EP0773981B1 - Entschwefelungsverfahren für katalytisches krackbenzin - Google Patents

Entschwefelungsverfahren für katalytisches krackbenzin Download PDF

Info

Publication number
EP0773981B1
EP0773981B1 EP96917528A EP96917528A EP0773981B1 EP 0773981 B1 EP0773981 B1 EP 0773981B1 EP 96917528 A EP96917528 A EP 96917528A EP 96917528 A EP96917528 A EP 96917528A EP 0773981 B1 EP0773981 B1 EP 0773981B1
Authority
EP
European Patent Office
Prior art keywords
jet fuel
catalyst
ratio
process according
decalin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96917528A
Other languages
English (en)
French (fr)
Other versions
EP0773981A1 (de
Inventor
Sophie Mercier
Michel Laborde
François-Xavier Cormerais
Michel Thebault
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Marketing Services SA
Original Assignee
Total Raffinage Distribution SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Raffinage Distribution SA filed Critical Total Raffinage Distribution SA
Publication of EP0773981A1 publication Critical patent/EP0773981A1/de
Application granted granted Critical
Publication of EP0773981B1 publication Critical patent/EP0773981B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons

Definitions

  • the present invention relates to jet fuels, or fuels for jet engines, and their process preparation.
  • fuel for jet engines or jet fuel is produced from a fraction of kerosene obtained directly from atmospheric distillation crude oil and whose distillation points are between 140 and 300 ° C and, more typically, between 150 and 270 ° C. This fraction is then either processed in a desulfurization unit, or treated in a unit of transformation of mercaptans into disulfides.
  • Another production route is that consisting of hydrocracking a fraction of the distillate under vacuum.
  • the effluent fractionation provides a jet fuel which does not require further treatment.
  • the jet fuel thus obtained has a power very weak lubricant and insufficient for its use at pure state in jet engines. Therefore, he must be mixed with other jet fuels, especially direct distillation jet fuels, which have a better lubricity and thus compensate for this insufficiency.
  • Jet fuels are used to power aircraft turbojet and propellant burners.
  • jet fuels must have certain characteristics.
  • Jet A1 jet fuel which is the most commonly used jet fuel in civil aviation, must imperatively have a content of sulfur less than 0.30% by weight, a content of compounds aromatics less than 22% by volume, a flash point greater than 38 ° C, a smoke point greater than 25 mm, and a defrost point below - 47 ° C.
  • jet fuels According to the ways of production of the prior art, jet fuels have similar energy qualities and calorific value lower volume whose value is less than 34.60 Mj / liter.
  • Other characteristics of jet fuel Jet A1 are given in Table 6 appearing in the continuation of this description, after examples of setting of the invention, this Table 6 also bringing together characteristics of the jet fuels produced in these examples.
  • This jet fuel is present (see Table in column 3) a freezing point below -76 ° F, or -60 ° C. This value is however still too high.
  • refineries whose conversion mode is consisting of catalytic cracking have only jet fuel from direct distillation.
  • catalytic cracking effluents contain very large quantities of aromatics, olefins, and sulfur products.
  • dearomatization catalysts which are based on platinum, are very sensitive to sulfur, it is necessary to remove the sulfur products by a prior hydrotreatment.
  • the jet fuel according to the invention has a lower calorific value between 34.65 and 35.30 Mj / liter.
  • the jet fuel according to the invention is therefore different from the jet fuels of the prior art, in especially regarding its higher calorific value high, so that it allows volume consumption lower than that of jet fuel of the prior art.
  • the invention also aims to provide a new method for the manufacture of this jet fuel with properties improved.
  • This process is new and original by the fact that it does not use the conventional production lines of jet fuel. It allows additional production jet fuel in a refinery, in addition to to that produced by atmospheric distillation cutting crude oil.
  • This process makes it possible to obtain a jet fuel from a cut from the fractionation of the effluent from a catalytic cracking unit.
  • the valuation in jet fuel from a catalytic point cracking cup distillation between 140 and 300 ° C is possible.
  • the catalytic cracking cut is preferably treated in two stages: a hydrotreatment stage and a aromatization.
  • this catalytic cracking cut has an olefin content of between 20 and 45% and a aromatic content between 40 and 70%, by compared to the total volume.
  • the purpose of the hydrotreatment step is to desulfurize, de-nitrogen and hydrogenate olefins from the cracked cut catalytic. If the denitrogenation of the charge caused during of the hydrotreatment step is weak or insufficient, a additional denitrogenation step will be incorporated into process diagram.
  • the cut resulting from catalytic cracking has properties very different from those that allow obtaining jet fuels of the prior art.
  • jet fuel of the invention has characteristics that stand out from those of jet fuels obtained by the usual routes.
  • the jet fuel according to the invention thus exhibits improved combustion properties in engines with reaction. Indeed, it has a high concentration of polycyclic naphthenes versus concentration total in naphthenes of jet fuel, which results in a substantial gain in volume energy and greater than 0.5%. Consequently, under identical conditions, the volume consumed of jet fuel according to the invention will be lower than that of a jet fuel of the prior art.
  • the jet fuel according to the invention generally has a cis decaline / trans decaline ratio greater than 0.2, and preferably greater than 0.3.
  • the cracked cut catalytic from which the jet fuel is derived is rich in olefins, and in particular dicycloolefins, which are precursors of cis decalin.
  • the jet fuel according to the invention also has preferably a naphthalene / trans decaline ratio lower than 0.05. Indeed, the hydrogenation step in accordance with the process according to the invention, transforms the vast majority of Naphthalenes present in decalins.
  • the jet fuel according to the invention has a naphthenes / paraffins ratio of between 1.2 and 2.
  • the jet fuel according to the invention has very good cold resistance properties and higher than that required for Jet A1 jet fuel. Therefore, the jet fuel according to the invention can be advantageously used in severe conditions of cold, especially in the field of military aviation.
  • jet fuel of the invention can be mixed to other jet fuel bases, which allows the if necessary, to improve the properties of carburetors, including their energy qualities, while respecting the standards required for a Jet A1 jet fuel.
  • the hydrotreatment step of the cracked cup catalytic is carried out in the presence of a catalyst arranged as one or more fixed beds in a reactor.
  • the catalyst consists of at least one metal hydrogenating and / or hydrogenolysing deposited on a support substantially neutral, for example catalysts based on nickel and molybdenum such as catalyst TK 525 of the Haldor Topsoe or HR 348 catalyst from the company Procatalysis.
  • reaction temperature is generally between 250 and 350 ° C, under a minimum pressure of 30.10 5 Pascals (30 bars), with an hourly volume speed of approximately 1 to 5 h -1 , the volume ratio hydrogen / hydrocarbons to l 'reactor inlet being between 100 and 500 Nm 3 / m 3 and preferably between 200 to 300 Nm 3 / m 3 .
  • the temperature is around 280 ° C, under a pressure of 35.10 5 Pascals.
  • the hydrotreatment step generates reactions strongly exothermic.
  • a person skilled in the art will adjust various factors, in particular, the temperature at the reactor inlet, the hydrogen / hydrocarbons, and the amount of olefins in the feed.
  • a diluent such as a reactor recycle or, preferably kerosene from distillation atmospheric crude oil can be optionally mixed with the filler to decrease its concentration in olefins.
  • a quenching fluid can be injected between said beds, its nature, its flow and its temperature being selected to control the exothermicity of the reactions of this hydrotreatment step.
  • a recycle of the unit, hydrogen or, preferably atmospheric distillation kerosene, can constitute the quenching fluid.
  • the partial aromatization reaction of the effluent from the desulfurization unit is carried out in the presence of a catalyst, for example in the form of one or several fixed beds in a reactor.
  • a catalyst for example in the form of one or several fixed beds in a reactor.
  • the catalyst used is selected according to the operating conditions of reactor.
  • the catalyst can be a thioresistant catalyst, consisting of at least one noble hydrogenating metal deposited on a substantially acid support, this noble metal possibly being in particular platinum or palladium.
  • thioresistant catalysts such as LD 402 catalysts from Procatalyse, AS-100 from Criterion and TK 908 by Haldor Topsoe can be used for this purpose.
  • the catalyst used can also be a catalyst based on nickel, which turns out to be an interesting route, because more economical than that using catalysts containing platinum or palladium.
  • catalysts such as HTC 400 and HTC 500 from Crosfield and C46-7-03 and L3427 from Süd-Chemie can be used.
  • Crosfield's HTC 400 catalyst is employed.
  • the reaction temperature is generally between 200 and 300 ° C, under a minimum pressure of 30.10 5 Pa, with an hourly volume speed of 1 to 5 h -1 , the ratio volume hydrogen / hydrocarbons at the inlet of the reactor being between 500 and 900 Nm 3 / m 3 , preferably 600 Nm 3 / m 3 (Nm 3 here means Normal m 3.
  • Nm 3 here means Normal m 3.
  • 1 Normal m 3 corresponds to 1m 3 of gas in standard conditions of temperature and pressure, i.e. 0 ° C and 1 atmosphere - 1.01325.10 5 Pa).
  • the temperature is approximately 240 ° C., under a pressure substantially of 50 ⁇ 10 5 Pa.
  • the reaction temperature is generally between 100 and 200 ° C, under a minimum pressure of 30.10 5 Pa, with an hourly volume speed of 1 to 5 h -1 , the ratio volume hydrogen / hydrocarbons at the inlet of the reactor being between 600 and 1000 Nm 3 / m 3 , preferably equal to 800 Nm 3 / m 3 .
  • the temperature is approximately 160 ° C., under a pressure substantially of 50 ⁇ 10 5 Pa.
  • the catalyst of the stage of aromatherapy is arranged in several beds, between which is injected with a quenching fluid to control the exothermicity of the aromatization reaction.
  • a complementary step of denitration can be carried out before that of aromatization.
  • certain catalysts of aromatics are sensitive to nitrogen, which causes their deactivation. Therefore, if the catalyst selected hydrotreatment did not reduce the nitrogen content of the feed, it must be treated in order to have a very low nitrogen content of the order of 10 ppm.
  • This treatment can be carried out by different means such as a conventional nitrogen trap containing a mass denim.
  • washing of the step effluent hydrotreatment is required to remove ammonia and dissolved hydrogen sulfide which are factors limiting or poisoning for certain types of dearomatization catalysts.
  • alumina catalyst having a specific surface of 220 m 2 / g, a pore volume of 0.5 cm 3 / g, containing, in% by weight, 4.2% of nickel oxide and 16 , 5% molybdenum.
  • the operation is carried out at an average temperature of 325 ° C. under approximately 35.10 5 Pa, with an hourly volume speed of 3 h -1 and a hydrogen / hydrocarbon ratio of 200 Nm 3 / m 3 .
  • the catalyst TK 908 from Haldor Topsoe is used for the dearomatization stage.
  • the operation is carried out at an average temperature of 240 ° C. under approximately 50 ⁇ 10 5 Pa, with an hourly volume speed of 1 h -1 and a hydrogen / hydrocarbon ratio of 600 Nm 3 / m 3 .
  • the distillation curve is shown in the figure single annexed.
  • Example 2 A catalyst identical to that of Example 1 is used. The operation is carried out at an average temperature of 300 ° C., under approximately 35 ⁇ 10 5 Pa, with an hourly volume speed of 4 h -1 and a hydrogen / hydrocarbon ratio of 200 Nm 3 / m 3 .
  • the catalyst TK 908 from Haldor Topsoe is used for the dearomatization stage.
  • the operation is carried out at an average temperature of 270 ° C., under approximately 50 ⁇ 10 5 Pa, with an hourly volume speed of 3 h -1 and a hydrogen / hydrocarbon ratio of 600 Nm 3 / m 3 .
  • This example illustrates the use of a fraction kerosene from the direct distillation of crude oil as a diluent, which allows both to control the exothermicity of the hydrotreatment reactions and to improve the basic qualities of the said fraction kerosene (including thawing point and power lower heat).
  • alumina catalyst having a specific surface of 210 m 2 / g, a pore volume of 0.6 cm 3 / g, and containing 2.8% of cobalt oxide and 13.8% of molybdenum oxide.
  • the operation is carried out at an average temperature of 325 ° C., under approximately 35 ⁇ 10 5 Pa, with an hourly volume speed of 3 h -1 and a hydrogen / hydrocarbon ratio of 300 Nm 3 / m 3 .
  • the catalyst HTC 400 Crosfield is used for the dearomatization stage. The operation is carried out at an average temperature of 160 ° C. under approximately 50 ⁇ 10 5 Pa, with an hourly volume speed of 3 h -1 and a hydrogen / hydrocarbon ratio of 800 Nm 3 / m 3 .
  • the operation is carried out in a manner known per se, in the presence of a catalyst based on cobalt phthalocyanine, at a pressure of 8.10 5 Pa and at a temperature of 50 ° C.
  • UNOCAL Unicracking type double-hydrocracker
  • this device hydrocracking is briefly described on page 761 of the book “Refining and chemical engineering” by P. Wuithier, IFP, volume 1, 1972 edition.
  • the vacuum distillate charge is pretreated in a first reactor in the presence of a denitrogenation catalyst. Then, the effluent obtained is treated in the reactor cracked.
  • the operating conditions are appreciably similar to those indicated on page 764 of the book “Refining and chemical engineering "by P. Wuithier, IFP, volume 1, edition of 1972.
  • the freezing points of Examples 1 and 3 are, in particular, much lower than the minimum required, that is to say less than -47 ° C, and therefore allow potential use of these jet fuels in extreme cold conditions.
  • the lower calorific power of the jet fuels obtained according to the invention is particularly high compared to those of the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Telephone Function (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Claims (11)

  1. Düsentreibstoff, welcher die folgenden Merkmale in Kombination aufweist:
    I) einen Destillationspunkt innerhalb des Bereichs zwischen 140 und 300 °C;
    II) einen Gehalt an aromatischen Verbindungen von weniger als 22 Vol.%;
    III) einen spezifischen volumenbezogenen Heizwert von mehr als 34,65 Mj/Liter;
    dadurch gekennzeichnet, daß er darüber hinaus folgendes aufweist:
    IV) ein Verhältnis cis-Dekahydronaphthalin/trans-Dekahydronaphthalin von mehr als 0,2;
    V) einen Schwefelgehalt von unter 100 ppm; und
    VI) ein Verhältnis der Cyclohexane/Paraffine zwischen 1,2 und 2.
  2. Düsentreibstoff nach Anspruch 1, dadurch gekennzeichnet, daß sein spezifischer volumenbezogener Heizwert zwischen 34,65 und 35,30 Mj/Liter beträgt.
  3. Düsentreibstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sein Verhältnis cis-Dekahydronaphthalin/trans-Dekahydronaphthalin über 0,3 liegt.
  4. Düsentreibstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sein Verhältnis cis-Dekahydronaphthalin/trans-Dekahydronaphthalin unter 0,05 liegt.
  5. Verfahren zur Herstellung eines Düsentreibstoffs nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß er einem katalytischen destillativen Crackingschnitt bei 140 bis 300 °C in einem Schritt der Hydrobehandlung und anschließend einem Schritt der Dearomatisierung unterzogen wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Schritt der Hydrobehandlung auf mindestens einem Katalysatorfestbett, welches mindestens ein hydrogenisierendes und/oder hydrogenolysierendes Metall enthält, bei einer mittleren Temperatur zwischen 250 und 350 °C unter einem Druck von mindestens 30,105 Pa bei einer Volumengeschwindigkeit von 1 bis 5 h-1 pro Stunde und einem Verhältnis Wasserstoff/Kohlenwasserstoffe im Bereich zwischen 100 und 500 Nm3/m3 durchgeführt wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der Katalysator Kobalt und Molybdän oder Nickel und Molybdän enthält.
  8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß der Schritt der Dearomatisierung in Gegenwart eines Katalysators, welcher mindestens ein auf mindestens ein Festbett aufgebrachtes Edelmetall enthält, bei einer Temperatur im Bereich zwischen 200 und 300°C und bei einem Druck von mindestens 30,105 Pa bei einer Volumengeschwindigkeit von 1 bis 5 h-1 pro Stunde und einem Verhältnis Wasserstoff/Kohlenwasserstoffe im Bereich zwischen 500 und 900 Nm3/m3 durchgeführt wird.
  9. Verfahren nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, daß der Schritt der Dearomatisierung in Gegenwart eines Katalysators auf Nickelbasis, welcher auf mindestens ein Festbett aufgebracht ist, bei einer Temperatur im Bereich zwischen 100 und 200°C und bei einem Druck von mindestens 30,105 Pa bei einer Volumengeschwindigkeit von 1 bis 5 h-1 pro Stunde und einem Verhältnis Wasserstoff/Kohlenwasserstoffe im Bereich zwischen 600 und 1000 Nm3/m3 durchgeführt wird.
  10. Verfahren nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, daß in mindestens einem der Verfahrensschritte ein Verdünnungsmittel zur Steuerung des exothermen Verhaltens der Reaktion eingesetzt wird.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß vor dem katalytischen Schritt der Hydrobehandlung dem katalytischen Crackschnitt ein Verdünnungsmittel zugesetzt wird, welches eine Kerosinfraktion von Rohöl aus der Destillation bei atmosphärischem Druck ist.
EP96917528A 1995-05-22 1996-05-22 Entschwefelungsverfahren für katalytisches krackbenzin Expired - Lifetime EP0773981B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9506049A FR2734575B1 (fr) 1995-05-22 1995-05-22 Carbureacteur et procede de preparation de ce carbureacteur
FR9506049 1995-05-22
PCT/FR1996/000762 WO1996037577A1 (fr) 1995-05-22 1996-05-22 Carbureacteur et procede de preparation de ce carbureacteur

Publications (2)

Publication Number Publication Date
EP0773981A1 EP0773981A1 (de) 1997-05-21
EP0773981B1 true EP0773981B1 (de) 1999-01-13

Family

ID=9479231

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96917528A Expired - Lifetime EP0773981B1 (de) 1995-05-22 1996-05-22 Entschwefelungsverfahren für katalytisches krackbenzin

Country Status (11)

Country Link
US (1) US5954941A (de)
EP (1) EP0773981B1 (de)
JP (1) JP3622771B2 (de)
AT (1) ATE175713T1 (de)
DE (1) DE69601346T2 (de)
DK (1) DK0773981T3 (de)
ES (1) ES2126402T3 (de)
FR (1) FR2734575B1 (de)
GR (1) GR3029514T3 (de)
WO (1) WO1996037577A1 (de)
ZA (1) ZA964109B (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070251141A1 (en) * 2004-02-26 2007-11-01 Purdue Research Foundation Method for Preparation, Use and Separation of Fatty Acid Esters
US20050232956A1 (en) * 2004-02-26 2005-10-20 Shailendra Bist Method for separating saturated and unsaturated fatty acid esters and use of separated fatty acid esters
US7892418B2 (en) * 2005-04-11 2011-02-22 Oil Tech SARL Process for producing low sulfur and high cetane number petroleum fuel
EP2049455A1 (de) * 2006-07-13 2009-04-22 Peter Jeney Brennstoff auf h2o2-basis und vorrichtung zu seiner verwendung als raketentreibstoff und treibstoff für rotorspitzenmotoren
US20090199462A1 (en) * 2007-03-23 2009-08-13 Shailendra Bist Method for separating saturated and unsaturated fatty acid esters and use of separated fatty acid esters
US7837857B2 (en) * 2007-12-24 2010-11-23 Uop Llc Hydrocracking process for fabricating jet fuel from diesel fuel
US9035113B2 (en) * 2008-10-22 2015-05-19 Cherron U.S.A. Inc. High energy distillate fuel composition and method of making the same
CA2769866C (en) * 2009-08-03 2016-03-15 Sasol Technology (Pty) Ltd Fully synthetic jet fuel
WO2011061576A1 (en) * 2009-11-20 2011-05-26 Total Raffinage Marketing Process for the production of hydrocarbon fluids having a low aromatic content
WO2011061575A1 (en) 2009-11-20 2011-05-26 Total Raffinage Marketing Process for the production of hydrocarbon fluids having a low aromatic content
KR20130098341A (ko) * 2010-08-16 2013-09-04 셰브런 유.에스.에이.인크. 우수한 열 안정성을 갖는 제트 연료
WO2013104614A1 (en) * 2012-01-09 2013-07-18 Total Raffinage Marketing Method for the conversion of low boiling point olefin containing hydrocarbon feedstock
FR3015514B1 (fr) 2013-12-23 2016-10-28 Total Marketing Services Procede ameliore de desaromatisation de coupes petrolieres
FR3023298B1 (fr) 2014-07-01 2017-12-29 Total Marketing Services Procede de desaromatisation de coupes petrolieres
US11111448B1 (en) 2018-01-18 2021-09-07 Reaction Systems Inc. Decahydronaphthalene as an endothermic fuel for hypersonic vehicles
US11697780B1 (en) 2018-01-18 2023-07-11 Reaction Systems, Inc. Decahydronaphthalene as an endothermic fuel for hypersonic vehicles
JP7198024B2 (ja) * 2018-09-27 2022-12-28 コスモ石油株式会社 ジェット燃料油基材及びジェット燃料油組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3175970A (en) * 1962-03-20 1965-03-30 Gulf Research Development Co Process for preparing a jet fuel
US3607729A (en) * 1969-04-07 1971-09-21 Shell Oil Co Production of kerosene jet fuels
US3985638A (en) * 1974-01-30 1976-10-12 Sun Oil Company Of Pennsylvania High quality blended jet fuel composition
FR2268860B1 (de) * 1974-04-24 1977-06-24 Inst Francais Du Petrole
US4409092A (en) * 1980-04-07 1983-10-11 Ashland Oil, Inc. Combination process for upgrading oil products of coal, shale oil and crude oil to produce jet fuels, diesel fuels and gasoline
US4332666A (en) * 1980-05-06 1982-06-01 Exxon Research & Engineering Co. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered
GB2155034B (en) * 1983-07-15 1987-11-04 Broken Hill Pty Co Ltd Production of fuels, particularly jet and diesel fuels, and constituents thereof

Also Published As

Publication number Publication date
DE69601346T2 (de) 1999-06-17
US5954941A (en) 1999-09-21
FR2734575A1 (fr) 1996-11-29
DK0773981T3 (da) 1999-08-30
ATE175713T1 (de) 1999-01-15
ZA964109B (en) 1996-08-26
EP0773981A1 (de) 1997-05-21
JPH10503804A (ja) 1998-04-07
JP3622771B2 (ja) 2005-02-23
DE69601346D1 (de) 1999-02-25
WO1996037577A1 (fr) 1996-11-28
FR2734575B1 (fr) 1997-08-22
ES2126402T3 (es) 1999-03-16
GR3029514T3 (en) 1999-05-28

Similar Documents

Publication Publication Date Title
EP0773981B1 (de) Entschwefelungsverfahren für katalytisches krackbenzin
EP2333031B1 (de) Verfahren zur Herstellung von Kerosin- und Dieselkraftstoffen sowie zur gleichzeitigen Herstellung von Wasserstoff aus gesättigten leichten Fraktionen
KR100527417B1 (ko) 합성 나프타 연료제조방법 및 이 방법으로 제조된 합성나프타 연료
CA1094579A (fr) Procede de valorisation d'effluents obtenus dans des syntheses de type fischer-tropsch
EP0621334B1 (de) Verfahren zur Herstellung von Brennstoff-durch Extraktion und Wasserstoffbehandlung von Kohlenwasserstoffeinsatz und so hergestellte Gasöl
EP0849350B1 (de) Verfahren zur Umwandlung von Gasöl zur Herstellung eines desaromatisierten und entschwefelten Brennstoffes mit hoher Cetanzahl
EP1849850B1 (de) Verfahren zur raffination von olefinischen benzinstoffen mit mindestens zwei verschiedenen phasen der hydroraffination
EP2106431A2 (de) Verfahren zur umwandlung von lasten aus erneuerbaren quellen zur herstellung eines dieselkraftstoff-basismaterials mit niedrigem schwefel- und erhöhtem ketan-anteil
EP0242260B1 (de) Katalytisches Reformierverfahren
EP1070108B9 (de) Verfahren zur verbesserung der cetanzahl einer gasölfraktion
EP1369468B1 (de) Herstellungsverfahren von Kohlenwasserstoffen mit niedrigem Gehalt von Schwefel und von Stickstoff
EP1354930A1 (de) Verfahren zur Herstellung von Kohlenwasserstoffen mit niedrigem Schwefel- und Merkaptangehalt.
EP0685552B1 (de) Verfahren und Anlage für die selektive Hydrierung von katalytischen Crackbenzinen
EP2158303B1 (de) Verfahren zur herstellung von mitteldestillaten durch hydroisomerisierung und hydrocracking eines schweren teils aus einer fischer-tropsch-effluenz
EP0610168B1 (de) Verfahren zur Herstellung von Benzin mit hoher Oktanzahl
EP0661371B1 (de) Verfahren zur Erzeugung eines Brennstoffes für innere Verbrennungsmotoren durch Wasserstoffbehandlung und Extraktion
EP2886629B1 (de) Verfahren zur hydroentschwefelung von kohlenwasserstoff anteilen
EP1336649B1 (de) Verfahren zur Aufwertung von Aromaten und Nafteno-Aromaten enthaltende Gasölschnitten.
FR2847260A1 (fr) Procede de desulfuration comprenant une etape d'hydrogenation selective des diolefines et une etape d'extraction des composes soufres
EP1082522B1 (de) Konzept einer gasturbine
CA2194547C (fr) Carbureacteur et procede de preparation de ce carbureacteur
CN1202218C (zh) 生产低硫柴油的中压加氢裂化和催化裂化联合工艺
WO2020144097A1 (fr) Procede d'hydrocraquage en deux etapes comprenant une etape d'hydrogenation en aval de la deuxieme etape d'hydrocraquage pour la production de distillats moyens
FR2600669A1 (fr) Procede d'hydrocraquage destine a la production de distillats moyens
CA2440189C (fr) Procede de production d'une essence desulfuree a partir d'une coupe essence contenant de l'essence de craquage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19961210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19971222

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REF Corresponds to:

Ref document number: 175713

Country of ref document: AT

Date of ref document: 19990115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO

Ref country code: CH

Ref legal event code: EP

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69601346

Country of ref document: DE

Date of ref document: 19990225

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2126402

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 19990427

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19990428

Year of fee payment: 4

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19990204

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990416

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000522

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000522

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20090513

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090514

Year of fee payment: 14

Ref country code: FI

Payment date: 20090515

Year of fee payment: 14

Ref country code: AT

Payment date: 20090515

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090518

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20090428

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100714

Year of fee payment: 15

Ref country code: ES

Payment date: 20100726

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100726

Year of fee payment: 15

Ref country code: DE

Payment date: 20100713

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100722

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100522

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20100713

Year of fee payment: 15

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100715

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101202

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110610

Year of fee payment: 16

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20111122

BERE Be: lapsed

Owner name: S.A. *TOTAL RAFFINAGE DISTRIBUTION

Effective date: 20110531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69601346

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69601346

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20111201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111122

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110522

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110523

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130