specified by the adjustment instruction.
  • the vapor pressure curves of various refrigerants R Q , R and R 2 can be found in the diagram according to FIG.
  • the invention relates to a method for setting the static superheating on expansion valves for refrigerant circuits.
  • the setting is made by first adjusting the expansion valve for a basic refrigerant R 0 to a static superheating temperature ⁇ t oh which is essentially constant in a given working range of the evaporator temperature, and by using it with a replacement refrigerant R. g , R different from the basic refrigerant R g 2 filled refrigerant circuit is adjusted with regard to the pretensioning of its adjusting spring 46 in accordance with an adjustment regulation adapted to the deviation between the vapor pressure curves of the replacement refrigerant and the base refrigerant.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Prostheses (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Refuse Collection And Transfer (AREA)
  • Paper (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

Verfahren zur Einstellung der statischen Überhitzung an Expansionsventilen für Kältemittelkreisläufe
Beschreibung
Die Erfindung betrifft ein Verfahren zur Einstellung der statischen Überhitzung an einem thermostatischen Expansionsventil, das einen Kondensateinlaß, einen über einen mittels einer Steuermembran betätigten, in Schlie߬ stellung durch eine vorgespannte Stellfeder beaufschlag¬ ten Ventilkörper verschließbaren Ventilsitz mit dem Kondensateinlaß verbundenen verdampferseitigen Ventil¬ auslaß, einen die Steuermembarn in Schließstellung mit verdampferseitigem Kältemitteldruck beaufschlagenden Steuerraum und einen auf der gegenüberliegenden Seite der Steuermembran angeordneten, mit einem Gasraum eines an einem Verdampferausgang thermisch ankoppelbaren, ein gasförmiges Adsorptiv und ein festes Adsorbens enthal¬ tenden Adsorptions-Thermofühlers kommunizierenden Steu¬ erraum aufweist.
Das Expansionsventil bewirkt im Kältemittelkreislauf eine Drosselung des Kältemitteldrucks und hat die Auf¬ gabe, die Überhitzung des Kältemittels am Verdampfer¬ ausgang zu regeln, mit dem Ziel, den dem Verdampfer nachgeordneten Verdichter vor unzulässigen Flüssigkeits¬ schlägen zu schützen und einen an die Leistungsanforde¬ rung angepaßten guten Füllungsgrad des Verdampfers zu bewirken. Unter Überhitzung wird die Erwärmung des ver¬ dampften Kältemittels über die Verdampfungstemperatur hinaus verstanden, die erst nach vollständiger Verdamp¬ fung des Kältemittels innerhalb des Verdampfers erfol¬ gen kann. Durch die Regelung der Überhitzung wird also erreicht, daß dem Verdampfer genau die Menge flüssigen Kältemittels zugeführt wird, die dort aufgrund der Wär¬ mezufuhr vollständig verdampfen kann.
Der Adsorptions-Thermofühler enthält als Steuerfüllung ein geeignetes Gas oder Gasgemisch als Adsorptiv und ein aus einem Feststoff mit großer Oberfläche bestehen¬ des Adsorbens. Als Adsorbentien kommen beispielsweise Aktivkohle, Silikagel oder Molekularsiebe in Betracht, während als Adsorptiv überwiegend C02 und CH4 verwendet werden. Die Adsorption des Adsorptivs am Adsorbens ist temperaturabhängig mit in weitem Bereich nahezu linea¬ rer Druck-/Temperaturcharakteristik, die für die Über- hitzungsregelung mit Hilfe eines thermostatischen Ex¬ pansionsventils besonders vorteilhaft ist.
Für die optimale Regelung eines Kältemittelkreislaufs ist bei vorgegebenem Kältemittel durch konstruktive Auslegung des Expansionsventils einerseits und der Ab¬ stimmung der Adsorberfüllung andererseits dafür zu sor¬ gen, daß in einem vorgegebenen Arbeitsbereich der Ver¬ dampfertemperatur sich eine weitgehend konstante stati¬ sche Überhitzung von beispielsweise 3 bis 6 K am Ver¬ dampferausgang ergibt. Die bekannten thermostatischen Expansionsventile werden für jedes in der Praxis vor¬ kommende Kältemittel durch Wahl der genannten Parameter werksseitig eingestellt und gegebenenfalls am Lager vorgehalten.
In gewerblichen Kompressions-Kältemaschinen wurden bis¬ her vorrangig je nach Anwendungsspektrum die Kältemit¬ tel R12, R22 und R502 eingesetzt. Künftig wird von die¬ sen Kältemitteln nur noch R22 erlaubt sein, und auch dieses nur als Übergangslösung für einen begrenzten Zeitraum. Der wesentliche Grund ist das - wenn auch nur geringe - Ozonabbaupotential. In der Kälte- und Klima¬ branche werden daher eine Vielzahl chlorfreier Alterna¬ tivkältemittel untersucht und in der Praxis erprobt, die die genannten Standardkältemittel künftig ersetzen sollen. Maßgebliche Auswahlkriterien sind neben dem Ozonabbaupotential und dem direkten Treibhauspotential auch der Energiebedarf (indirekter Treibhauseffekt) .
Die Vielzahl der zur Verfügung stehenden Ersatzkälte¬ mittel zwingen bei ihrem Einsatz in Kälteanlagen zur Verwendung von entsprechend ausgelegten und einjustier¬ ten thermostatischen Expansionsventilen. Bisher wurden diese jeweils werksseitig an das individuelle Kältemit¬ tel angepaßt, auf Lager gelegt und bei Bedarf an den Kunden abgegeben. Mit zunehmender Anzahl an Ersatzkäl¬ temitteln, die zum Teil auch nur versuchsweise einge¬ setzt werden, führt dies jedoch bei der Lagerhaltung zu einer zunehmend unübersichtlichen Vielfalt.
Ausgehend hiervon liegt der Erfindung die Aufgabe zu¬ grunde, ein Verfahren zur Einstellung der statischen Überhitzung eines Expansionsventils zu entwickeln, das mit einfachen Mitteln eine Umstellung auf unterschied¬ liche Ersatzkältemittel ermöglicht.
Zur Lösung dieser Aufgabe wird die im Patentanspruch 1 angegebene Merkmalskombination vorgeschlagen. Eine vor¬ teilhafte Ausgestaltung des Erfindungsgedankens findet sich im Unteranspruch.
Die erfindungsgemäße Lösung macht sich die Erkenntnis zunutze, daß die Dampfdruckkurven verschiedener Ersatz¬ kältemittel einen ähnlichen Verlauf aufweisen, der durch Anpassung einer linearen Temperatur-/Druckkurve eines Adsorptions-Thermofühlers zu einem im Betrag zwar ver¬ schiedenen, in einem weiten Arbeitsbereich jedoch weit¬ gehend konstanten Differenztemperaturverlauf an der Membran des Expansionsventils umgesetzt werden kann. Um eine definierte statische Überhitzung einzustellen, braucht daher nur die Vorspannung der Stellfeder in ge¬ eigneter Weise an die Dampfdruckkurve des jeweiligen Ersatzkältemittels angepaßt zu werden. Um dies zu er¬ möglichen, wird gemäß der Erfindung vorgeschlagen, daß das thermostatische Expansionsventil für ein Basiskäl¬ temittel unter Anpassung der Zusammensetzung und Füll¬ menge des Adsorptivs und des Adsorbens im Adsorber-Ther- mofühler und der Membranabmessungen an die Dampfdruck¬ kurve des Basiskältemittels und durch Einstellung einer definierten Vorspannung der Stellfeder in einem vorge¬ gebenen Arbeitsbereich der Verdampfertemperatur auf ei¬ ne im wesentlichen konstante statische Überhitzung ein¬ justiert wird, und daß das so einjustierte Expansions- ventil bei Einsatz in einem mit einem vom Basiskälte¬ mittel verschiedenen Ersatzkältemittel gefüllten Käl¬ temittelkreislauf hinsichtlich der Vorspannung seiner Stellfeder nach Maßgabe einer an die gegenseitige Ab¬ weichung der Dampfdruckkurven des Ersatzkältemittels und des Eichkältemittels angepaßten Verstellvorschrift verstellt wird.
Gemäß einer vorteilhaften und praxisnahen Ausgestaltung der Erfindung wird die Vorspannung der Stellfeder durch nach Maßgabe der Verstellvorschrift gerichtetes und abgezähltes Verdrehen eines gegen die Stellfeder ein¬ wirkenden Schrauborgans verstellt.
Im folgenden wird die Erfindung anhand der Zeichnung näher erläutert. Es zeigen
Fig. 1 ein Schema einer Kälteanlage mit einem thermo¬ statischen Expansionsventil;
Fig. 2 ein Schema eines thermostatischen Expansions¬ ventils mit Adsorptions-Thermofühler;
Fig. 3 ein Diagramm für den Dampfdruckverlauf verschie¬ dener Ersatzkältemittel;
Fig. 4 ein Diagramm für den schematischen Druck-Tempe¬ raturverlauf des Adsorptions-Thermofühlers;
Fig. 5 ein Diagramm für die Verstellvorschrift zur An- passung eines vorjustierten thermostatischen Expansionsventils an unterschiedliche Ersatz¬ kältemittel.
Die in Fig. 1 schematisch dargestellte Kälteanlage weist einen Kältemittelkreislauf mit einem Verdampfer 10, einem mit einem Motor 12 angetriebenen Verdichter 14, einem Kondensator 16 und einem zwischen Kondensator 16 und Verdampfer 10 angeordneten thermostatischen Ex¬ pansionsventil 18 auf. Das vom Verdampfer 10 kommende gasförmige Kältemittel wird im Verdichter 14 kompri¬ miert und im Kondensator 16 unter Wärmeabgabe (Pfeile 17) verflüssigt und tritt als Kondensat unter dem Druck pc in den Kondensateinlaß 20 des Expansionsventils 18 ein. Dort wird das Kondensat in einem aus einem Ventil¬ sitz 22 und einem Ventilkörper 24 bestehenden Drossel¬ organ nach Maßgabe der mit dem Fühler 26 am Ausgang 28 des Verdampfers 10 gemessenen Temperatur und dem im Verdampfer herrschenden Druck P0 entspannt und über den verdampferseitigen Ventilaustritt 30 in Form eines zwei- phasigen, flüssig/dampfförmigen Gemischs dem Verdampfer 10 zugeführt. Im Verdampfer 10 wird das flüssige Kälte¬ mittel unter Wärmeaufnahme (Pfeile 32) verdampft, so daß am Verdampferausgang 28 nur noch gasförmiges und überhitztes Kältemittel austritt und über die Sauglei¬ tung 34 dem Verdichter 14 zugeführt wird.
Das thermostatische Expansionsventil 18 hat die Aufgabe dem Verdampfer 10 genau die Menge flüssigen Kältemit¬ tels zuzuführen, die dort aufgrund der Wärmezufuhr 32 verdampfen kann. Es regelt am Verdampferaustritt 28 ei¬ ne Überhitzung des Sauggases und bildet daher einen Überhitzungsregler.
Das thermostatische Expansionsventil 18 enthält zu die¬ sem Zweck eine Steuermembran 36, die über einen Ventil¬ stößel 38 mit dem Ventilkörper 24 verbunden ist, und die auf der Ventilseite über eine Steuerkammer 40 mit dem verdampferseitigen Druck p0 und auf der gegenüber¬ liegenden Seite über eine Steuerkammer 42 und eine Ka¬ pillarleitung 44 mit dem fühlerseitigen Druck pt beauf¬ schlagbar ist. Der Ventilkörper 24 ist zusätzlich in Schließrichtung mit der Kraft einer Stellfeder 46 be¬ aufschlagbar, deren Vorspannung mittels eines Schraub¬ organs 48 einstellbar ist. Der als Adsorptions-Thermo- fühler ausgebildete Temperaturfühler 26 enthält ein aus einem Feststoff mit großer Oberfläche bestehendes Ad¬ sorbens 50 sowie eine Gasfüllung als Adsorptiv 52, die auch den mit dem Fühler kommunizierenden Gasraum in der Kapillarleitung 44 und der Steuerkammer 42 unter Druck¬ ausgleich ausfüllt.
Auf der Unterseite der Steuermembran 36 wirkt somit der Verdampfungsdruck p0 des Kältemittels im Verdampfer 10 und der Federdruck pf, den die Stellfeder 46 auf den Ventilkörper 24 ausübt. Auf der Oberseite wirkt der Gasdruck pt im Thermofühler 26, der im wesentlichen proportional zur Fühlertemperatur am Verdampferausgang 28 ist (vgl. Fig. 4) . Zur werksseitigen Einstellung einer vorgegebenen stati¬ schen Überhitzung über einen gegebenen Arbeitsbereich wird das Expansionsventil 18 in einen Prüfstand einge¬ baut, der mit einem definierten Dampfdruck des Basis¬ kältemittels RQ in Abhängigkeit der Verdampfungstempe¬ ratur beaufschlagt wird. Der Adsorptions-Thermofühler 26 wird vorher mit dem Adsorptiv in geeigneter Zusam¬ mensetzung und Füllmenge bei vorgegebener Fühlertempe¬ ratur in Anpassung an die Membranabmessungen und an die Dampfdruckkurve des Basiskältemittels Rg gefüllt und verschlossen. Durch Einstellung einer definierten Vor¬ spannung der Stellfeder wird in einem vorgegebenen Ar¬ beitsbereich der Verdampfungstemperatur eine im wesent¬ lichen konstante statische Überhitzung Δtoh einjustiert und die Einstellung zweckmäßig an der Stellschraube 48 markiert. Das so einjustierte Expansionsventil kann beim Einsatz in einen Kältemittelkreislauf, der mit ei¬ nem vom Basiskältemittel R0 verschiedenen Ersatzkälte¬ mittel R-,, R2 gefüllt ist, nach Maßgabe einer an die Abweichung zwischen den Dampfdruckkurven des betreffen¬ den Ersatzkältemittels und des Basiskältemittels ange¬ paßten Verstellvorschrift ohne Nacheichung umgestellt werden. Die Umstellung erfolgt dabei zweckmäßig durch Verdrehen des Schrauborgans 48 in einer durch die Ver¬ stellvorschrift vorgegebene Richtung (+/-) und Anzahl der Umdrehungen (U) . Die Dampfdruckkurven verschiedener Kältemittel RQ, R- und R2 finden sich im Diagramm nach Fig. 3, während die bei einer vorgegebenen, im Prüf- stand einjustierten Überhitzungstemperatur von z.B. Δ toh = 4K sich ergebende Verstellvorschrift aus dem Diagramm nach Fig. 5 ergibt. Würde das Stellorgan 48 im Kältemittelkreislauf mit dem Ersatzkältemittel nicht nachgestellt werden, so würde sich beim Betrieb im vor¬ gegebenen Arbeitsbereich eine nicht optimale, zu große (R,) oder zu kleine (R2) statische Überhitzung ergeben.
Zusammenfassend ist folgendes festzustellen: Die Erfin¬ dung bezieht sich auf ein Verfahren zur Einstellung der statischen Überhitzung an Expansionsventilen für Kälte¬ mittelkreisläufe. Die Einstellung erfolgt dadurch, daß das Expansionsventil zunächst für ein Basiskältemittel R0 auf eine in einem vorgegebenen Arbeitsbereich der Verdampfertemperatur im wesentlichen konstante stati¬ sche Überhitzungstemperatur Δtoh einjustiert wird und daß es beim Einsatz mit einem vom Basiskältemittel Rg verschiedenen Ersatzkältemittel R. , R2 gefüllten Kälte¬ mittelkreislauf hinsichtlich der Vorspannung seiner Stellfeder 46 nach Maßgabe einer an die Abweichung zwi¬ schen den Dampfdruckkurven des Ersatzkältemittels und des Basiskältemittels angepaßten Verstellvorschrift verstellt wird.

Claims

Patentansprüche
1. Verfahren zur Einstellung der statischen Überhit¬ zung an einem thermostatischen Expansionsventil (18) , das einen Kondensateinlaß (20) , einen über einen mittels einer Steuermembran (36) betätigba¬ ren, in Schließrichtung durch eine vorgespannte Stellfeder (46) beaufschlagten Ventilkörper (24) verschließbaren Ventilsitz (22) mit dem Kondensat¬ einlaß (20) verbundenen verdampferseitigen Ventil¬ auslaß (30) , einen die Steuermembran (36) in Schlie߬ richtung des Ventilkörpers (22) mit verdampfersei- tigem Kältemitteldruck beaufschlagenden Steuerraum (40) und einen auf der gegenüberliegenden Seite der Steuermembran (36) angeordneten, mit einem Gasraum eines geschlossenen, an einen Verdampferausgang (28) eines Kältemittelkreislaufs thermisch ankop¬ pelbaren, ein gasförmiges Adsorptiv und ein festes Adsorbens enthaltenden Adsorptions-Thermofühler (26) kommunizierenden Steuerraum aufweist, dadurch gekennzeichnet, daß das Expansionsventil (18) für ein Basiskältemittel (RQ) unter Anpassung der Zu¬ sammensetzung und Füllmenge des Adsorptivs und des Adsorbens im Adsorptions-Thermofühler (26) und der mechanischen Beschaffenheit und Abmessungen der Steuermembran (36) an die Dampfdruckkurve des Ba¬ siskältemittels (RQ) sowie durch Einstellung einer definierten Vorspannung der Stellfeder (46) in ei¬ nem vorgegebenen Arbeitsbereich der Verdampfertem¬ peratur auf eine im wesentlichen konstante stati- sehe Überhitzung (Λtoh) einjustiert wird, und daß das so einjustierte Expansionsventil bei Einsatz in einem mit einem vom Basiskältemittel (RQ) verschie¬ denen Ersatzkältemittel (R-, R2) gefüllten Kälte¬ mittelkreislauf hinsichtlich der Vorspannung seiner Stellfeder (46) nach Maßgabe einer an die Abwei¬ chung zwischen den Dampfdruckkurven des Ersatzkäl¬ temittels und des Basiskälte ittels angepaßten Ver¬ stellvorschrift verstellt wird.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Vorspannung der Stellfeder (46) durch nach Maßgabe der Verstellvorschrift gerichtetes und ab¬ gezähltes Verdrehen eines gegen die Stellfeder ein¬ wirkenden Schrauborgans (48) verstellt wird.
EP95944011A 1994-08-27 1995-07-08 Verfahren zur einstellung der statischen überhitzung an expansionsventilen fur kältemittelkreisläufe Revoked EP0776451B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4430497 1994-08-27
DE4430497A DE4430497A1 (de) 1994-08-27 1994-08-27 Verfahren zur Einstellung der statischen Überhitzung an Expansionsventilen für Kältemittelkreisläufe
PCT/EP1995/002662 WO1996007066A1 (de) 1994-08-27 1995-07-08 Verfahren zur einstellung der statischen überhitzung an expansionsventilen fur kältemittelkreisläufe

Publications (2)

Publication Number Publication Date
EP0776451A1 true EP0776451A1 (de) 1997-06-04
EP0776451B1 EP0776451B1 (de) 2000-01-12

Family

ID=6526743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95944011A Revoked EP0776451B1 (de) 1994-08-27 1995-07-08 Verfahren zur einstellung der statischen überhitzung an expansionsventilen fur kältemittelkreisläufe

Country Status (8)

Country Link
US (1) US5916250A (de)
EP (1) EP0776451B1 (de)
AT (1) ATE188770T1 (de)
AU (1) AU3076595A (de)
DE (2) DE4430497A1 (de)
DK (1) DK0776451T3 (de)
ES (1) ES2144159T3 (de)
WO (1) WO1996007066A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021230A (ja) * 1999-07-12 2001-01-26 Tgk Co Ltd 容量可変圧縮機が用いられた冷凍サイクルの膨張弁
DE102007051118B4 (de) * 2007-10-24 2021-11-11 Konvekta Ag Expansionsventil
FR2979288B1 (fr) * 2011-08-25 2013-08-23 Valeo Systemes Thermiques Dispositif de controle d'une circulation de fluide refrigerant et circuit incorporant un tel dispositif
DE202011051346U1 (de) * 2011-09-19 2011-12-01 Otto Egelhof Gmbh & Co. Kg Expansionsventil
CN104180569B (zh) * 2014-09-01 2016-11-23 中国计量学院 空调节流阀静止过热度自动调节台
CN112361675B (zh) * 2020-10-28 2022-03-01 珠海格力节能环保制冷技术研究中心有限公司 分液器吸气装置、分液器及压缩机装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2291898A (en) * 1939-05-05 1942-08-04 Honeywell Regulator Co Expansion valve
US2511565A (en) * 1948-03-03 1950-06-13 Detroit Lubricator Co Refrigeration expansion valve
US2755025A (en) * 1952-04-18 1956-07-17 Gen Motors Corp Refrigeration expansion valve apparatus
FR1133206A (fr) * 1954-10-22 1957-03-25 Régulateur à commande par pression utilisable dans les installations frigorifiques, notamment pour le réglage de l'eau de refroidissement
JPH01179871A (ja) * 1988-01-08 1989-07-17 Fuji Koki Seisakusho:Kk 温度膨張弁
JPH01230966A (ja) * 1988-03-10 1989-09-14 Fuji Koki Seisakusho:Kk 冷凍システムの制御方法及び温度膨脹弁
US5044170A (en) * 1988-03-10 1991-09-03 Fujikoki Mfg. Co., Ltd. Refrigeration system and a thermostatic expansion valve best suited for the same
JPH03100768U (de) * 1990-01-26 1991-10-21
ES2100972T3 (es) * 1991-05-14 1997-07-01 T G K Co Ltd Valvula de expansion.
US5277364A (en) * 1992-12-18 1994-01-11 Sporlan Valve Company Dual capacity thermal expansion valve
US5499508A (en) * 1993-03-30 1996-03-19 Kabushiki Kaisha Toshiba Air conditioner
US5425890A (en) * 1994-01-11 1995-06-20 Apd Cryogenics, Inc. Substitute refrigerant for dichlorodifluoromethane refrigeration systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9607066A1 *

Also Published As

Publication number Publication date
DE4430497A1 (de) 1996-02-29
ATE188770T1 (de) 2000-01-15
DK0776451T3 (da) 2000-06-13
AU3076595A (en) 1996-03-22
WO1996007066A1 (de) 1996-03-07
DE59507620D1 (de) 2000-02-17
EP0776451B1 (de) 2000-01-12
ES2144159T3 (es) 2000-06-01
US5916250A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
DE602004011870T2 (de) Vorrichtung und Verfahren zur Steuerung des Überhitzungsgrades in einer Wärmepumpenanlage
EP0701096B1 (de) Verfahren zum Betreiben einer Kälteerzeugungsanlage für das Klimatisieren von Fahrzeugen und eine Kälteerzeugungsanlage zur Durchführung desselben
DE60016837T2 (de) Überkritischer Dampfkompressionskreislauf
DE4224780C2 (de) Kühlanlage mit Temperaturschutz des Kompressors in allen Betriebsarten
DE2500303A1 (de) Kuehlanlage
DE19813673A1 (de) Verfahren und Vorrichtung zum Heizen und Kühlen eines Nutzraumes eines Kraftfahrzeuges
DE19631914A1 (de) Überkritisch betriebene Verdichter-Kältemaschine
DE102007032254A1 (de) Drucksteuerventil
EP0776451A1 (de) Verfahren zur einstellung der statischen überhitzung an expansionsventilen fur kältemittelkreisläufe
DE2412614A1 (de) Temperaturregelung bei einem kuehlsystem
DE19818627C5 (de) Verfahren zum Konditionieren von Luft durch Einstellen der Temperatur und Luftfeuchtigkeit in einem Klimatisierungsschrank mittels eines Kältekreislaufs und Kältekreislauf
EP2288305B1 (de) Kryochirurgisches gerät zum betreiben von kryosonden, verfahren zum betreiben einer kryosonde
DE4008877A1 (de) Kaelteanlage
DE3823559C1 (de)
DE102006007756A1 (de) Dekompressionsvorrichtung für einen Kühlkreis
DE102012208819A1 (de) Verfahren für die steuerung und regelung von kälteanlagen und wärmepumpen mit luftbeaufschlagtem verdampfer
DE102007025319B4 (de) Kälteanlage mit als Gaskühler betreibbarem Wärmeübertrager
DE19620105A1 (de) Verfahren zum Betrieb einer Kälteanlage
EP0866291A1 (de) Kompressionswärmepumpe oder Kompressionskältemaschine und Regelungsverfahren dafür
DE2709534A1 (de) Thermostatisches expansionsventil
DE102019135437A1 (de) Verfahren zur indirekten Druckbestimmung in Kältekreisen
DE102007051118B4 (de) Expansionsventil
DE3801711A1 (de) Verfahren zum betreiben einer kaelteanlage und kaelteanlage zur durchfuehrung des verfahrens
WO2003106900A1 (de) Verfahren zum regeln eines carnot-kreisprozesses sowie anlage zu seiner durchführung
EP1620684A1 (de) Verfahren zum regeln eines carnot-kreisprozesses sowie anlage zu seiner durchführung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HONEYWELL AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19990622

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000112

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000112

REF Corresponds to:

Ref document number: 188770

Country of ref document: AT

Date of ref document: 20000115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000112

REF Corresponds to:

Ref document number: 59507620

Country of ref document: DE

Date of ref document: 20000217

ITF It: translation for a ep patent filed

Owner name: PROROGA CONCESSA IN DATA: 26.05.2000;JACOBACCI & P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000412

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2144159

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: DANFOSS A/S

Effective date: 20000923

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010614

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010702

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010716

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010814

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20020614

Year of fee payment: 8

27W Patent revoked

Effective date: 20020130

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20020130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020731

Year of fee payment: 8