EP0772757B1 - Energieübertragungssystem zwischen einer wärmequelle und einer kältequelle - Google Patents

Energieübertragungssystem zwischen einer wärmequelle und einer kältequelle Download PDF

Info

Publication number
EP0772757B1
EP0772757B1 EP95926430A EP95926430A EP0772757B1 EP 0772757 B1 EP0772757 B1 EP 0772757B1 EP 95926430 A EP95926430 A EP 95926430A EP 95926430 A EP95926430 A EP 95926430A EP 0772757 B1 EP0772757 B1 EP 0772757B1
Authority
EP
European Patent Office
Prior art keywords
capillary
liquid
vapor
fluid
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95926430A
Other languages
English (en)
French (fr)
Other versions
EP0772757A1 (de
Inventor
Thierry Maciaszek
Hervé HUXTAIX
Michel Feuillatre
Jacques Mauduyt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National dEtudes Spatiales CNES
Original Assignee
Centre National dEtudes Spatiales CNES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National dEtudes Spatiales CNES filed Critical Centre National dEtudes Spatiales CNES
Publication of EP0772757A1 publication Critical patent/EP0772757A1/de
Application granted granted Critical
Publication of EP0772757B1 publication Critical patent/EP0772757B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops

Definitions

  • the present invention relates to a system for energy transfer between a hot source and a source cold, using a pumped two-phase loop capillary.
  • Two-phase capillary pump loops provide profit the following physical phenomenon: if we send, to a end of a heated capillary tube, a liquid having suitable properties, this liquid enters the tube capillary to a point where it completely vaporizes.
  • the liquid and vapor phase separation surface has a curved shape, and is called "meniscus".
  • meniscus we observe, at meniscus level, in the vapor phase, an increase significant pressure, which can be used to the fluid circulating in a closed circuit comprising, in addition to the evaporator capillaries, a suitable condenser.
  • capillary mass that is to say a material having an open porosity with passages of substantially homogeneous dimensions, typically 2 to 20 micrometers.
  • This increase in pressure results from surface tension. It depends on the temperature and the nature of the fluid and the solid walls with which it is in contact, and it is inversely proportional to the radius of the meniscus, or the equivalent radius in case the meniscus is not spherical.
  • the radius of the meniscus or the equivalent radius are themselves very closely related to radius of the capillary, and more generally the radius of curvature of the solid surface in contact with which is made change of state.
  • the pressure increase is therefore negligible if the liquid-vapor interface is in contact with solid surfaces with radii of curvature of a few hundreds of micrometers.
  • the pressure generated at the menisci was around 5 kPa, which is sufficient to compensate for the circuit pressure losses.
  • the condensers could be constituted either by radiators which radiate energy towards space, either by exchangers coupled with other analogous systems, either by change-over devices phase such as boilers or evaporators.
  • the object of the present invention is to provide a apparatus which allows energy transfers in two opposite directions, in a simple way and in a limited volume.
  • the invention provides a energy transfer system between a hot source and a cold source, the system comprising an evaporator capillary located in the hot spring and in which a fluid is introduced in the liquid state and passes completely in the vapor state, a vapor pipe, a condenser located in the cold source where the fluid returns to the state liquid, and a liquid conduit that brings the fluid back to the capillary evaporator, the fluid circulating in the circuit closed under the effect of the pressure generated at meniscus constituting the liquid / vapor interfaces in the evaporator capillaries, this system having for particularity that the closed fluid circuit includes two assemblies each formed by a capillary evaporator connected to the liquid conduit and condenser interposed between the capillary evaporator and the vapor duct, one of the sets located in the hot spring and the other in the cold source, and that the amount of fluid is calculated in such a way that all of the evaporation takes place in capillary passages of capillary evaporation located
  • the circuit filling must be done with precision, so that changes in fluid state occur do in the places provided.
  • Some latitude is provided by the length of the passages in the evaporator capillary and the dimensions of the condenser. This latitude may be exceeded in the case, for example, of a lowering of the temperature of the liquid, causing contraction of it.
  • the capillary evaporator consists of a mass controlled porosity in which the liquid can spray with formation of menisci with a small radius or equivalent radius, this mass being placed in an enclosure between two chambers, one connected to the liquid pipe and the other to the vapor conduit, the source condenser cold is constituted at least in part by that of said chambers which is connected to the steam duct.
  • Figure 1 is a block diagram of a system of prior art.
  • Figure 2 is a block diagram of a system according to the invention.
  • Figures 3 and 4 are sections respectively longitudinal and transverse of an evaporation device capillary of the usual technique.
  • Figure 5 is a perspective diagram of the arrangement several capillary evaporation devices.
  • Figure 6 is a diagram showing a meniscus.
  • Figure 1 shows a block diagram of a system intended to transfer thermal energy from zone A, called “hot spring”, to zone B, at temperature lower, called “cold source”.
  • This system includes a closed circuit in which circulates a fluid which can be, depending on temperatures of use, water, ammonia, a "Freon” etc.
  • This circuit includes capillary evaporation devices 1 connected in parallel, condensers 2, also connected in parallel (or parallel series), a steam circulation 3 and a circulation duct of liquid 4. The direction of circulation of the fluid is indicated by arrows 5.
  • Figures 3 and 4 show the structure of a capillary evaporation device in common use.
  • This device comprises a metal tube 6 having a inlet 7 at one end and outlet 8 at the end opposite. Inside the tube, a cylinder of material porous 9 is held by spacers 10 coaxially to tube 6.
  • This porous material consists of fibers parallels arranged so as to constitute between them passages of maximum controlled dimension, for example of on the order of 20 micrometers, and forming what is called a "capillary wick”.
  • the porous material can consist of any material having pores of suitable dimensions and substantially homogeneous, for example sintered materials metallic or plastic, or ceramic.
  • Figure 5 shows a hot spring consisting of a plate 11 on one side of which are mounted equipment 12 which gives off heat and / or which is desired cool.
  • mounted equipment 12 which gives off heat and / or which is desired cool.
  • On the opposite side of the plate are fixed capillary evaporation devices 1 whose input 7 is connected to a liquid line 5 and communicates with the vacuum inside 13 (see FIG. 4) of the capillary wick 9, and whose outlet 8 is connected to a steam pipe 3 and communicates with the annular space 14 located between the tube 6 and the hair wick 9.
  • the internal vacuum 13 is filled with liquid, and the annular space 14 is filled with steam.
  • the liquid-vapor interface consists of a set of menisci 15 (see Figure 6), rays substantially equal equivalents, all of which are found in the thickness of the porous mass 9.
  • the circulation of the fluid is due to the increase in steam pressure, in capillary evaporators, which is generated at the menisci where the total vaporization of the liquid takes place. during the passage of the capillary wick, the liquid gets heats up very quickly (the flow rates are very low) and vaporizes completely at the menisci at temperature almost constant.
  • the increase in pressure is proportional to the surface tension of the fluid and inversely proportional to the equivalent radius of menisci (we work with radii less than 10 ⁇ m).
  • the fluid flow in each evaporator is thus constantly self-adjusting to have only steam pure at the outlet of each evaporator.
  • an insulator 16 ( Figure 1) must be positioned at the inlet of each evaporator. The role of this isolator is to prevent a return of vapor (in the main tube of liquid from the loop) which could occur in a evaporator during accidental defusing (during too strong power injection for example).
  • a sub-cooler 17 is positioned on the outlet tube liquid.
  • the role of this sub-cooler is to condense vapor which, accidentally, for situations not nominal, would not have been fully condensed at the exit of one of the last condensers.
  • the operating temperature of the loop is controlled by a two-phase pressurizer tank 18.
  • This tank is thermally controlled (heating system and cooling) so as to ensure control of its vaporization temperature which is also the temperature vaporization at the "cold plates" 11 and exchangers (except for pressure losses, which are minimal).
  • the maximum power that can be transported is conditioned by the maximum pressure rise that can supply capillary evaporators and by the sum circuit pressure losses for maximum power considered. With ammonia and equivalent radii of menisci of 10 ⁇ m, we can reach lifts of pressure of the order of 5000Pa.
  • Figure 2 shows the diagram of a transfer system of energy according to the invention.
  • the circuit includes sets each consisting of a capillary evaporator 1A, 1B in series with a condenser 2A, 2B, a steam 3 being connected to each of the condensers 2A, 2B, and a liquid conduit 4 being connected to each of the evaporators capillaries 1A, 1B.
  • a means of reheating the duct low power steam 20 is expected.
  • the direction of circulation of the fluid is the one indicated by the arrows 21.
  • the evaporators lA are active.
  • the liquid at the inlet of the evaporators crosses the capillary strands 9 and vaporizes there.
  • Steam leaves each evaporator device (with an increase of capillary pressure) and passes through the "hot" condensers 2A which are therefore inactive.
  • Steam is collected at the output of these condensers and is transported in a tube 3 up to the inlet of the "cold" condensers 2B.
  • the steam is partially or fully condenses in these condensers.
  • a two-phase or single-phase liquid mixture therefore enters in evaporator devices 1B with "counter-direction" by compared to normal operation for an evaporator.
  • the remaining vapor condenses completely in space ring 14 of the evaporator devices 1B.
  • the liquid is collected and is transported in tube 4 to the entry of 1A evaporators, which closes the loop. In the tube liquid; you can temporarily allow a spray partial liquid.
  • the direction of circulation of the fluid is that of the arrows 22.
  • the 1B evaporators play their role evaporators, the 2B condensers are inactive, the 2A condensers are active and the evaporator devices 1A act as additional condensers at the level of their annular space 14.
  • the steam tube 3 When you want to perform a heat transfer between the different sources and that the transfer does not take place no, the steam tube 3 must be slightly heated (typically with 1W / m) using the heating means 20 typically for an hour to expel the liquid which could be there.
  • the system according to the invention can be used to transfer heat between the different parts of a spacecraft subject to different heat fluxes as a function of time (daily or seasonal sunshine, dissipation thermal, ..).
  • the advantages of this type of loop by compared to the current concept basically consist of the possibility of heat transfers bidirectional with a single loop, which contributes to simplification and reduction of the mass balance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Central Heating Systems (AREA)

Claims (4)

  1. System zur Übertragung von Energie zwischen einer Wärmequelle (A) und einer Kältequelle (B), das folgendes aufweist: einen in der Wärmequelle angeordneten Kapillarverdampfer, in welchem ein Fluid in flüssigem Zustand eingeführt wird und im Inneren der Kapillardurchgänge vollständig in den dampfförmigen Zustand übergeht, eine Dampfleitung (3), einen in der Kältequelle angeordneten Kondensator (2), in welchem das Fluid in den flüssigen Zustand zurückkehrt, indem es an Oberflächen mit großem Krümmungsradius kondensiert, und eine Flüssigkeitsleitung (5), die das Fluid zum Kapillarverdampfer zurückbringt, wobei das Fluid in einem geschlossenen Kreis unter der Wirkung des Drucks umläuft, der auf Höhe des Meniskus erzeugt wird, der die Flüssigkeits/Dampf-Grenzflächen in den Kapillardurchgängen des Verdampfers bildet,
    in dem:
    der geschlossene Fluidkreis zwei Einheiten aufweist, die jeweils aus einem mit der Flüssigkeitsleitung verbundenen Kapillarverdampfer und einem zwischen den Kapillarverdampfer und die Dampfleitung eingesetzten Kondensator besteht, wobei eine der Einheiten sich in der Wärmequelle und die andere in der Kältequelle befindet,
    und die Fluidmenge so berechnet ist, daß die Verdampfung vollständig in den Kapillardurchgängen des in der Wärmequelle angeordneten Kapillarverdampfers stattfindet und daß die Kondensation in dem in der Kältequelle angeordneten Kondensator stattfindet.
  2. System nach Anspruch 1, in dem die Fluidmenge so berechnet ist, daß sich bei allen Betriebsbedingungen im Kapillarverdampfer mindestens eine Flüssigkeits/Dampf-Grenzfläche befindet, wobei eine Dampfblase ohne Verbindung mit der Dampfleitung trotzdem sich ggf. auf der Flüssigkeitsseite des Kapillarverdampfers befinden kann.
  3. System nach Anspruch 1, in dem der Kapillarverdampfer aus einer Masse mit gesteuerter Porosität besteht, in der die Flüssigkeit unter Bildung von Menisken (15) mit kleinem Radius oder Radiusäquivalent verdampfen kann, wobei diese Masse in einem Raum zwischen zwei Kammern (13, 14) angeordnet ist, deren eine mit der Flüssigkeitsleitung und deren andere mit der Dampfleitung (3) verbunden ist, und der Kondensator der Kältequelle mindestens zum Teil aus derjenigen (14) dieser Kammern gebildet ist, die mit der Dampfleitung (3) verbunden ist.
  4. System nach Anspruch 1, in dem mehrere Wärmequellen und/oder mehrere Kältequellen bestehen und mindestens eine dieser Einheiten vorgesehen ist, die aus einem Kapillarverdampfer und einem Kondensator in jeder Wärmequelle und jeder Kältequelle bestehen.
EP95926430A 1994-07-29 1995-07-26 Energieübertragungssystem zwischen einer wärmequelle und einer kältequelle Expired - Lifetime EP0772757B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9409459A FR2723187B1 (fr) 1994-07-29 1994-07-29 Systeme de transfert d'energie entre une source chaude et une source froide
FR9409459 1994-07-29
PCT/FR1995/001004 WO1996004517A1 (fr) 1994-07-29 1995-07-26 Systeme de transfert d'energie entre une source chaude et une source froide

Publications (2)

Publication Number Publication Date
EP0772757A1 EP0772757A1 (de) 1997-05-14
EP0772757B1 true EP0772757B1 (de) 1998-08-26

Family

ID=9465913

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95926430A Expired - Lifetime EP0772757B1 (de) 1994-07-29 1995-07-26 Energieübertragungssystem zwischen einer wärmequelle und einer kältequelle

Country Status (7)

Country Link
US (1) US5842513A (de)
EP (1) EP0772757B1 (de)
JP (1) JPH10503580A (de)
CA (1) CA2196045A1 (de)
DE (2) DE69504357T2 (de)
FR (1) FR2723187B1 (de)
WO (1) WO1996004517A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL122859A0 (en) 1995-07-06 1998-08-16 Univ Leland Stanford Junior Cell-free synthesis of polyketides
FR2752291B1 (fr) * 1996-08-12 1998-09-25 Centre Nat Etd Spatiales Evaporateur capillaire pour boucle diphasique de transfert d'energie entre une source chaude et une source froide
FR2783312A1 (fr) 1998-09-15 2000-03-17 Matra Marconi Space France Boucle fluide a pompage capillaire
FR2783313A1 (fr) 1998-09-15 2000-03-17 Matra Marconi Space France Dispositif de tranfert de chaleur
US6938679B1 (en) * 1998-09-15 2005-09-06 The Boeing Company Heat transport apparatus
JP2000241089A (ja) * 1999-02-19 2000-09-08 Mitsubishi Electric Corp 蒸発器、吸熱器、熱輸送システム及び熱輸送方法
US7708053B2 (en) * 2000-06-30 2010-05-04 Alliant Techsystems Inc. Heat transfer system
AU2001271574A1 (en) * 2000-06-30 2002-01-14 Swales Aerospace Phase control in the capillary evaporators
US7004240B1 (en) * 2002-06-24 2006-02-28 Swales & Associates, Inc. Heat transport system
US7931072B1 (en) 2002-10-02 2011-04-26 Alliant Techsystems Inc. High heat flux evaporator, heat transfer systems
US8136580B2 (en) 2000-06-30 2012-03-20 Alliant Techsystems Inc. Evaporator for a heat transfer system
US8109325B2 (en) 2000-06-30 2012-02-07 Alliant Techsystems Inc. Heat transfer system
US7251889B2 (en) * 2000-06-30 2007-08-07 Swales & Associates, Inc. Manufacture of a heat transfer system
US8047268B1 (en) 2002-10-02 2011-11-01 Alliant Techsystems Inc. Two-phase heat transfer system and evaporators and condensers for use in heat transfer systems
US7549461B2 (en) 2000-06-30 2009-06-23 Alliant Techsystems Inc. Thermal management system
US7086452B1 (en) * 2000-06-30 2006-08-08 Intel Corporation Method and an apparatus for cooling a computer
WO2002010661A1 (en) * 2000-07-27 2002-02-07 Advanced Technologies Limited High-efficiency computer thermal management apparatus and method
US6615912B2 (en) * 2001-06-20 2003-09-09 Thermal Corp. Porous vapor valve for improved loop thermosiphon performance
WO2004040218A2 (en) * 2002-10-28 2004-05-13 Swales & Associates, Inc. Heat transfer system
CN100449244C (zh) * 2002-10-28 2009-01-07 斯沃勒斯联合公司 传热系统
US7013956B2 (en) * 2003-09-02 2006-03-21 Thermal Corp. Heat pipe evaporator with porous valve
CN101111734B (zh) * 2005-02-02 2010-05-12 开利公司 具有多孔插入物的并流式换热器
US7661464B2 (en) * 2005-12-09 2010-02-16 Alliant Techsystems Inc. Evaporator for use in a heat transfer system
US10345052B2 (en) * 2016-12-21 2019-07-09 Hamilton Sundstrand Corporation Porous media evaporator

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889096A (en) * 1970-07-11 1975-06-10 Philips Corp Electric soldering iron delivering heat by change of state of a liquid heat transporting medium
US4312402A (en) * 1979-09-19 1982-01-26 Hughes Aircraft Company Osmotically pumped environmental control device
JPS59221593A (ja) * 1983-05-31 1984-12-13 Toyo Seisakusho:Kk ヒ−トパイプ式熱交換器
SU1430709A1 (ru) * 1987-01-04 1988-10-15 Московский энергетический институт Теплопередающее устройство
US4903761A (en) * 1987-06-03 1990-02-27 Lockheed Missiles & Space Company, Inc. Wick assembly for self-regulated fluid management in a pumped two-phase heat transfer system
JPH063354B2 (ja) * 1987-06-23 1994-01-12 アクトロニクス株式会社 ル−プ型細管ヒ−トパイプ
US4899810A (en) * 1987-10-22 1990-02-13 General Electric Company Low pressure drop condenser/heat pipe heat exchanger
EP0351173A3 (de) * 1988-07-14 1991-06-05 Osaka Prefecture Substanz mit antiretroviraler Aktivität
US4869313A (en) * 1988-07-15 1989-09-26 General Electric Company Low pressure drop condenser/evaporator pump heat exchanger
DE3908994A1 (de) * 1989-03-18 1990-09-20 Daimler Benz Ag Fahrgastraumheizung, insbesondere omnibusheizung
US5036905A (en) * 1989-10-26 1991-08-06 The United States Of America As Represented By The Secretary Of The Air Force High efficiency heat exchanger
US5103897A (en) * 1991-06-05 1992-04-14 Martin Marietta Corporation Flowrate controller for hybrid capillary/mechanical two-phase thermal loops
US5303768A (en) * 1993-02-17 1994-04-19 Grumman Aerospace Corporation Capillary pump evaporator

Also Published As

Publication number Publication date
US5842513A (en) 1998-12-01
DE69504357T2 (de) 1999-04-22
EP0772757A1 (de) 1997-05-14
FR2723187B1 (fr) 1996-09-27
FR2723187A1 (fr) 1996-02-02
CA2196045A1 (en) 1996-02-15
JPH10503580A (ja) 1998-03-31
WO1996004517A1 (fr) 1996-02-15
DE69504357D1 (de) 1998-10-01
DE772757T1 (de) 1997-09-25

Similar Documents

Publication Publication Date Title
EP0772757B1 (de) Energieübertragungssystem zwischen einer wärmequelle und einer kältequelle
BE1009410A3 (fr) Dispositif de transport de chaleur.
EP1293428B1 (de) Wärmetauscher
EP2795226B1 (de) Kühlvorrichtung
FR2752291A1 (fr) Evaporateur capillaire pour boucle diphasique de transfert d'energie entre une source chaude et une source froide
FR2699365A1 (fr) Système de dissipation de l'énergie calorifique dégagée par un composant électronique.
FR2903222A1 (fr) Disposition de regulation thermique passive a base de boucle fluide diphasique a pompage capillaire avec capacite thermique.
FR2783313A1 (fr) Dispositif de tranfert de chaleur
EP2379951A1 (de) Heizkörper für eine haushaltsheizung mit einem zweiphasentransferfluid
EP0166661A2 (de) Vorrichtung zum Auffangen und Fortleiten von Strahlungsenergie wie Sonnenstrahlung
JP2904199B2 (ja) キャピラリポンプループ用蒸発器及びその熱交換方法
FR2468085A1 (fr) Appareil frigorifique a sorption, procede pour la mise en service de cet appareil et utilisation de ce dernier
FR3032027A1 (fr) Boucle diphasique de refroidissement a evaporateurs satellites
EP0767081B1 (de) Wärmerückgewinnungsanlage aus Fahrzeugabgasen
WO2012101384A1 (fr) Dispositif de refroidissement pour systeme electronique de puissance dans un vehicule
FR2871221A1 (fr) Dispositif d'echange et de transfert thermique, notamment pour vehicule automobile
FR2783312A1 (fr) Boucle fluide a pompage capillaire
EP4323711A1 (de) Zweiphasige wärmeübertragungsvorrichtung mit flüssigkeitsüberlauftank
FR3081214A1 (fr) Evaporateur d'une boucle fluide et boucle fluide comprenant un tel evaporateur
FR2756621A1 (fr) Thermo-frigopompe
BE899256A (fr) Pompe a chaleur.
WO2014154984A1 (fr) Caloduc comportant un bouchon gazeux de coupure
EP2474216A1 (de) Kühlvorrichtung für ein elektronisches leistungssystem bei einem fahrzeug
FR2615276A1 (fr) Capteur du type solaire
BE851734A (fr) Installation de transfert de chaleur a fluide caloporteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT

GBC Gb: translation of claims filed (gb section 78(7)/1977)
ITCL It: translation for ep claims filed

Representative=s name: STUDIO CONSUL.BREVETTUALE S.R.L.

DET De: translation of patent claims
GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19971127

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

REF Corresponds to:

Ref document number: 69504357

Country of ref document: DE

Date of ref document: 19981001

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981005

REG Reference to a national code

Ref country code: FR

Ref legal event code: TQ

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120723

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120816

Year of fee payment: 18

Ref country code: DE

Payment date: 20120713

Year of fee payment: 18

Ref country code: IT

Payment date: 20120720

Year of fee payment: 18

Ref country code: BE

Payment date: 20120726

Year of fee payment: 18

BERE Be: lapsed

Owner name: CENTRE NATIONAL D'*ETUDES SPATIALES

Effective date: 20130731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130726

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69504357

Country of ref document: DE

Effective date: 20140201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130726