EP0773981B1 - Jet fuel and method for producing same - Google Patents

Jet fuel and method for producing same Download PDF

Info

Publication number
EP0773981B1
EP0773981B1 EP96917528A EP96917528A EP0773981B1 EP 0773981 B1 EP0773981 B1 EP 0773981B1 EP 96917528 A EP96917528 A EP 96917528A EP 96917528 A EP96917528 A EP 96917528A EP 0773981 B1 EP0773981 B1 EP 0773981B1
Authority
EP
European Patent Office
Prior art keywords
jet fuel
catalyst
ratio
process according
decalin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96917528A
Other languages
German (de)
French (fr)
Other versions
EP0773981A1 (en
Inventor
Sophie Mercier
Michel Laborde
François-Xavier Cormerais
Michel Thebault
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Marketing Services SA
Original Assignee
Total Raffinage Distribution SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Raffinage Distribution SA filed Critical Total Raffinage Distribution SA
Publication of EP0773981A1 publication Critical patent/EP0773981A1/en
Application granted granted Critical
Publication of EP0773981B1 publication Critical patent/EP0773981B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons

Definitions

  • the present invention relates to jet fuels, or fuels for jet engines, and their process preparation.
  • fuel for jet engines or jet fuel is produced from a fraction of kerosene obtained directly from atmospheric distillation crude oil and whose distillation points are between 140 and 300 ° C and, more typically, between 150 and 270 ° C. This fraction is then either processed in a desulfurization unit, or treated in a unit of transformation of mercaptans into disulfides.
  • Another production route is that consisting of hydrocracking a fraction of the distillate under vacuum.
  • the effluent fractionation provides a jet fuel which does not require further treatment.
  • the jet fuel thus obtained has a power very weak lubricant and insufficient for its use at pure state in jet engines. Therefore, he must be mixed with other jet fuels, especially direct distillation jet fuels, which have a better lubricity and thus compensate for this insufficiency.
  • Jet fuels are used to power aircraft turbojet and propellant burners.
  • jet fuels must have certain characteristics.
  • Jet A1 jet fuel which is the most commonly used jet fuel in civil aviation, must imperatively have a content of sulfur less than 0.30% by weight, a content of compounds aromatics less than 22% by volume, a flash point greater than 38 ° C, a smoke point greater than 25 mm, and a defrost point below - 47 ° C.
  • jet fuels According to the ways of production of the prior art, jet fuels have similar energy qualities and calorific value lower volume whose value is less than 34.60 Mj / liter.
  • Other characteristics of jet fuel Jet A1 are given in Table 6 appearing in the continuation of this description, after examples of setting of the invention, this Table 6 also bringing together characteristics of the jet fuels produced in these examples.
  • This jet fuel is present (see Table in column 3) a freezing point below -76 ° F, or -60 ° C. This value is however still too high.
  • refineries whose conversion mode is consisting of catalytic cracking have only jet fuel from direct distillation.
  • catalytic cracking effluents contain very large quantities of aromatics, olefins, and sulfur products.
  • dearomatization catalysts which are based on platinum, are very sensitive to sulfur, it is necessary to remove the sulfur products by a prior hydrotreatment.
  • the jet fuel according to the invention has a lower calorific value between 34.65 and 35.30 Mj / liter.
  • the jet fuel according to the invention is therefore different from the jet fuels of the prior art, in especially regarding its higher calorific value high, so that it allows volume consumption lower than that of jet fuel of the prior art.
  • the invention also aims to provide a new method for the manufacture of this jet fuel with properties improved.
  • This process is new and original by the fact that it does not use the conventional production lines of jet fuel. It allows additional production jet fuel in a refinery, in addition to to that produced by atmospheric distillation cutting crude oil.
  • This process makes it possible to obtain a jet fuel from a cut from the fractionation of the effluent from a catalytic cracking unit.
  • the valuation in jet fuel from a catalytic point cracking cup distillation between 140 and 300 ° C is possible.
  • the catalytic cracking cut is preferably treated in two stages: a hydrotreatment stage and a aromatization.
  • this catalytic cracking cut has an olefin content of between 20 and 45% and a aromatic content between 40 and 70%, by compared to the total volume.
  • the purpose of the hydrotreatment step is to desulfurize, de-nitrogen and hydrogenate olefins from the cracked cut catalytic. If the denitrogenation of the charge caused during of the hydrotreatment step is weak or insufficient, a additional denitrogenation step will be incorporated into process diagram.
  • the cut resulting from catalytic cracking has properties very different from those that allow obtaining jet fuels of the prior art.
  • jet fuel of the invention has characteristics that stand out from those of jet fuels obtained by the usual routes.
  • the jet fuel according to the invention thus exhibits improved combustion properties in engines with reaction. Indeed, it has a high concentration of polycyclic naphthenes versus concentration total in naphthenes of jet fuel, which results in a substantial gain in volume energy and greater than 0.5%. Consequently, under identical conditions, the volume consumed of jet fuel according to the invention will be lower than that of a jet fuel of the prior art.
  • the jet fuel according to the invention generally has a cis decaline / trans decaline ratio greater than 0.2, and preferably greater than 0.3.
  • the cracked cut catalytic from which the jet fuel is derived is rich in olefins, and in particular dicycloolefins, which are precursors of cis decalin.
  • the jet fuel according to the invention also has preferably a naphthalene / trans decaline ratio lower than 0.05. Indeed, the hydrogenation step in accordance with the process according to the invention, transforms the vast majority of Naphthalenes present in decalins.
  • the jet fuel according to the invention has a naphthenes / paraffins ratio of between 1.2 and 2.
  • the jet fuel according to the invention has very good cold resistance properties and higher than that required for Jet A1 jet fuel. Therefore, the jet fuel according to the invention can be advantageously used in severe conditions of cold, especially in the field of military aviation.
  • jet fuel of the invention can be mixed to other jet fuel bases, which allows the if necessary, to improve the properties of carburetors, including their energy qualities, while respecting the standards required for a Jet A1 jet fuel.
  • the hydrotreatment step of the cracked cup catalytic is carried out in the presence of a catalyst arranged as one or more fixed beds in a reactor.
  • the catalyst consists of at least one metal hydrogenating and / or hydrogenolysing deposited on a support substantially neutral, for example catalysts based on nickel and molybdenum such as catalyst TK 525 of the Haldor Topsoe or HR 348 catalyst from the company Procatalysis.
  • reaction temperature is generally between 250 and 350 ° C, under a minimum pressure of 30.10 5 Pascals (30 bars), with an hourly volume speed of approximately 1 to 5 h -1 , the volume ratio hydrogen / hydrocarbons to l 'reactor inlet being between 100 and 500 Nm 3 / m 3 and preferably between 200 to 300 Nm 3 / m 3 .
  • the temperature is around 280 ° C, under a pressure of 35.10 5 Pascals.
  • the hydrotreatment step generates reactions strongly exothermic.
  • a person skilled in the art will adjust various factors, in particular, the temperature at the reactor inlet, the hydrogen / hydrocarbons, and the amount of olefins in the feed.
  • a diluent such as a reactor recycle or, preferably kerosene from distillation atmospheric crude oil can be optionally mixed with the filler to decrease its concentration in olefins.
  • a quenching fluid can be injected between said beds, its nature, its flow and its temperature being selected to control the exothermicity of the reactions of this hydrotreatment step.
  • a recycle of the unit, hydrogen or, preferably atmospheric distillation kerosene, can constitute the quenching fluid.
  • the partial aromatization reaction of the effluent from the desulfurization unit is carried out in the presence of a catalyst, for example in the form of one or several fixed beds in a reactor.
  • a catalyst for example in the form of one or several fixed beds in a reactor.
  • the catalyst used is selected according to the operating conditions of reactor.
  • the catalyst can be a thioresistant catalyst, consisting of at least one noble hydrogenating metal deposited on a substantially acid support, this noble metal possibly being in particular platinum or palladium.
  • thioresistant catalysts such as LD 402 catalysts from Procatalyse, AS-100 from Criterion and TK 908 by Haldor Topsoe can be used for this purpose.
  • the catalyst used can also be a catalyst based on nickel, which turns out to be an interesting route, because more economical than that using catalysts containing platinum or palladium.
  • catalysts such as HTC 400 and HTC 500 from Crosfield and C46-7-03 and L3427 from Süd-Chemie can be used.
  • Crosfield's HTC 400 catalyst is employed.
  • the reaction temperature is generally between 200 and 300 ° C, under a minimum pressure of 30.10 5 Pa, with an hourly volume speed of 1 to 5 h -1 , the ratio volume hydrogen / hydrocarbons at the inlet of the reactor being between 500 and 900 Nm 3 / m 3 , preferably 600 Nm 3 / m 3 (Nm 3 here means Normal m 3.
  • Nm 3 here means Normal m 3.
  • 1 Normal m 3 corresponds to 1m 3 of gas in standard conditions of temperature and pressure, i.e. 0 ° C and 1 atmosphere - 1.01325.10 5 Pa).
  • the temperature is approximately 240 ° C., under a pressure substantially of 50 ⁇ 10 5 Pa.
  • the reaction temperature is generally between 100 and 200 ° C, under a minimum pressure of 30.10 5 Pa, with an hourly volume speed of 1 to 5 h -1 , the ratio volume hydrogen / hydrocarbons at the inlet of the reactor being between 600 and 1000 Nm 3 / m 3 , preferably equal to 800 Nm 3 / m 3 .
  • the temperature is approximately 160 ° C., under a pressure substantially of 50 ⁇ 10 5 Pa.
  • the catalyst of the stage of aromatherapy is arranged in several beds, between which is injected with a quenching fluid to control the exothermicity of the aromatization reaction.
  • a complementary step of denitration can be carried out before that of aromatization.
  • certain catalysts of aromatics are sensitive to nitrogen, which causes their deactivation. Therefore, if the catalyst selected hydrotreatment did not reduce the nitrogen content of the feed, it must be treated in order to have a very low nitrogen content of the order of 10 ppm.
  • This treatment can be carried out by different means such as a conventional nitrogen trap containing a mass denim.
  • washing of the step effluent hydrotreatment is required to remove ammonia and dissolved hydrogen sulfide which are factors limiting or poisoning for certain types of dearomatization catalysts.
  • alumina catalyst having a specific surface of 220 m 2 / g, a pore volume of 0.5 cm 3 / g, containing, in% by weight, 4.2% of nickel oxide and 16 , 5% molybdenum.
  • the operation is carried out at an average temperature of 325 ° C. under approximately 35.10 5 Pa, with an hourly volume speed of 3 h -1 and a hydrogen / hydrocarbon ratio of 200 Nm 3 / m 3 .
  • the catalyst TK 908 from Haldor Topsoe is used for the dearomatization stage.
  • the operation is carried out at an average temperature of 240 ° C. under approximately 50 ⁇ 10 5 Pa, with an hourly volume speed of 1 h -1 and a hydrogen / hydrocarbon ratio of 600 Nm 3 / m 3 .
  • the distillation curve is shown in the figure single annexed.
  • Example 2 A catalyst identical to that of Example 1 is used. The operation is carried out at an average temperature of 300 ° C., under approximately 35 ⁇ 10 5 Pa, with an hourly volume speed of 4 h -1 and a hydrogen / hydrocarbon ratio of 200 Nm 3 / m 3 .
  • the catalyst TK 908 from Haldor Topsoe is used for the dearomatization stage.
  • the operation is carried out at an average temperature of 270 ° C., under approximately 50 ⁇ 10 5 Pa, with an hourly volume speed of 3 h -1 and a hydrogen / hydrocarbon ratio of 600 Nm 3 / m 3 .
  • This example illustrates the use of a fraction kerosene from the direct distillation of crude oil as a diluent, which allows both to control the exothermicity of the hydrotreatment reactions and to improve the basic qualities of the said fraction kerosene (including thawing point and power lower heat).
  • alumina catalyst having a specific surface of 210 m 2 / g, a pore volume of 0.6 cm 3 / g, and containing 2.8% of cobalt oxide and 13.8% of molybdenum oxide.
  • the operation is carried out at an average temperature of 325 ° C., under approximately 35 ⁇ 10 5 Pa, with an hourly volume speed of 3 h -1 and a hydrogen / hydrocarbon ratio of 300 Nm 3 / m 3 .
  • the catalyst HTC 400 Crosfield is used for the dearomatization stage. The operation is carried out at an average temperature of 160 ° C. under approximately 50 ⁇ 10 5 Pa, with an hourly volume speed of 3 h -1 and a hydrogen / hydrocarbon ratio of 800 Nm 3 / m 3 .
  • the operation is carried out in a manner known per se, in the presence of a catalyst based on cobalt phthalocyanine, at a pressure of 8.10 5 Pa and at a temperature of 50 ° C.
  • UNOCAL Unicracking type double-hydrocracker
  • this device hydrocracking is briefly described on page 761 of the book “Refining and chemical engineering” by P. Wuithier, IFP, volume 1, 1972 edition.
  • the vacuum distillate charge is pretreated in a first reactor in the presence of a denitrogenation catalyst. Then, the effluent obtained is treated in the reactor cracked.
  • the operating conditions are appreciably similar to those indicated on page 764 of the book “Refining and chemical engineering "by P. Wuithier, IFP, volume 1, edition of 1972.
  • the freezing points of Examples 1 and 3 are, in particular, much lower than the minimum required, that is to say less than -47 ° C, and therefore allow potential use of these jet fuels in extreme cold conditions.
  • the lower calorific power of the jet fuels obtained according to the invention is particularly high compared to those of the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Telephone Function (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PCT No. PCT/FR96/00762 Sec. 371 Date Apr. 28, 1997 Sec. 102(e) Date Apr. 28, 1997 PCT Filed May 22, 1996 PCT Pub. No. WO96/37577 PCT Pub. Date Nov. 28, 1996The invention concerns a jet engine fuel having the following characteristics: i) distilling range from 140 to 300 DEG C.; ii) cis-decalin/trans-decalin ratio greater than 0.2; iii) aromatics content less than 22% by volume; iv) sulfur content less than 100 ppm, and v) lower heating value per unit volume greater than 34.65 Mj/liter. Also process for making the same wherein for example a cut from catalytic cracking distilling between 140 and 300 DEG 0 C. is subjected to a hydrotreatment step and then to a dearomatization step.

Description

La présente invention concerne des carburéacteurs, ou carburants pour moteur à réaction, et leur procédé de préparation.The present invention relates to jet fuels, or fuels for jet engines, and their process preparation.

De nombreux procédés ont été proposés pour la fabrication de carburants pour moteur à réaction, à partir d'une grande gamme de matières premières.Many methods have been proposed for the manufacture of fuels for jet engines, from a wide range of raw materials.

En général, le carburant pour moteur à réaction ou carburéacteur est produit à partir d'une fraction de kérosène issue directement de la distillation atmosphérique du pétrole brut et dont les points de distillation sont compris entre 140 et 300°C et, plus typiquement, entre 150 et 270°C. Cette fraction est alors soit traitée dans une unité de désulfuration, soit traitée dans une unité de transformation des mercaptans en disulfures.In general, fuel for jet engines or jet fuel is produced from a fraction of kerosene obtained directly from atmospheric distillation crude oil and whose distillation points are between 140 and 300 ° C and, more typically, between 150 and 270 ° C. This fraction is then either processed in a desulfurization unit, or treated in a unit of transformation of mercaptans into disulfides.

Une autre voie de production est celle consistant en l'hydrocraquage d'une fraction du distillat sous vide. Le fractionnement des effluents permet d'obtenir un carburéacteur qui ne nécessite pas d'autres traitements. Toutefois, le carburéacteur ainsi obtenu possède un pouvoir lubrifiant très faible et insuffisant pour son utilisation à l'état pur dans les moteurs à réaction. De ce fait, il doit être mélangé à d'autres carburéacteurs, en particulier aux carburéacteurs de distillation directe, qui possèdent un meilleur pouvoir lubrifiant et compensent ainsi cette insuffisance.Another production route is that consisting of hydrocracking a fraction of the distillate under vacuum. The effluent fractionation provides a jet fuel which does not require further treatment. However, the jet fuel thus obtained has a power very weak lubricant and insufficient for its use at pure state in jet engines. Therefore, he must be mixed with other jet fuels, especially direct distillation jet fuels, which have a better lubricity and thus compensate for this insufficiency.

Les carburéacteurs sont destinés à alimenter les brûleurs des turboréacteurs et propulseurs d'avions. A cet effet, les carburéacteurs doivent posséder certaines caractéristiques. Notamment, le carburéacteur Jet A1, qui est le carburéacteur le plus communément utilisé dans l'aviation civile, doit impérativement avoir une teneur en soufre inférieure à 0,30 % en poids, une teneur en composés aromatiques inférieure à 22% en volume, un point d'éclair supérieur à 38°C, un point de fumée supérieur à 25 mm, et un point de décongélation inférieur à - 47 °C. Selon les voies de production de l'art antérieur, les carburéacteurs ont des qualités énergétiques similaires et un pouvoir calorifique inférieur volumique dont la valeur est inférieure à 34,60 Mj/litre. D'autres caractéristiques du carburéacteur Jet A1 sont données dans le Tableau 6 apparaissant dans la suite de la présente description, après des exemples de mise de oeuvre de l'invention, ce Tableau 6 rassemblant également des caractéristiques des carburéacteurs produits dans ces exemples.Jet fuels are used to power aircraft turbojet and propellant burners. In this Indeed, jet fuels must have certain characteristics. In particular, Jet A1 jet fuel, which is the most commonly used jet fuel in civil aviation, must imperatively have a content of sulfur less than 0.30% by weight, a content of compounds aromatics less than 22% by volume, a flash point greater than 38 ° C, a smoke point greater than 25 mm, and a defrost point below - 47 ° C. According to the ways of production of the prior art, jet fuels have similar energy qualities and calorific value lower volume whose value is less than 34.60 Mj / liter. Other characteristics of jet fuel Jet A1 are given in Table 6 appearing in the continuation of this description, after examples of setting of the invention, this Table 6 also bringing together characteristics of the jet fuels produced in these examples.

Le brevet américain US-A-3 175 970 fait état (cf. Tableau de la colonne 3) d'un carburéacteur ("Jet Fuel") ayant les caractéristiques suivantes :

  • i) un point de distillation compris entre 176,7 et 218 °C
  • ii) une teneur en aromatiques de 1,9% en volume,
  • iii) un pouvoir calorifique inférieur volumique qui est de 36,521 Mj/litre,
  • iv) une teneur en soufre inférieure à 150 ppm (cf. col.2, ligne 5).
  • American patent US-A-3 175 970 reports (cf. Table in column 3) a jet fuel having the following characteristics:
  • i) a distillation point between 176.7 and 218 ° C
  • ii) an aromatic content of 1.9% by volume,
  • iii) a lower calorific value which is 36.521 Mj / liter,
  • iv) a sulfur content of less than 150 ppm (cf. col. 2, line 5).
  • Ce carburéacteur présente (cf. Tableau de la colonne 3) un point de congélation inférieur à -76°F, soit -60°C. Cette valeur est cependant encore trop élevée.This jet fuel is present (see Table in column 3) a freezing point below -76 ° F, or -60 ° C. This value is however still too high.

    Les demandes en carburéacteur sont croissantes et les moyens de production de carburéacteur sont limités au sein d'une raffinerie classique. Les unités d'hydrocraquage sont extrêmement onéreuses et les quantités de carburéacteurs issues de la distillation atmosphérique de pétrole brut sont limitées et dépendent de la qualité des pétroles bruts.The demand for jet fuel is growing and the means of jet fuel production are limited within of a classic refinery. Hydrocracking units are extremely expensive and the quantities of jet fuel from atmospheric crude oil distillation are limited and depend on the quality of crude oils.

    De plus, les raffineries dont le mode de conversion est constitué par le craquage catalytique, ne disposent que de carburéacteurs issus d'une distillation directe.In addition, refineries whose conversion mode is consisting of catalytic cracking, have only jet fuel from direct distillation.

    En effet, les effluents de craquage catalytique contiennent des quantités très importnates d'aromatiques, oléfines, et de produits soufrés.Indeed, the catalytic cracking effluents contain very large quantities of aromatics, olefins, and sulfur products.

    Etant donné que les catalyseurs de déaromatisation, qui sont à base de platine, sont très sensibles aux soufres, il est nécessaire d'éliminer les produits soufrés par un hydrotraitement préalable.Since the dearomatization catalysts, which are based on platinum, are very sensitive to sulfur, it is necessary to remove the sulfur products by a prior hydrotreatment.

    Toutefois, cette opération d'hydrotraitement est rendue très difficile du fait de son exothermicité. However, this hydrotreatment operation is made very difficult due to its exothermicity.

    En essayant de résoudre ce problème rencontré dans l'art antérieur, la Demanderesse a découvert qu'il était possible de produire du carburéacteur à partir d'une coupe issue du craquage catalytique.When trying to solve this problem encountered in prior art, the Applicant has discovered that it is possible to produce jet fuel from a cut from catalytic cracking.

    La Demanderesse a en outre découvert que, de façon surprenante, le carburéacteur produit par craquage catalytique (c'est-à-dire un craquage à haute température, en présence d'un catalyseur et sans hydrogène) puis hydrotraitement, était différent de celui obtenu par craquage en présence d'hydrogène (hydrocraquage) et de qualité supérieure à ce dernier.
    Ainsi, la Demanderesse a mis au point un carburéacteur se caractérisant en ce qu'il possède :

  • i) un point de distillation compris dans l'intervalle de 140 à 300°C ;
  • ii) un rapport cis décaline/trans décaline supérieur à 0,2;
  • iii) une teneur en aromatiques inférieure à 22% en volume ;
  • iv) une teneur en soufre inférieure à 100 ppm ; et
  • v) un pouvoir calorifique inférieur volumique qui est supérieur à 34,65 Mj/litre.
  • The Applicant has also discovered that, surprisingly, the jet fuel produced by catalytic cracking (that is to say a cracking at high temperature, in the presence of a catalyst and without hydrogen) then hydrotreatment, was different from that obtained. by cracking in the presence of hydrogen (hydrocracking) and of higher quality than the latter.
    Thus, the Applicant has developed a jet fuel characterized in that it has:
  • i) a distillation point in the range of 140 to 300 ° C;
  • ii) a cis decaline / trans decaline ratio greater than 0.2;
  • iii) an aromatic content of less than 22% by volume;
  • iv) a sulfur content of less than 100 ppm; and
  • v) a lower calorific value which is greater than 34.65 Mj / liter.
  • De préférence, le carburéacteur selon l'invention a un pouvoir calorifique volumique inférieur compris entre 34,65 et 35,30 Mj/litre.Preferably, the jet fuel according to the invention has a lower calorific value between 34.65 and 35.30 Mj / liter.

    Le carburéacteur conforme à l'invention est donc différent des carburéacteurs de l'art antérieur, en particulier en ce qui concerne son pouvoir calorifique plus élevé, de sorte qu'il permet une consommation en volume inférieure à celle des carburéacteurs de l'art antérieur.The jet fuel according to the invention is therefore different from the jet fuels of the prior art, in especially regarding its higher calorific value high, so that it allows volume consumption lower than that of jet fuel of the prior art.

    L'invention vise également à apporter un nouveau procédé pour la fabrication de ce carburéacteur aux propriétés améliorées. Ce procédé est nouveau et original par le fait qu'il n'utilise pas les voies classiques de production de carburéacteur. Il permet ainsi une production supplémentaire de carburéacteur au sein d'une raffinerie, venant s'ajouter à celui produit par la coupe de distillation atmosphérique du pétrole brut.The invention also aims to provide a new method for the manufacture of this jet fuel with properties improved. This process is new and original by the fact that it does not use the conventional production lines of jet fuel. It allows additional production jet fuel in a refinery, in addition to to that produced by atmospheric distillation cutting crude oil.

    Ce procédé permet d'obtenir un carburéacteur à partir d'une coupe provenant du fractionnement de l'effluent d'une unité de craquage catalytique. Ainsi, la valorisation en carburéacteur d'une coupe de craquage catalytique de points de distillation compris entre 140 et 300 °C est possible.This process makes it possible to obtain a jet fuel from a cut from the fractionation of the effluent from a catalytic cracking unit. Thus, the valuation in jet fuel from a catalytic point cracking cup distillation between 140 and 300 ° C is possible.

    Néanmoins, cette coupe issue d'une unité de craquage catalytique nécessite généralement un certain nombre de traitements spécifiques avant de devenir un carburéacteur présentant les caractéristiques requises pour son homologation.However, this cut from a cracking unit catalytic generally requires a number of specific treatments before becoming a jet fuel having the characteristics required for its approval.

    Différents traitements de la coupe de craquage catalytique peuvent être envisagés pour obtenir le carburéacteur. Toutefois, conformément à l'invention, la coupe de craquage catalytique est traitée de préférence en deux étapes : une étape d'hydrotraitement et une étape de déaromatisation.Different treatments of the cracked cut catalytic can be considered to obtain the jet fuel. However, in accordance with the invention, the catalytic cracking cut is preferably treated in two stages: a hydrotreatment stage and a aromatization.

    Habituellement, cette coupe de craquage catalytique a une teneur en oléfines comprise entre 20 et 45% et une teneur en composés aromatiques comprise entre 40 et 70%, par rapport au volume total.Usually this catalytic cracking cut has an olefin content of between 20 and 45% and a aromatic content between 40 and 70%, by compared to the total volume.

    Or, les spécifications des carburéacteurs limitent cette teneur en aromatiques à 22 % au maximum, ce qui nécessite une déaromatisation. De plus, étant donné que le catalyseur de déaromatisation est particulièrement sensible aux polluants, il est nécessaire d'opérer un hydrotraitement préalable à la déaromatisation.However, the specifications of jet fuels limit this aromatic content up to 22%, which requires a flavoring. In addition, since the catalyst is particularly sensitive to pollutants, it is necessary to operate a hydrotreatment prearromatization.

    L'étape d'hydrotraitement a pour but de désulfurer, déazoter et hydrogéner les oléfines de la coupe de craquage catalytique. Si la déazotation de la charge occasionnée lors de l'étape d'hydrotraitement est faible ou insuffisante, une étape complémentaire de déazotation sera incorporée au schéma du procédé.The purpose of the hydrotreatment step is to desulfurize, de-nitrogen and hydrogenate olefins from the cracked cut catalytic. If the denitrogenation of the charge caused during of the hydrotreatment step is weak or insufficient, a additional denitrogenation step will be incorporated into process diagram.

    La coupe issue du craquage catalytique possède des propriétés très différentes de celles qui permettent l'obtention des carburéacteurs de l'art antérieur.The cut resulting from catalytic cracking has properties very different from those that allow obtaining jet fuels of the prior art.

    Ainsi, elle recèle plus d'oléfines que la coupe issue de la distillation atmosphérique directe, et diffère en outre de la coupe en charge de l'hydrocraquage qui est un distillat sous vide à plus haut point d'ébullition.Thus, it contains more olefins than the cut from direct atmospheric distillation, and further differs of the hydrocracking charge cut which is a distillate under vacuum with higher boiling point.

    Ceci explique que le carburéacteur de l'invention présente des caractéristiques se démarquant de celles des carburéacteurs obtenus par les voies habituelles.This explains why the jet fuel of the invention has characteristics that stand out from those of jet fuels obtained by the usual routes.

    Le carburéacteur selon l'invention présente ainsi des propriétés de combustion améliorées dans les moteurs à réaction. En effet, il comporte une concentration élevée en naphtènes polycycliques par rapport à la concentration totale en naphtènes du carburéacteur, ce qui se traduit par un gain en énergie volumique substantiel et supérieur à 0,5%. Par conséquent, dans des conditions identiques, le volume consommé du carburéacteur conforme à l'invention sera inférieur à celui d'un carburéacteur de l'art antérieur.The jet fuel according to the invention thus exhibits improved combustion properties in engines with reaction. Indeed, it has a high concentration of polycyclic naphthenes versus concentration total in naphthenes of jet fuel, which results in a substantial gain in volume energy and greater than 0.5%. Consequently, under identical conditions, the volume consumed of jet fuel according to the invention will be lower than that of a jet fuel of the prior art.

    Le carburéacteur selon l'invention possède généralement un rapport cis décaline/trans décaline supérieur à 0,2, et de préférence supérieur à 0,3.The jet fuel according to the invention generally has a cis decaline / trans decaline ratio greater than 0.2, and preferably greater than 0.3.

    Ceci provient du fait que la coupe de craquage catalytique dont est issu le carburéacteur, est riche en oléfines, et en particulier en dicyclooléfines, qui sont des précurseurs de cis décaline.This is because the cracked cut catalytic from which the jet fuel is derived, is rich in olefins, and in particular dicycloolefins, which are precursors of cis decalin.

    Le carburéacteur selon l'invention possède en outre de préférence un rapport naphtalène/trans décaline inférieur à 0,05 . En effet, l'étape d'hydrogénation conforme au procédé selon l'invention, transforme la grande majorité des naphtalènes présent en décalines.The jet fuel according to the invention also has preferably a naphthalene / trans decaline ratio lower than 0.05. Indeed, the hydrogenation step in accordance with the process according to the invention, transforms the vast majority of Naphthalenes present in decalins.

    Le carburéacteur selon l'invention présente un rapport naphtènes / paraffines compris entre 1,2 et 2.The jet fuel according to the invention has a naphthenes / paraffins ratio of between 1.2 and 2.

    De plus, le carburéacteur selon l'invention a des propriétés de tenue au froid de très bonne qualité et supérieures à celle requises pour le carburéacteur Jet A1. De ce fait, le carburéacteur selon l'invention peut être avantageusement utilisé dans des conditions sévères de froid, notamment dans le domaine de l'aviation militaire.In addition, the jet fuel according to the invention has very good cold resistance properties and higher than that required for Jet A1 jet fuel. Therefore, the jet fuel according to the invention can be advantageously used in severe conditions of cold, especially in the field of military aviation.

    En outre, le carburéacteur de l'invention est mélangeable à d'autres bases de carburéacteurs, ce qui permet, le cas échéant, d'améliorer les propriétés de carbu-réacteurs, notamment leurs qualités énergétiques, tout en respectant les normes requises pour un carburéacteur Jet A1.In addition, the jet fuel of the invention can be mixed to other jet fuel bases, which allows the if necessary, to improve the properties of carburetors, including their energy qualities, while respecting the standards required for a Jet A1 jet fuel.

    Le procédé de préparation du carburéacteur conforme à l'invention, va maintenant être explicité.The process for the preparation of jet fuel in accordance with the invention will now be explained.

    L'étape d'hydrotraitement de la coupe de craquage catalytique est effectuée en présence d'un catalyseur disposé sous forme d'un ou plusieurs lits fixes dans un réacteur. Le catalyseur est constitué par au moins un métal hydrogénant et/ou hydrogénolysant déposé sur un support sensiblement neutre, par exemple les catalyseurs à base de nickel et molybdène tels que le catalyseur TK 525 de la société Haldor Topsoe ou le catalyseur HR 348 de la société Procatalyse.The hydrotreatment step of the cracked cup catalytic is carried out in the presence of a catalyst arranged as one or more fixed beds in a reactor. The catalyst consists of at least one metal hydrogenating and / or hydrogenolysing deposited on a support substantially neutral, for example catalysts based on nickel and molybdenum such as catalyst TK 525 of the Haldor Topsoe or HR 348 catalyst from the company Procatalysis.

    D'autres types de catalyseurs peuvent être utilisés, notamment les catalyseurs à base de cobalt et de molybdène HR 306 et HR 316 de la société Procatalyse, KF 752 de la société Akzo, et TK 524 et TK 554 de la société Haldor Topsoe. La température de réaction est généralement comprise entre 250 et 350°C, sous une pression minimum de 30.105 Pascals (30 bars), avec une vitesse volumique horaire d'environ 1 à 5 h-1, le rapport volumique hydrogène/ hydrocarbures à l'entrée du réacteur étant compris entre 100 et 500 Nm3/m3 et, de préférence, entre 200 à 300 Nm3/m3. Avantageusement, la température est d'environ 280°C, sous une pression de 35.105 Pascals.Other types of catalysts can be used, in particular cobalt and molybdenum catalysts HR 306 and HR 316 from the company Procatalyse, KF 752 from the company Akzo, and TK 524 and TK 554 from the company Haldor Topsoe. The reaction temperature is generally between 250 and 350 ° C, under a minimum pressure of 30.10 5 Pascals (30 bars), with an hourly volume speed of approximately 1 to 5 h -1 , the volume ratio hydrogen / hydrocarbons to l 'reactor inlet being between 100 and 500 Nm 3 / m 3 and preferably between 200 to 300 Nm 3 / m 3 . Advantageously, the temperature is around 280 ° C, under a pressure of 35.10 5 Pascals.

    L'étape d'hydrotraitement engendre des réactions fortement exothermiques. Afin de contrôler ce phénomène, l'homme de l'art ajustera différents facteurs, notamment, la température à l'entrée du réacteur, le rapport hydrogène/ hydrocarbures, et la quantité d'oléfines dans la charge. Un diluant tel qu'un recycle du réacteur ou, préférentiellement, du kérosène issu de la distillation atmosphérique de pétrole brut peut être optionnellement mélangé à la charge pour diminuer sa concentration en oléfines.The hydrotreatment step generates reactions strongly exothermic. In order to control this phenomenon, a person skilled in the art will adjust various factors, in particular, the temperature at the reactor inlet, the hydrogen / hydrocarbons, and the amount of olefins in the feed. A diluent such as a reactor recycle or, preferably kerosene from distillation atmospheric crude oil can be optionally mixed with the filler to decrease its concentration in olefins.

    Dans le cas d'un réacteur où le catalyseur est disposé en plusieurs lits fixes, un fluide de trempe peut être injecté entre les dits lits, sa nature, son débit et sa température étant sélectionnés pour contrôler l'exothermicité des réactions de cette étape d'hydrotraitement. Un recycle de l'unité, de l'hydrogène ou, de préférence, du kérosène de distillation atmosphérique, peuvent constituer le fluide de trempe.In the case of a reactor where the catalyst is placed in several fixed beds, a quenching fluid can be injected between said beds, its nature, its flow and its temperature being selected to control the exothermicity of the reactions of this hydrotreatment step. A recycle of the unit, hydrogen or, preferably atmospheric distillation kerosene, can constitute the quenching fluid.

    La réaction de déaromatisation partielle de l'effluent issu de l'unité de désulfuration est effectuée en présence d'un catalyseur disposé par exemple sous forme d'un ou plusieurs lits fixes dans un réacteur. Le catalyseur utilisé est sélectionné selon les conditions opératoires du réacteur.The partial aromatization reaction of the effluent from the desulfurization unit is carried out in the presence of a catalyst, for example in the form of one or several fixed beds in a reactor. The catalyst used is selected according to the operating conditions of reactor.

    Le catalyseur peut être un catalyseur thiorésistant, constitué par au moins un métal noble hydrogénant déposé sur un support sensiblement acide, ce métal noble pouvant être en particulier du platine ou du palladium. A titre d'exemples, les catalyseurs thiorésistants tels que les catalyseurs LD 402 de Procatalyse, AS-100 de Critérion et TK 908 de Haldor Topsoe peuvent être utilisés à cette fin.The catalyst can be a thioresistant catalyst, consisting of at least one noble hydrogenating metal deposited on a substantially acid support, this noble metal possibly being in particular platinum or palladium. As examples, thioresistant catalysts such as LD 402 catalysts from Procatalyse, AS-100 from Criterion and TK 908 by Haldor Topsoe can be used for this purpose.

    Le catalyseur utilisé peut être également un catalyseur à base de nickel, ce qui s'avère être une voie intéressante, car plus économique que celle utilisant les catalyseurs contenant du platine ou du palladium. A titre d'exemples, les catalyseurs tels que les catalyseurs HTC 400 et HTC 500 de Crosfield et C46-7-03 et L3427 de Süd-Chemie peuvent être utilisés. De préférence, le catalyseur HTC 400 de Crosfield est employé.The catalyst used can also be a catalyst based on nickel, which turns out to be an interesting route, because more economical than that using catalysts containing platinum or palladium. As examples, catalysts such as HTC 400 and HTC 500 from Crosfield and C46-7-03 and L3427 from Süd-Chemie can be used. Preferably Crosfield's HTC 400 catalyst is employed.

    Dans le cas d'un catalyseur contenant un métal noble, la température de réaction est généralement comprise entre 200 et 300°C, sous une pression minimum de 30.105 Pa, avec une vitesse volumique horaire de 1 à 5 h-1, le rapport volumique hydrogène/hydrocarbures à l'entrée du réacteur étant compris entre 500 et 900 Nm3/m3, de préférence 600 Nm3/m3 (Nm3 signifie ici Normal m3. 1 Normal m3 correspond à 1m3 de gaz dans les conditions standards de température et de pression, c'est-à-dire 0°C et 1 atmosphère - 1,01325.105 Pa). Avantageusement, la température est d'environ 240°C, sous une pression sensiblement de 50.105 Pa.In the case of a catalyst containing a noble metal, the reaction temperature is generally between 200 and 300 ° C, under a minimum pressure of 30.10 5 Pa, with an hourly volume speed of 1 to 5 h -1 , the ratio volume hydrogen / hydrocarbons at the inlet of the reactor being between 500 and 900 Nm 3 / m 3 , preferably 600 Nm 3 / m 3 (Nm 3 here means Normal m 3. 1 Normal m 3 corresponds to 1m 3 of gas in standard conditions of temperature and pressure, i.e. 0 ° C and 1 atmosphere - 1.01325.10 5 Pa). Advantageously, the temperature is approximately 240 ° C., under a pressure substantially of 50 × 10 5 Pa.

    Dans le cas d'un catalyseur à base de nickel, la température de réaction est généralement comprise entre 100 et 200°C, sous une pression minimum de 30.105 Pa, avec une vitesse volumique horaire de 1 à 5 h-1, le rapport volumique hydrogène/hydrocarbures à l'entrée du réacteur étant compris entre 600 et 1000 Nm3/m3, de préférence égal à 800 Nm3/m3. Avantageusement, la température est d'environ 160°C, sous une pression sensiblement de 50.105 Pa. In the case of a nickel-based catalyst, the reaction temperature is generally between 100 and 200 ° C, under a minimum pressure of 30.10 5 Pa, with an hourly volume speed of 1 to 5 h -1 , the ratio volume hydrogen / hydrocarbons at the inlet of the reactor being between 600 and 1000 Nm 3 / m 3 , preferably equal to 800 Nm 3 / m 3 . Advantageously, the temperature is approximately 160 ° C., under a pressure substantially of 50 × 10 5 Pa.

    De préférence, le catalyseur de l'étape de déaromatisation est disposé en plusieurs lits, entre lesquels est injecté un fluide de trempe pour contrôler l'exothermicité de la réaction de déaromatisation.Preferably, the catalyst of the stage of aromatherapy is arranged in several beds, between which is injected with a quenching fluid to control the exothermicity of the aromatization reaction.

    Selon les types de catalyseurs utilisés pour les deux étapes décrites ci-dessus, une étape complémentaire de déazotation peut être effectuée avant celle de déaromatisation. En effet, certains catalyseurs de déaromatisation sont sensibles à l'azote, ce qui entraíne leur désactivation. De ce fait, si le catalyseur d'hydrotraitement sélectionné n'a pas réduit suffisamment la teneur en azote de la charge, celle-ci doit être traitée afin d'avoir une teneur en azote très faible de l'ordre de 10 ppm. Ce traitement peut être effectué par différents moyens tel qu'un piège classique à azote contenant une masse déazotante.Depending on the types of catalysts used for both steps described above, a complementary step of denitration can be carried out before that of aromatization. Indeed, certain catalysts of aromatics are sensitive to nitrogen, which causes their deactivation. Therefore, if the catalyst selected hydrotreatment did not reduce the nitrogen content of the feed, it must be treated in order to have a very low nitrogen content of the order of 10 ppm. This treatment can be carried out by different means such as a conventional nitrogen trap containing a mass denim.

    Selon le type de catalyseur utilisé dans l'étape de déaromatisation, un lavage de l'effluent de l'étape d'hydrotraitement est nécessaire afin d'éliminer l'ammoniac et le sulfure d'hydrogène dissous qui sont des facteurs limitants ou empoisonnants pour certains types de catalyseurs de déaromatisation.Depending on the type of catalyst used in the aromatization, washing of the step effluent hydrotreatment is required to remove ammonia and dissolved hydrogen sulfide which are factors limiting or poisoning for certain types of dearomatization catalysts.

    Les exemples ci-après illustrent différents modes de préparation de carburéacteurs selon l'art antérieur et selon l'invention. Ils n'ont pas de caractère limitatif et sont destinés à illustrer les avantages des carburéacteurs selon l'invention telle que définie dans les revendications.The examples below illustrate different modes of preparation of jet fuel according to the prior art and according to the invention. They are not limiting in nature and are intended to illustrate the advantages of jet fuels according to the invention as defined in the claims.

    Dans ces exemples, on se réfèrera à la figure unique du dessin annexé, qui représente diverses courbes de distillation de carburéacteurs décrites dans les exemples.In these examples, we will refer to the single figure of attached drawing, which represents various curves of distillation of jet fuels described in the examples.

    Exemple 1Example 1

    Une charge, à points de distillation compris entre 150 et 250°C, provenant directement du fractionnement d'une unité de craquage catalytique, a été traitée en accord avec le procédé selon l'invention.One charge, at distillation points between 150 and 250 ° C, coming directly from the fractionation of a catalytic cracking unit, has been treated in accordance with the method according to the invention.

    Dans un premier temps, la charge a été traitée dans une unité d'hydrotraitement. On utilise un catalyseur à base d'alumine ayant une surface spécifique de 220 m2/g, un volume poreux de 0,5 cm3/g, renfermant, en % en poids, 4,2% d'oxyde de nickel et 16,5% de molybdène. On opère à une température moyenne de 325°C sous environ 35.105 Pa, avec une vitesse volumique horaire de 3 h-1 et un rapport hydrogène/hydrocarbures de 200 Nm3/m3.Initially, the feed was treated in a hydrotreating unit. An alumina catalyst is used having a specific surface of 220 m 2 / g, a pore volume of 0.5 cm 3 / g, containing, in% by weight, 4.2% of nickel oxide and 16 , 5% molybdenum. The operation is carried out at an average temperature of 325 ° C. under approximately 35.10 5 Pa, with an hourly volume speed of 3 h -1 and a hydrogen / hydrocarbon ratio of 200 Nm 3 / m 3 .

    Pour l'étape de déaromatisation, on utilise le catalyseur TK 908 de Haldor Topsoe. On opère à une température moyenne de 240 °C sous environ 50.105 Pa, avec une vitesse volumique horaire de 1 h-1 et un rapport hydrogène/hydrocarbures de 600 Nm3/m3.For the dearomatization stage, the catalyst TK 908 from Haldor Topsoe is used. The operation is carried out at an average temperature of 240 ° C. under approximately 50 × 10 5 Pa, with an hourly volume speed of 1 h -1 and a hydrogen / hydrocarbon ratio of 600 Nm 3 / m 3 .

    Les caractéristiques de la charge, de l'effluent après hydrotraitement et du carburéacteur obtenu après déaromatisation, sont rassemblées dans le Tableau 1 ci-après :

    Figure 00100001
    The characteristics of the feedstock, of the effluent after hydrotreatment and of the jet fuel obtained after dearomatization, are collated in Table 1 below:
    Figure 00100001

    La courbe de distillation est représentée sur la figure unique annexée.The distillation curve is shown in the figure single annexed.

    Exemple 2 (Comparatif) Example 2 (Comparative)

    Un mélange massique composé à 50% d'une fraction kérosène de points de distillation compris entre 140 et 270°C issue de distillation directe de pétrole brut, et à 50% d'une charge de points de distillation de 160 et 240°C, provenant directement du fractionnement d'une unité de craquage catalytique, a été traitée en accord avec le procédé selon l'invention.A mass mixture composed of 50% of a fraction kerosene from distillation points between 140 and 270 ° C from direct distillation of crude oil, and at 50% of a load of distillation points of 160 and 240 ° C, coming directly from the fractionation of a unit of catalytic cracking, has been treated in accordance with the method according to the invention.

    Dans un premier temps, la charge a été traitée dans une unité d'hydrotraitement. On utilise un catalyseur identique à celui de l'exemple 1. On opère à une température moyenne de 300°C, sous environ 35.105 Pa, avec une vitesse volumique horaire de 4 h-1 et un rapport hydrogène/hydrocarbures de 200 Nm3/m3.Initially, the feed was treated in a hydrotreating unit. A catalyst identical to that of Example 1 is used. The operation is carried out at an average temperature of 300 ° C., under approximately 35 × 10 5 Pa, with an hourly volume speed of 4 h -1 and a hydrogen / hydrocarbon ratio of 200 Nm 3 / m 3 .

    Pour l'étape de déaromatisation, on utilise le catalyseur TK 908 de Haldor Topsoe. On opère à une température moyenne de 270 °C, sous environ 50.105 Pa, avec une vitesse volumique horaire de 3 h-1 et un rapport hydrogène/hydrocarbures de 600 Nm3/m3.For the dearomatization stage, the catalyst TK 908 from Haldor Topsoe is used. The operation is carried out at an average temperature of 270 ° C., under approximately 50 × 10 5 Pa, with an hourly volume speed of 3 h -1 and a hydrogen / hydrocarbon ratio of 600 Nm 3 / m 3 .

    Les caractéristiques de la charge, de l'effluent après hydrotraitement et du carburéacteur obtenu après déaromatisation, sont rassemblées dans le Tableau 2 ci-après :

    Figure 00120001
    La courbe de distillation est reproduite sur la figure unique annexée.The characteristics of the feed, of the effluent after hydrotreatment and of the jet fuel obtained after dearomatization, are collated in Table 2 below:
    Figure 00120001
    The distillation curve is reproduced in the attached single figure.

    Cet exemple illustre l'utilisation d'une fraction kérosène issue de la distillation directe de pétrole brut comme diluant, ce qui permet à la fois de contrôler l'exothermicité des réactions d'hydrotraitement et d'améliorer les qualités de base de la dite fraction kérosène (notamment point de décongélation et pouvoir calorifique inférieur).This example illustrates the use of a fraction kerosene from the direct distillation of crude oil as a diluent, which allows both to control the exothermicity of the hydrotreatment reactions and to improve the basic qualities of the said fraction kerosene (including thawing point and power lower heat).

    Exemple 3Example 3

    Une charge à points de distillation compris entre 150 et 270°C, provenant directement du fractionnement d'une unité de craquage catalytique, a été traitée en accord avec le procédé selon l'invention.A load at distillation points between 150 and 270 ° C, coming directly from the fractionation of a unit catalytic cracking, has been treated in accordance with the method according to the invention.

    Dans un premier temps, la charge a été traitée dans une unité d'hydrotraitement. On utilise un catalyseur à base d'alumine ayant une surface spécifique de 210 m2/g, un volume poreux de 0,6 cm3/g, et renfermant 2,8% d'oxyde de cobalt et 13,8% d'oxyde de molybdène. On opère à une température moyenne de 325°C, sous environ 35.105 Pa, avec une vitesse volumique horaire de 3 h-1 et un rapport hydrogène/hydrocarbures de 300 Nm3/m3.Initially, the feed was treated in a hydrotreating unit. An alumina catalyst is used having a specific surface of 210 m 2 / g, a pore volume of 0.6 cm 3 / g, and containing 2.8% of cobalt oxide and 13.8% of molybdenum oxide. The operation is carried out at an average temperature of 325 ° C., under approximately 35 × 10 5 Pa, with an hourly volume speed of 3 h -1 and a hydrogen / hydrocarbon ratio of 300 Nm 3 / m 3 .

    Pour l'étape de déaromatisation, on utilise le catalyseur HTC 400 Crosfield. On opère à une température moyenne de 160 °C sous environ 50.105 Pa, avec une vitesse volumique horaire de 3 h-1 et un rapport hydrogène/hydrocarbures de 800 Nm3/m3.For the dearomatization stage, the catalyst HTC 400 Crosfield is used. The operation is carried out at an average temperature of 160 ° C. under approximately 50 × 10 5 Pa, with an hourly volume speed of 3 h -1 and a hydrogen / hydrocarbon ratio of 800 Nm 3 / m 3 .

    Les caractéristiques de la charge, de l'effluent après hydrotraitement, et du carburéacteur obtenu après déaromatisation sont exposées dans le Tableau 3 ci-après :

    Figure 00130001
    La courbe de distillation est représentée sur la figure unique annexée.The characteristics of the feedstock, of the effluent after hydrotreatment, and of the jet fuel obtained after dearomatization are set out in Table 3 below:
    Figure 00130001
    The distillation curve is shown in the attached single figure.

    Exemple 4 (Comparatif) Example 4 (Comparative)

    Une charge à points de distillation compris entre 140 et 250°C, provenant de la distillation atmosphérique d'un pétrole brut, est traitée dans une unité d'adoucissage de mercaptans de type "KEROX", dont le principe est décrit succinctement page 877 du livre "Raffinage et génie chimique" de P. Wuithier, IFP, tome 1, édition de 1972.A load at distillation points between 140 and 250 ° C, from the atmospheric distillation of a crude oil, is processed in a softening unit of "KEROX" type mercaptans, the principle of which is described succinctly page 877 of the book "Refining and engineering chemical "by P. Wuithier, IFP, volume 1, 1972 edition.

    On opère de façon connue en soi, en présence de catalyseur à base de phtalocyanine de cobalt, à une pression de 8.105 Pa et à une température de 50°C.The operation is carried out in a manner known per se, in the presence of a catalyst based on cobalt phthalocyanine, at a pressure of 8.10 5 Pa and at a temperature of 50 ° C.

    Les caractéristiques de la charge et du carburateur obtenu sont rassemblées dans le Tableau 4 ci-après:

    Figure 00140001
    La courbe de distillation est reproduite sur la figure unique annexée.The characteristics of the charge and of the carburetor obtained are collated in Table 4 below:
    Figure 00140001
    The distillation curve is reproduced in the attached single figure.

    Exemple 5 (Comparatif) Example 5 (Comparative)

    Une charge à points de distillation compris entre 350 et 560 °C, provenant de la distillation sous vide, est traitée dans un hydrocraqueur à double réacteur de type Unicracking, développé par UNOCAL et UOP. Pour référence, ce dispositif d'hydrocraquage est décrit succinctement page 761 du livre "Raffinage et génie chimique" de P. Wuithier, IFP, tome 1, édition de 1972.A load at distillation points between 350 and 560 ° C, from vacuum distillation, is processed in a Unicracking type double-hydrocracker, developed by UNOCAL and UOP. For reference, this device hydrocracking is briefly described on page 761 of the book "Refining and chemical engineering" by P. Wuithier, IFP, volume 1, 1972 edition.

    La charge de distillat sous vide est pré-traitée dans un premier réacteur en présence d'un catalyseur de déazotation. Ensuite, l'effluent obtenu est traité dans le réacteur de craquage. Les conditions opératoires sont sensiblement similaires à celles indiquées page 764 du livre "Raffinage et génie chimique" de P. Wuithier, IFP, tome 1, édition de 1972.The vacuum distillate charge is pretreated in a first reactor in the presence of a denitrogenation catalyst. Then, the effluent obtained is treated in the reactor cracked. The operating conditions are appreciably similar to those indicated on page 764 of the book "Refining and chemical engineering "by P. Wuithier, IFP, volume 1, edition of 1972.

    Les caractéristiques de la charge et du carburéacteur obtenu par fractionnement sont présentées dans le Tableau 5 ci-après :

    Figure 00150001
    La courbe de distillation est reportée sur la figure unique annexée.The characteristics of the charge and of the jet fuel obtained by fractionation are presented in Table 5 below:
    Figure 00150001
    The distillation curve is shown in the attached single figure.

    L'ensemble des caractéristiques du JET Al et des carburéacteurs des exemples 1, 2, 3, 4 et 5 est décrit dans le Tableau 6 ci-après.All the characteristics of JET Al and jet fuels of examples 1, 2, 3, 4 and 5 is described in Table 6 below.

    Les points de congélation des exemples 1 et 3 sont, en particulier, très inférieurs au minimum requis, c'est-à-dire inférieurs à -47°C, et permettent donc une utilisation potentielle de ces carburéacteurs dans des conditions extrêmes de froid. De plus, on note que le pouvoir calorifique volumique inférieur des carburéacteurs obtenus selon l'invention est particulièrement élevé par rapport à ceux de l'art antérieur.

    Figure 00170001
    Figure 00180001
    The freezing points of Examples 1 and 3 are, in particular, much lower than the minimum required, that is to say less than -47 ° C, and therefore allow potential use of these jet fuels in extreme cold conditions. In addition, it should be noted that the lower calorific power of the jet fuels obtained according to the invention is particularly high compared to those of the prior art.
    Figure 00170001
    Figure 00180001

    Claims (11)

    1. A jet fuel having a combination of the following characteristics:
      i) a distillation point in the range between 140 and 300°C;
      ii) a content of aromatic hydrocarbons of less than 22 % by volume;
      iii) a lower volumetric calorific value above 34.65 Mj/litre;
      characterised in that it additionally has:
      iv) a cis decalin/trans decalin ratio higher than 0.2;
      v) a sulphur content of less than 100 ppm, and
      vi) a ratio of naphtenes / paraffins of between 1.2 and 2.
    2. A jet fuel according to claim 1, characterised in that its calorific value is between 34.65 and 35.30 Mj/litre.
    3. A jet fuel according to claim 1 or 2, characterised in that its cis decalin/trans decalin ratio higher than 0.3.
    4. A jet fuel according to any one of the preceding claims, characterised in that its naphthalene/trans decalin ratio is lower than 0.05.
    5. A process for preparing a jet fuel according to any one of claims 1 to 4, characterised in that a catalytic cracking fraction distilling between 140 and 300°C is subjected to a hydrotreatment stage, then to a dearomatisation stage.
    6. A process according to claim 5, characterised in that the hydrotreatment stage is carried out on at least one fixed catalyst bed containing at least one hydrogenating and/or hydrocracking metal, at an average temperature of between 250 and 350°C, at a minimum pressure of 30.105 Pa, with an hourly spacial velocity of 1 to 5 h-1 and a hydrogen/hydrocarbon ratio of between 100 and 500 Nm3/m3.
    7. A process according to claim 6, characterised in that the catalyst contains cobalt and molybdenum or nickel and molybdenum.
    8. A process according to any one of claims 5 to 7, characterised in that the dearomatisation stage is carried out in the presence of a catalyst containing at least one noble metal disposed on at least one fixed bed, at a temperature of between 200 and 300°C and at a minimum pressure of 30.105 Pa, with an hourly spatial velocity of 1 to 5 h-1 and a hydrogen/hydrocarbon ratio of between 500 and 900 Nm3/m3.
    9. A process according to any one of claims 5 to 8, characterised in that the dearomatisation stage is carried out in the presence of a nickel-based catalyst disposed on at least one fixed bed, at a temperature of between 100 and 200°C and at a minimum pressure of 30.105 Pa, with an hourly spatial velocity of 1 to 5 h-1 and a hydrogen/hydrocarbon ratio of between 600 and 1000 Nm3/m3.
    10. A process according to any one of claims 5 to 9, characterised in that a diluent is used in at least one of the stages of said process to control the exothermic nature of the reaction.
    11. A process according to claim 10, characterised in that a diluent is mixed with the catalytic cracking fraction before hydrotreatment, said diluent being a kerosene fraction formed in the atmospheric distillation of crude petroleum.
    EP96917528A 1995-05-22 1996-05-22 Jet fuel and method for producing same Expired - Lifetime EP0773981B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9506049 1995-05-22
    FR9506049A FR2734575B1 (en) 1995-05-22 1995-05-22 CARBUREACTOR AND PROCESS FOR PREPARING THE SAME
    PCT/FR1996/000762 WO1996037577A1 (en) 1995-05-22 1996-05-22 Jet fuel and method for producing same

    Publications (2)

    Publication Number Publication Date
    EP0773981A1 EP0773981A1 (en) 1997-05-21
    EP0773981B1 true EP0773981B1 (en) 1999-01-13

    Family

    ID=9479231

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96917528A Expired - Lifetime EP0773981B1 (en) 1995-05-22 1996-05-22 Jet fuel and method for producing same

    Country Status (11)

    Country Link
    US (1) US5954941A (en)
    EP (1) EP0773981B1 (en)
    JP (1) JP3622771B2 (en)
    AT (1) ATE175713T1 (en)
    DE (1) DE69601346T2 (en)
    DK (1) DK0773981T3 (en)
    ES (1) ES2126402T3 (en)
    FR (1) FR2734575B1 (en)
    GR (1) GR3029514T3 (en)
    WO (1) WO1996037577A1 (en)
    ZA (1) ZA964109B (en)

    Families Citing this family (17)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US20050232956A1 (en) * 2004-02-26 2005-10-20 Shailendra Bist Method for separating saturated and unsaturated fatty acid esters and use of separated fatty acid esters
    US20070251141A1 (en) * 2004-02-26 2007-11-01 Purdue Research Foundation Method for Preparation, Use and Separation of Fatty Acid Esters
    US7892418B2 (en) * 2005-04-11 2011-02-22 Oil Tech SARL Process for producing low sulfur and high cetane number petroleum fuel
    EP2049455A1 (en) * 2006-07-13 2009-04-22 Peter Jeney Fuel on h2o2-basis and apparatus for its utilization as rocket fuel and fuel for rotor tip engines
    US20090199462A1 (en) * 2007-03-23 2009-08-13 Shailendra Bist Method for separating saturated and unsaturated fatty acid esters and use of separated fatty acid esters
    US7837857B2 (en) * 2007-12-24 2010-11-23 Uop Llc Hydrocracking process for fabricating jet fuel from diesel fuel
    WO2010048251A2 (en) * 2008-10-22 2010-04-29 Chevron U.S.A. Inc. A high energy distillate fuel composition and method of making the same
    GB2484436B (en) * 2009-08-03 2013-07-10 Sasol Tech Pty Ltd Fully synthetic jet fuel
    WO2011061575A1 (en) * 2009-11-20 2011-05-26 Total Raffinage Marketing Process for the production of hydrocarbon fluids having a low aromatic content
    WO2011061576A1 (en) * 2009-11-20 2011-05-26 Total Raffinage Marketing Process for the production of hydrocarbon fluids having a low aromatic content
    CA2807766C (en) * 2010-08-16 2020-07-21 Chevron U.S.A. Inc. Jet fuels having superior thermal stability
    WO2013104614A1 (en) * 2012-01-09 2013-07-18 Total Raffinage Marketing Method for the conversion of low boiling point olefin containing hydrocarbon feedstock
    FR3015514B1 (en) 2013-12-23 2016-10-28 Total Marketing Services IMPROVED PROCESS FOR DESAROMATIZATION OF PETROLEUM CUTTERS
    FR3023298B1 (en) 2014-07-01 2017-12-29 Total Marketing Services PROCESS FOR DESAROMATISATION OF PETROLEUM CUTTERS
    US11697780B1 (en) 2018-01-18 2023-07-11 Reaction Systems, Inc. Decahydronaphthalene as an endothermic fuel for hypersonic vehicles
    US11111448B1 (en) 2018-01-18 2021-09-07 Reaction Systems Inc. Decahydronaphthalene as an endothermic fuel for hypersonic vehicles
    JP7198024B2 (en) * 2018-09-27 2022-12-28 コスモ石油株式会社 Jet fuel base stock and jet fuel oil composition

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3175970A (en) * 1962-03-20 1965-03-30 Gulf Research Development Co Process for preparing a jet fuel
    US3607729A (en) * 1969-04-07 1971-09-21 Shell Oil Co Production of kerosene jet fuels
    US3985638A (en) * 1974-01-30 1976-10-12 Sun Oil Company Of Pennsylvania High quality blended jet fuel composition
    FR2268860B1 (en) * 1974-04-24 1977-06-24 Inst Francais Du Petrole
    US4409092A (en) * 1980-04-07 1983-10-11 Ashland Oil, Inc. Combination process for upgrading oil products of coal, shale oil and crude oil to produce jet fuels, diesel fuels and gasoline
    US4332666A (en) * 1980-05-06 1982-06-01 Exxon Research & Engineering Co. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered
    ZA845472B (en) * 1983-07-15 1985-05-29 Broken Hill Pty Co Ltd Production of fuels,particularly jet and diesel fuels,and constituents thereof

    Also Published As

    Publication number Publication date
    EP0773981A1 (en) 1997-05-21
    DE69601346D1 (en) 1999-02-25
    DE69601346T2 (en) 1999-06-17
    FR2734575A1 (en) 1996-11-29
    WO1996037577A1 (en) 1996-11-28
    ES2126402T3 (en) 1999-03-16
    ZA964109B (en) 1996-08-26
    ATE175713T1 (en) 1999-01-15
    GR3029514T3 (en) 1999-05-28
    JPH10503804A (en) 1998-04-07
    US5954941A (en) 1999-09-21
    FR2734575B1 (en) 1997-08-22
    DK0773981T3 (en) 1999-08-30
    JP3622771B2 (en) 2005-02-23

    Similar Documents

    Publication Publication Date Title
    EP0773981B1 (en) Jet fuel and method for producing same
    EP2333031B1 (en) Process to produce high quality kerosine and diesel fuels and hydrogen coproduction from light saturated fractions
    CA2239827C (en) Procedure for the conversion of heavy petroleum fractions and consisting of an ebullating-bed conversion stage and a hydroprocessing stage
    KR100527417B1 (en) Process for Producing Synthetic Naphtha Fuel and Synthetic Naphtha Fuel Produced by That Process
    CA1094579A (en) Process for the up-grading of fischer-tropsch synthesis effluents
    EP0621334B1 (en) Process for producing a fuel by extraction and hydrotreatment of a hydrocarboneous feed and produced gasoil
    EP1849850B1 (en) Method of desulphurating olefin gasolines comprising at least two distinct hydrodesulphuration steps
    WO2008081100A2 (en) Method for converting loads from renewable sources for producing diesel fuel bases having low-sulphur and enhanced-ketane contents
    EP0242260B1 (en) Catalytic reforming process
    EP1070108B9 (en) Method for improving a gas oil fraction cetane index
    EP1369468B1 (en) Process of production of hydrocarbons with low content of sulfur and of nitrogen
    EP1354930A1 (en) Process for the preparation of hydrocarbons of low sulfur and mercaptans content.
    EP0685552B1 (en) Process and installation for the selective hydrogenation of catalytic cracking gasoline
    EP2158303B1 (en) Method for producing middle distillates by hydroisomerisation and hydrocracking of a heavy fraction from a fischer-tropsch effluent
    EP0610168B1 (en) Process for the production of high octane number gasolines
    EP0661371B1 (en) Process for the production of an internal combustion engine fuel by hydrotreatment and extraction
    EP2886629B1 (en) Process for the hydrodesulfuration of hydrocarbon fractions
    EP1336649B1 (en) Process for enhancing gasoils containing aromatics and naphthenoaromatics.
    FR2847260A1 (en) SULFURIZATION PROCESS COMPRISING A SELECTIVE HYDROGENATION STAGE OF DIOLEFINS AND A STAGE OF EXTRACTION OF SULFUR COMPOUNDS
    EP1082522B1 (en) A gas turbine arrangement
    CA2194547C (en) Jet fuel and method for producing same
    CN1202218C (en) Medium pressure hydrocracking and catalytic cracking combined process for producing low sulfur diesel oil
    WO2020144097A1 (en) Two-stage hydrocracking process comprising a hydrogenation stage downstream of the second hydrocracking stage, for the production of middle distillates
    FR2600669A1 (en) Hydrocracking process intended for the production of middle distillates
    CA2440189C (en) Method for producing desulphurised petrol from a petroleum fraction containing cracked petrol

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19961210

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    17Q First examination report despatched

    Effective date: 19971222

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    REF Corresponds to:

    Ref document number: 175713

    Country of ref document: AT

    Date of ref document: 19990115

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: FREI PATENTANWALTSBUERO

    Ref country code: CH

    Ref legal event code: EP

    ITF It: translation for a ep patent filed
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    REF Corresponds to:

    Ref document number: 69601346

    Country of ref document: DE

    Date of ref document: 19990225

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2126402

    Country of ref document: ES

    Kind code of ref document: T3

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IE

    Payment date: 19990427

    Year of fee payment: 4

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: LU

    Payment date: 19990428

    Year of fee payment: 4

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 19990204

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19990416

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19991130

    26N No opposition filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000522

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000522

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20090513

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20090514

    Year of fee payment: 14

    Ref country code: FI

    Payment date: 20090515

    Year of fee payment: 14

    Ref country code: AT

    Payment date: 20090515

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20090518

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GR

    Payment date: 20090428

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20100714

    Year of fee payment: 15

    Ref country code: ES

    Payment date: 20100726

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20100726

    Year of fee payment: 15

    Ref country code: DE

    Payment date: 20100713

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20100722

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100522

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100522

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20100713

    Year of fee payment: 15

    EUG Se: european patent has lapsed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100531

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100531

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20100715

    Year of fee payment: 15

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101202

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100523

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100531

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20110610

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20111122

    BERE Be: lapsed

    Owner name: S.A. *TOTAL RAFFINAGE DISTRIBUTION

    Effective date: 20110531

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69601346

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69601346

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20111201

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20110522

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111122

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110522

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110522

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20120717

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110523

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20130131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111130