EP0772757B1 - Energy transfer system between a hot source and a cold source - Google Patents
Energy transfer system between a hot source and a cold source Download PDFInfo
- Publication number
- EP0772757B1 EP0772757B1 EP95926430A EP95926430A EP0772757B1 EP 0772757 B1 EP0772757 B1 EP 0772757B1 EP 95926430 A EP95926430 A EP 95926430A EP 95926430 A EP95926430 A EP 95926430A EP 0772757 B1 EP0772757 B1 EP 0772757B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- capillary
- liquid
- vapor
- fluid
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/043—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
Definitions
- the present invention relates to a system for energy transfer between a hot source and a source cold, using a pumped two-phase loop capillary.
- Two-phase capillary pump loops provide profit the following physical phenomenon: if we send, to a end of a heated capillary tube, a liquid having suitable properties, this liquid enters the tube capillary to a point where it completely vaporizes.
- the liquid and vapor phase separation surface has a curved shape, and is called "meniscus".
- meniscus we observe, at meniscus level, in the vapor phase, an increase significant pressure, which can be used to the fluid circulating in a closed circuit comprising, in addition to the evaporator capillaries, a suitable condenser.
- capillary mass that is to say a material having an open porosity with passages of substantially homogeneous dimensions, typically 2 to 20 micrometers.
- This increase in pressure results from surface tension. It depends on the temperature and the nature of the fluid and the solid walls with which it is in contact, and it is inversely proportional to the radius of the meniscus, or the equivalent radius in case the meniscus is not spherical.
- the radius of the meniscus or the equivalent radius are themselves very closely related to radius of the capillary, and more generally the radius of curvature of the solid surface in contact with which is made change of state.
- the pressure increase is therefore negligible if the liquid-vapor interface is in contact with solid surfaces with radii of curvature of a few hundreds of micrometers.
- the pressure generated at the menisci was around 5 kPa, which is sufficient to compensate for the circuit pressure losses.
- the condensers could be constituted either by radiators which radiate energy towards space, either by exchangers coupled with other analogous systems, either by change-over devices phase such as boilers or evaporators.
- the object of the present invention is to provide a apparatus which allows energy transfers in two opposite directions, in a simple way and in a limited volume.
- the invention provides a energy transfer system between a hot source and a cold source, the system comprising an evaporator capillary located in the hot spring and in which a fluid is introduced in the liquid state and passes completely in the vapor state, a vapor pipe, a condenser located in the cold source where the fluid returns to the state liquid, and a liquid conduit that brings the fluid back to the capillary evaporator, the fluid circulating in the circuit closed under the effect of the pressure generated at meniscus constituting the liquid / vapor interfaces in the evaporator capillaries, this system having for particularity that the closed fluid circuit includes two assemblies each formed by a capillary evaporator connected to the liquid conduit and condenser interposed between the capillary evaporator and the vapor duct, one of the sets located in the hot spring and the other in the cold source, and that the amount of fluid is calculated in such a way that all of the evaporation takes place in capillary passages of capillary evaporation located
- the circuit filling must be done with precision, so that changes in fluid state occur do in the places provided.
- Some latitude is provided by the length of the passages in the evaporator capillary and the dimensions of the condenser. This latitude may be exceeded in the case, for example, of a lowering of the temperature of the liquid, causing contraction of it.
- the capillary evaporator consists of a mass controlled porosity in which the liquid can spray with formation of menisci with a small radius or equivalent radius, this mass being placed in an enclosure between two chambers, one connected to the liquid pipe and the other to the vapor conduit, the source condenser cold is constituted at least in part by that of said chambers which is connected to the steam duct.
- Figure 1 is a block diagram of a system of prior art.
- Figure 2 is a block diagram of a system according to the invention.
- Figures 3 and 4 are sections respectively longitudinal and transverse of an evaporation device capillary of the usual technique.
- Figure 5 is a perspective diagram of the arrangement several capillary evaporation devices.
- Figure 6 is a diagram showing a meniscus.
- Figure 1 shows a block diagram of a system intended to transfer thermal energy from zone A, called “hot spring”, to zone B, at temperature lower, called “cold source”.
- This system includes a closed circuit in which circulates a fluid which can be, depending on temperatures of use, water, ammonia, a "Freon” etc.
- This circuit includes capillary evaporation devices 1 connected in parallel, condensers 2, also connected in parallel (or parallel series), a steam circulation 3 and a circulation duct of liquid 4. The direction of circulation of the fluid is indicated by arrows 5.
- Figures 3 and 4 show the structure of a capillary evaporation device in common use.
- This device comprises a metal tube 6 having a inlet 7 at one end and outlet 8 at the end opposite. Inside the tube, a cylinder of material porous 9 is held by spacers 10 coaxially to tube 6.
- This porous material consists of fibers parallels arranged so as to constitute between them passages of maximum controlled dimension, for example of on the order of 20 micrometers, and forming what is called a "capillary wick”.
- the porous material can consist of any material having pores of suitable dimensions and substantially homogeneous, for example sintered materials metallic or plastic, or ceramic.
- Figure 5 shows a hot spring consisting of a plate 11 on one side of which are mounted equipment 12 which gives off heat and / or which is desired cool.
- mounted equipment 12 which gives off heat and / or which is desired cool.
- On the opposite side of the plate are fixed capillary evaporation devices 1 whose input 7 is connected to a liquid line 5 and communicates with the vacuum inside 13 (see FIG. 4) of the capillary wick 9, and whose outlet 8 is connected to a steam pipe 3 and communicates with the annular space 14 located between the tube 6 and the hair wick 9.
- the internal vacuum 13 is filled with liquid, and the annular space 14 is filled with steam.
- the liquid-vapor interface consists of a set of menisci 15 (see Figure 6), rays substantially equal equivalents, all of which are found in the thickness of the porous mass 9.
- the circulation of the fluid is due to the increase in steam pressure, in capillary evaporators, which is generated at the menisci where the total vaporization of the liquid takes place. during the passage of the capillary wick, the liquid gets heats up very quickly (the flow rates are very low) and vaporizes completely at the menisci at temperature almost constant.
- the increase in pressure is proportional to the surface tension of the fluid and inversely proportional to the equivalent radius of menisci (we work with radii less than 10 ⁇ m).
- the fluid flow in each evaporator is thus constantly self-adjusting to have only steam pure at the outlet of each evaporator.
- an insulator 16 ( Figure 1) must be positioned at the inlet of each evaporator. The role of this isolator is to prevent a return of vapor (in the main tube of liquid from the loop) which could occur in a evaporator during accidental defusing (during too strong power injection for example).
- a sub-cooler 17 is positioned on the outlet tube liquid.
- the role of this sub-cooler is to condense vapor which, accidentally, for situations not nominal, would not have been fully condensed at the exit of one of the last condensers.
- the operating temperature of the loop is controlled by a two-phase pressurizer tank 18.
- This tank is thermally controlled (heating system and cooling) so as to ensure control of its vaporization temperature which is also the temperature vaporization at the "cold plates" 11 and exchangers (except for pressure losses, which are minimal).
- the maximum power that can be transported is conditioned by the maximum pressure rise that can supply capillary evaporators and by the sum circuit pressure losses for maximum power considered. With ammonia and equivalent radii of menisci of 10 ⁇ m, we can reach lifts of pressure of the order of 5000Pa.
- Figure 2 shows the diagram of a transfer system of energy according to the invention.
- the circuit includes sets each consisting of a capillary evaporator 1A, 1B in series with a condenser 2A, 2B, a steam 3 being connected to each of the condensers 2A, 2B, and a liquid conduit 4 being connected to each of the evaporators capillaries 1A, 1B.
- a means of reheating the duct low power steam 20 is expected.
- the direction of circulation of the fluid is the one indicated by the arrows 21.
- the evaporators lA are active.
- the liquid at the inlet of the evaporators crosses the capillary strands 9 and vaporizes there.
- Steam leaves each evaporator device (with an increase of capillary pressure) and passes through the "hot" condensers 2A which are therefore inactive.
- Steam is collected at the output of these condensers and is transported in a tube 3 up to the inlet of the "cold" condensers 2B.
- the steam is partially or fully condenses in these condensers.
- a two-phase or single-phase liquid mixture therefore enters in evaporator devices 1B with "counter-direction" by compared to normal operation for an evaporator.
- the remaining vapor condenses completely in space ring 14 of the evaporator devices 1B.
- the liquid is collected and is transported in tube 4 to the entry of 1A evaporators, which closes the loop. In the tube liquid; you can temporarily allow a spray partial liquid.
- the direction of circulation of the fluid is that of the arrows 22.
- the 1B evaporators play their role evaporators, the 2B condensers are inactive, the 2A condensers are active and the evaporator devices 1A act as additional condensers at the level of their annular space 14.
- the steam tube 3 When you want to perform a heat transfer between the different sources and that the transfer does not take place no, the steam tube 3 must be slightly heated (typically with 1W / m) using the heating means 20 typically for an hour to expel the liquid which could be there.
- the system according to the invention can be used to transfer heat between the different parts of a spacecraft subject to different heat fluxes as a function of time (daily or seasonal sunshine, dissipation thermal, ..).
- the advantages of this type of loop by compared to the current concept basically consist of the possibility of heat transfers bidirectional with a single loop, which contributes to simplification and reduction of the mass balance.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Central Heating Systems (AREA)
Description
La présente invention est relative à un système de transfert d'énergie entre une source chaude et une source froide, utilisant une boucle diphasique à pompage capillaire.The present invention relates to a system for energy transfer between a hot source and a source cold, using a pumped two-phase loop capillary.
Les boucles diphasiques à pompage capillaire mettent à profit le phénomène physique suivant : si on envoie, à une extrémité d'un tube capillaire chauffé, un liquide ayant des propriétés convenables, ce liquide pénètre dans le tube capillaire jusqu'à un point où il se vaporise totalement. La surface de séparation des phases liquide et vapeur a une forme courbe, et est appelée "ménisque". On observe, au niveau du ménisque, dans la phase vapeur, une augmentation de pression appréciable, qui peut être utilisée pour mettre le fluide en circulation dans un circuit fermé comprenant, outre des capillaires évaporateurs, un condenseur approprié.Two-phase capillary pump loops provide profit the following physical phenomenon: if we send, to a end of a heated capillary tube, a liquid having suitable properties, this liquid enters the tube capillary to a point where it completely vaporizes. The liquid and vapor phase separation surface has a curved shape, and is called "meniscus". We observe, at meniscus level, in the vapor phase, an increase significant pressure, which can be used to the fluid circulating in a closed circuit comprising, in addition to the evaporator capillaries, a suitable condenser.
Les phénomènes sont les mêmes si, au lieu d'un tube capillaire, on utilise une "masse capillaire", c'est-à-dire un matériau présentant une porisité ouverte avec des passages de dimensions sensiblement homogènes, typiquement 2 à 20 micromètres.The phenomena are the same if, instead of a tube capillary, we use a "capillary mass", that is to say a material having an open porosity with passages of substantially homogeneous dimensions, typically 2 to 20 micrometers.
Cette augmentation de pression résulte de phénomènes de tension superficielle. Elle dépend de la température et de la nature du fluide et des parois solides avec lesquelles il est en contact, et elle est inversement proportionnelle au rayon du ménisque, ou au rayon équivalent dans le cas où le ménisque n'est pas sphérique. Le rayon du ménisque ou le rayon équivalent sont eux-mêmes très étroitement liés au rayon du capillaire, et plus généralement au rayon de courbure de la surface solide au contact de laquelle se fait le changement d'état. L'augmentation de pression est donc négligeable si l'interface liquide-vapeur est au contact de surfaces solides ayant des rayons de courbure de quelques centaines de micromètres.This increase in pressure results from surface tension. It depends on the temperature and the nature of the fluid and the solid walls with which it is in contact, and it is inversely proportional to the radius of the meniscus, or the equivalent radius in case the meniscus is not spherical. The radius of the meniscus or the equivalent radius are themselves very closely related to radius of the capillary, and more generally the radius of curvature of the solid surface in contact with which is made change of state. The pressure increase is therefore negligible if the liquid-vapor interface is in contact with solid surfaces with radii of curvature of a few hundreds of micrometers.
Dans le présent texte, on parle d'évaporateurs capillaires et de condenseurs. Ces termes peuvent chaque fois s'appliquer à des groupes d'évaporateurs capillaires ou de condenseurs disposés en parallèle dans le circuit fermé.In this text, we talk about evaporators capillaries and condensers. These terms can each times apply to groups of capillary evaporators or of condensers arranged in parallel in the closed circuit.
Pour fixer les idées, on a constitué sur ce principe des systèmes utilisant de l'ammoniac entre -10 et +60°C, avec des rayons équivalents de ménisque de l'ordre de 10 micromètres, la pression générée au niveau des ménisques était de l'ordre de 5 kPa, ce qui suffit à compenser les pertes de charge du circuit. Les condenseurs pouvaient être constitués soit par des radiateurs qui rayonnent l'énergie vers l'espace, soit par des échangeurs couplés avec d'autres systèmes analogues, soit par des dispositifs à changement de phase tels que des bouilleurs ou des évaporateurs.To fix ideas, we built on this principle systems using ammonia between -10 and + 60 ° C, with equivalent meniscus radii on the order of 10 micrometers, the pressure generated at the menisci was around 5 kPa, which is sufficient to compensate for the circuit pressure losses. The condensers could be constituted either by radiators which radiate energy towards space, either by exchangers coupled with other analogous systems, either by change-over devices phase such as boilers or evaporators.
De tels systèmes sont utilisés aujourd'hui dans le domaine spatial.Such systems are used today in the space domain.
Ces systèmes présentent l'inconvénient de ne pouvoir fonctionner en circuit fermé que dans un sens, le ou les capillaires se trouvant toujours dans la source chaude. A bord des engins spatiaux, il arrive que des transferts thermiques doivent être effectués tantôt dans un sens et tantôt dans le sens opposé, par exemple dans le cas de variations journalières ou saisonnières de l'ensoleillement. Il est nécessaire dans ce cas d'implanter deux boucles indépendantes fonctionnant alternativement et en sens inverse, ce qui complique l'appareillage et augmente son encombrement.These systems have the disadvantage of not being able operate in a closed circuit only in one direction, the still in the hot spring. AT on board spacecraft, sometimes transfers thermal must be carried out one way and sometimes in the opposite direction, for example in the case of daily or seasonal variations in sunshine. It is necessary in this case to implant two loops independent operating alternately and in direction reverse, which complicates the apparatus and increases its size.
La présente invention a pour but de fournir un appareillage qui permette des transferts d'énergie dans deux sens opposés, de façon simple et sous un volume limité.The object of the present invention is to provide a apparatus which allows energy transfers in two opposite directions, in a simple way and in a limited volume.
Pour obtenir ce résultat, l'invention fournit un système de transfert d'énergie entre une source chaude et une source froide, le système comprenant un évaporateur capillaire situé dans la source chaude et dans lequel un fluide est introduit à l'état liquide et passe intégralement à l'état de vapeur, un conduit de vapeur, un condenseur situé dans la source froide où le fluide repasse à l'état liquide, et un conduit de liquide qui ramène le fluide à l'évaporateur capillaire, le fluide circulant en circuit fermé sous l'effet de la pression générée au niveau de ménisque constituant les interfaces liquide/vapeur dans les capillaires de l'évaporateur, ce système ayant pour particularité que le circuit fermé de fluide comprend deux ensembles formés chacun d'un évaporateur capillaire relié au conduit de liquide et d'un condenseur intercalé entre l'évaporateur capillaire et le conduit de vapeur, l'un des ensembles se trouvant dans la source chaude et l'autre dans la source froide, et que la quantité de fluide est calculée de telle façon que l'évaporation se fait intégralement dans les passages capillaires de l'évaporation capillaire situé dans la source chaude et que la totalité de la condensation se fait dans le condenseur situé dans la source froide.To obtain this result, the invention provides a energy transfer system between a hot source and a cold source, the system comprising an evaporator capillary located in the hot spring and in which a fluid is introduced in the liquid state and passes completely in the vapor state, a vapor pipe, a condenser located in the cold source where the fluid returns to the state liquid, and a liquid conduit that brings the fluid back to the capillary evaporator, the fluid circulating in the circuit closed under the effect of the pressure generated at meniscus constituting the liquid / vapor interfaces in the evaporator capillaries, this system having for particularity that the closed fluid circuit includes two assemblies each formed by a capillary evaporator connected to the liquid conduit and condenser interposed between the capillary evaporator and the vapor duct, one of the sets located in the hot spring and the other in the cold source, and that the amount of fluid is calculated in such a way that all of the evaporation takes place in capillary passages of capillary evaporation located in the hot spring and that all of the condensation is done in the condenser located in the cold source.
On comprendra que, dans la source chaude, l'évaporation dans l'évaporateur capillaire crée l'augmentation de pression nécessaire pour la mise de fluide en mouvement. Dans la source froide, si la condensation se faisait dans l'évaporateur capillaire, il apparaítrait dans celui-ci une différence de pression en sens inverse, et qui pourrait être du même ordre de grandeur, l'écart dépendant principalement des différences de température entre les sources chaude et froide. En fait, comme la condensation a lieu dans le condenseur de la source froide, l'évaporateur capillaire qui le suit dans le sens de circulation du fluide se comporte comme une simple résistance passive, car ses passages sont remplis complètement de liquide de condensation. La condensation sur les surfaces à grand rayon de courbure du condenseur ne génère que des pressions inverses pratiquement négligeables.It will be understood that, in the hot spring, the evaporation in the capillary evaporator creates the increase in pressure required to set the fluid in motion. In the cold source, if the condensation took place in the capillary evaporator, it would appear therein reverse pressure difference, which could be of the same order of magnitude, the difference depending mainly temperature differences between hot springs and cold. In fact, as the condensation takes place in the cold source condenser, the capillary evaporator which follows it in the direction of circulation of the fluid behaves as a simple passive resistance, because its passages are completely filled with condensate. The condensation on surfaces with a large radius of curvature condenser generates practically only reverse pressures negligible.
Le remplissage du circuit doit être fait avec précision, pour que les changements d'état du fluide se fassent aux endroits prévus. Une certaine latitude est fournie par la longueur des passages dans l'évaporateur capillaire et les dimensions du condenseur. Cette latitude peut être dépassée dans le cas, par exemple, d'un abaissement de la température du liquide, entraínant une contraction de celui-ci. On a constaté, de façon surprenante, que même dans ce cas, qui correspond à un "sous-remplissage" le système continue à fonctionner de façon correcte alors qu'une bulle de vapeur s'est formée du côté de l'évaporateur capillaire qui est normalement en contact avec le liquide, et cela tant que cette bulle est complètement séparée du conduit vapeur par du liquide retenu par capillarité dans l'évaporateur capillaire.The circuit filling must be done with precision, so that changes in fluid state occur do in the places provided. Some latitude is provided by the length of the passages in the evaporator capillary and the dimensions of the condenser. This latitude may be exceeded in the case, for example, of a lowering of the temperature of the liquid, causing contraction of it. We found, in a way surprising, that even in this case, which corresponds to a "underfill" the system continues to operate from correctly when a vapor bubble has formed from the side of the capillary evaporator which is normally in contact with the liquid, and this as long as this bubble is completely separated from the vapor duct by retained liquid by capillarity in the capillary evaporator.
On peut donc prévoir que la quantité de fluide est calculée pour que, dans toutes les conditions de fonctionnement, au moins une interface liquide-vapeur se trouve dans l'évaporateur capillaire, une bulle de vapeur sans communication avec le conduit de vapeur pouvant néanmoins se trouver éventuellement du côté liquide de l'évaporateur capillaire.We can therefore predict that the quantity of fluid is calculated so that under all conditions of operation, at least one liquid-vapor interface is found in the capillary evaporator, a vapor bubble without communication with the steam pipe which can nevertheless possibly be on the liquid side of the capillary evaporator.
Suivant une réalisation intéressante, dans le cas où l'évaporateur capillaire est constitué d'une masse à porosité contrôlée dans laquelle le liquide peut se vaporiser avec formation de ménisques à faible rayon ou rayon équivalent, cette masse étant placée dans une enceinte entre deux chambres reliées l'une au conduit de liquide et l'autre au conduit de vapeur, le condenseur de la source froide est constitué au moins en partie par celle desdites chambres qui est reliée au conduit de vapeur. Au cas où toute la condensation peut se faire dans cette chambre, c'est-à-dire à l'intérieur de l'enceinte du dispositif d'évaporation capillaire au sens courant du terme, on aboutit à un ensemble remarquablement simple et compact.According to an interesting realization, in the case where the capillary evaporator consists of a mass controlled porosity in which the liquid can spray with formation of menisci with a small radius or equivalent radius, this mass being placed in an enclosure between two chambers, one connected to the liquid pipe and the other to the vapor conduit, the source condenser cold is constituted at least in part by that of said chambers which is connected to the steam duct. In case all the condensation can be done in this room, that is to say inside the enclosure of the device capillary evaporation in the current sense of the term, we results in a remarkably simple and compact package.
Selon un mode de réalisation plus perfectionné, il existe plusieurs sources chaudes et/ou plusieurs sources froides, et il y a au moins un desdits ensembles formés d'un évaporateur capillaire et d'un condenseur dans chaque source chaude et chaque source froide.According to a more sophisticated embodiment, it there are several hot springs and / or several sources cold, and there is at least one of said assemblies formed of a capillary evaporator and condenser in each source hot and each cold source.
On a constaté de façon imprévue que le système s'auto-stabilise même avec des différences appréciables de température entre les sources chaudes ou entre les sources froides.It was unexpectedly found that the system self-stabilized even with appreciable differences in temperature between hot springs or between sources cold.
L'invention va être exposée de façon plus détaillée à l'aide d'exemples pratiques illustrés par les dessins, parmi lesquels :The invention will be explained in more detail in using practical examples illustrated by the drawings, among which :
Figure 1 est un schéma de principe d'un système de l'art antérieur.Figure 1 is a block diagram of a system of prior art.
Figure 2 est un schéma de principe d'un système selon l'invention.Figure 2 is a block diagram of a system according to the invention.
Figures 3 et 4 sont des coupes respectivement longitudinale et transversale d'un dispositif d'évaporation capillaire de la technique usuelle.Figures 3 and 4 are sections respectively longitudinal and transverse of an evaporation device capillary of the usual technique.
Figure 5 est un schéma en perspective de la disposition de plusieurs dispositifs d'évaporation capillaire.Figure 5 is a perspective diagram of the arrangement several capillary evaporation devices.
Figure 6 est un schéma montrant un ménisque.Figure 6 is a diagram showing a meniscus.
La figure 1 montre un schéma de principe d'un système destiné à transférer de l'énergie thermique d'une zone A, dite "source chaude", vers une zone B, à température inférieure, dite "source froide".Figure 1 shows a block diagram of a system intended to transfer thermal energy from zone A, called "hot spring", to zone B, at temperature lower, called "cold source".
Ce système comprend un circuit fermé dans lequel
circule un fluide qui peut être, selon les températures
d'utilisation, de l'eau, de l'ammoniac, un "Fréon" etc.. Ce
circuit comprend des dispositifs d'évaporation capillaire 1
branchés en parallèle, des condenseurs 2, également branchés
en parallèle (ou séries parallèles), un conduit de
circulation de vapeur 3 et un conduit de circulation de
liquide 4. Le sens de circulation du fluide est indiqué par
les flèches 5.This system includes a closed circuit in which
circulates a fluid which can be, depending on temperatures
of use, water, ammonia, a "Freon" etc. This
circuit includes capillary evaporation devices 1
connected in parallel, condensers 2, also connected
in parallel (or parallel series), a
Les figures 3 et 4 montrent la structure d'un dispositif d'évaporation capillaire d'usage courant.Figures 3 and 4 show the structure of a capillary evaporation device in common use.
Ce dispositif comprend un tube métallique 6 ayant une
entrée 7 à une extrémité et une sortie 8 à l'extrémité
opposée. A l'intérieur du tube, un cylindre de matière
poreuse 9 est maintenu par des entretoises 10 coaxialement
au tube 6. Cette matière poreuse est constituée de fibres
parallèles disposées de façon à constituer entre elles des
passages de dimension maximale contrôlée, par exemple de
l'ordre de 20 micromètres, et formant ce qu'on appelle une
"mèche capillaire".This device comprises a
La matière poreuse peut être constituée de tout matériau ayant des pores de dimensions convenables et sensiblement homogènes, par exemple matériaux frittés métalliques ou plastiques, ou céramiques.The porous material can consist of any material having pores of suitable dimensions and substantially homogeneous, for example sintered materials metallic or plastic, or ceramic.
La figure 5 montre une source chaude constituée d'une
plaque 11 sur une face de laquelle sont montés des
équipements 12 qui dégagent de la chaleur et/ou qu'on désire
refroidir. Sur la face opposée de la plaque sont fixés des
dispositifs d'évaporation capillaire 1 dont l'entrée 7 est
reliée à un conduit de liquide 5 et communique avec le vide
intérieur 13 (voir figure 4) de la mèche capillaire 9, et
dont la sortie 8 est reliée à un conduit de vapeur 3 et
communique avec l'espace annulaire 14 situé entre le tube 6
et la mèche capillaire 9.Figure 5 shows a hot spring consisting of a
plate 11 on one side of which are mounted
En fonctionnement normal, le vide intérieur 13 est
rempli de liquide, et l'espace annulaire 14 est rempli de
vapeur. L'interface liquide-vapeur est constitué d'un
ensemble de ménisques 15 (voir figure 6), de rayons
équivalents sensiblement égaux, qui se trouvent tous dans
l'épaisseur de la masse poreuse 9.In normal operation, the
Dans la technique usuelle, les dispositifs
d'évaporation capillaires qu'on vient de décrire sont connus
sous le nom d' "évaporateurs capillaires". Il ressort de ce
qui précède que, au sens du présent texte, seule la masse
poreuse 9 constitue donc l'évaporateur capillaire proprement
dit, le vide 13 et l'espace 14 étant, fonctionnellement, des
prolongements du conduit de liquide ou du conduit de vapeur.In the usual technique, the devices
capillary evaporation which we have just described are known
under the name of "capillary evaporators". It emerges from this
which precedes that, within the meaning of this text, only the mass
porous 9 therefore constitutes the capillary evaporator properly
said, the
La mise en circulation du fluide est due à l'augmentation de la pression de la vapeur, dans les évaporateurs capillaires, qui est générée au niveau des ménisques où a lieu la vaporisation totale du liquide. pendant la traversée de la mèche capillaire, le liquide se réchauffe très rapidement (les débits sont très faibles) et se vaporise totalement au niveau des ménisques à température quasi-constante. L'augmentation de la pression est proportionnelle à la tension superficielle du fluide et inversement proportionnelle au rayon équivalent des ménisques (on travaille avec des rayons inférieurs à 10µm). Le débit de fluide dans chaque évaporateur est ainsi constamment auto-ajusté afin d'avoir uniquement de la vapeur pure à la sortie de chaque évaporateur.The circulation of the fluid is due to the increase in steam pressure, in capillary evaporators, which is generated at the menisci where the total vaporization of the liquid takes place. during the passage of the capillary wick, the liquid gets heats up very quickly (the flow rates are very low) and vaporizes completely at the menisci at temperature almost constant. The increase in pressure is proportional to the surface tension of the fluid and inversely proportional to the equivalent radius of menisci (we work with radii less than 10µm). The fluid flow in each evaporator is thus constantly self-adjusting to have only steam pure at the outlet of each evaporator.
Pour avoir un fonctionnement correct des évaporateurs capillaires, il est impératif de n'avoir que du liquide à l'entrée de chaque dispositif d'évaporation capillaire. Ces dispositifs ne peuvent donc être disposés qu'en parallèle. De plus, un isolateur 16 (figure 1) doit être positionné à l'entrée de chaque évaporateur. Le rôle de cet isolateur est d'empêcher un retour de vapeur (dans le tube principal de liquide de la boucle) qui pourrait se produire dans un évaporateur lors d'un désamorçage accidentel (lors d'une trop forte injection de puissance par exemple).To have correct operation of the evaporators capillaries, it is imperative to have only liquid to the inlet of each capillary evaporation device. These devices can therefore only be arranged in parallel. In addition, an insulator 16 (Figure 1) must be positioned at the inlet of each evaporator. The role of this isolator is to prevent a return of vapor (in the main tube of liquid from the loop) which could occur in a evaporator during accidental defusing (during too strong power injection for example).
La vapeur pure est transportée vers les condenseurs 2 où s'effectue l'extraction d'énergie acquise par le fluide, soit par des radiateurs (qui rayonnent l'énergie vers l'espace), soit par des échangeurs couplés à d'autres boucles, soit par des systèmes à changement de phase tels que des bouilleurs ou évaporateurs.Pure steam is transported to condensers 2 where the energy acquired by the fluid is extracted, either by radiators (which radiate energy to space), either by exchangers coupled to other loops, either by phase change systems such than boilers or evaporators.
En revenant au dispositif de la figure 1, un sous-refroidisseur 17 est positionné sur le tube de sortie liquide. Le rôle de ce sous-refroidisseur est de condenser la vapeur qui, accidentellement, pour des situations non nominales, n'aurait pas été totalement condensée à la sortie d'un des derniers condenseurs.Returning to the device of FIG. 1, a sub-cooler 17 is positioned on the outlet tube liquid. The role of this sub-cooler is to condense vapor which, accidentally, for situations not nominal, would not have been fully condensed at the exit of one of the last condensers.
La température de fonctionnement de la boucle est
contrôlée par un réservoir pressuriseur diphasique 18. Ce
réservoir est contrôlé thermiquement (système de chauffage
et de refroidissement) de manière à assurer un contrôle de
sa température de vaporisation qui est aussi la température
de vaporisation au niveau des "plaques froides" 11 et
échangeurs (aux pertes de pression près, qui sont minimes).The operating temperature of the loop is
controlled by a two-
Avec ce type de boucle, on peut contrôler avec une bonne précision (meilleure que le degré dans la majorité des cas) une température de consigne, et ce quelles que soient les variations de puissance subies par la boucle au niveau des évaporateurs ou condenseurs.With this type of loop, you can control with a good precision (better than the degree in the majority of case) a set temperature, whatever the power variations undergone by the loop at the level evaporators or condensers.
La puissance maximale qu'il est possible de transporter est conditionnée par la remontée maximale de pression que peuvent assurer les évaporateurs capillaires et par la somme des pertes de charge du circuit pour la puissance maximale considérée. Avec de l'ammoniac et des rayons équivalents de ménisques de 10µm, on peut atteindre des remontées de pression de l'ordre de 5000Pa.The maximum power that can be transported is conditioned by the maximum pressure rise that can supply capillary evaporators and by the sum circuit pressure losses for maximum power considered. With ammonia and equivalent radii of menisci of 10µm, we can reach lifts of pressure of the order of 5000Pa.
La figure 2 montre le schéma d'un système de transfert d'énergie conforme à l'invention.Figure 2 shows the diagram of a transfer system of energy according to the invention.
Dans chacune des sources A et B, le circuit comprend
des ensembles constitués chacun d'un évaporateur capillaire
1A, 1B en série avec un condenseur 2A, 2B, un conduit de
vapeur 3 étant relié à chacun des condenseurs 2A, 2B, et un
conduit de liquide 4 étant relié à chacun des évaporateurs
capillaires 1A, 1B. Un moyen de réchauffage du conduit de
vapeur de faible puissance 20 est prévu. Il n'y a pas de
réservoir pressuriseur 18 ni d'isolateurs 16.In each of sources A and B, the circuit includes
sets each consisting of a
Lorsque la température de la source A est supérieure à
celle de la source B, le sens de circulation du fluide est
celui qui est indiqué par les flèches 21. Les évaporateurs
lA sont actifs. Le liquide à l'entrée des évaporateurs
traverse les mèches capillaires 9 et s'y vaporise. La vapeur
sort de chaque dispositif évaporateur (avec une augmentation
de pression capillaire) et traverse les condenseurs "chauds"
2A qui sont donc inactifs. La vapeur est collectée à la
sortie de ces condenseurs et est transportée dans un tube 3
jusqu'à l'entrée des condenseurs "froids" 2B. La vapeur se
condense partiellement ou totalement dans ces condenseurs.
Un mélange diphasique ou monophasique liquide entre donc
dans les dispositifs évaporateurs 1B à "contre-sens" par
rapport à un fonctionnement normal pour un évaporateur. La
vapeur restante se condense totalement dans l'espace
annulaire 14 des dispositifs évaporateurs 1B. Du liquide
seul sort de ces évaporateurs. Le liquide est collecté et
est transporté dans le tube 4 jusqu'à l'entrée des
évaporateurs 1A, ce qui clot la boucle. Dans le tube
liquide; on peut autoriser temporairement une vaporisation
partielle du liquide.When the temperature of source A is higher than
that of source B, the direction of circulation of the fluid is
the one indicated by the
Lorsque la source B devient plus chaude que la source
A, le sens de circulation du fluide est celui des flèches
22. Ce sont les évaporateurs 1B qui jouent leur rôle
d'évaporateurs, les condenseurs 2B sont inactifs, les
condenseurs 2A sont actifs et les dispositifs évaporateurs
1A jouent un rôle de condenseurs supplémentaires au niveau
de leur espace annulaire 14.When source B becomes hotter than source
A, the direction of circulation of the fluid is that of the
Ces espaces annulaires, qui sont inclus dans les
dispositifs d'évaporation capillaire, font alors, du point
de vue fonctionnel, partie des condenseurs 2A.These annular spaces, which are included in the
capillary evaporation devices, then, from the point
from a functional point of view, part of the
Lorsque l'on souhaite réaliser un transfert thermique
entre les différentes sources et que le transfert ne s'opère
pas, il faut chauffer légèrement le tube vapeur 3
(typiquement avec 1W/m) à l'aide du moyen de réchauffage 20
pendant typiquement une heure afin d'expulser le liquide qui
pourrait s'y trouver.When you want to perform a heat transfer
between the different sources and that the transfer does not take place
no, the
Dans les cas où les capacités de condensation des
espaces annulaires 14 des évaporateurs inactifs sont
suffisantes, on peut supprimer tous les condenseurs. La
boucle est alors uniquement constituée par des dispositifs
d'évaporation classiques fonctionnant les uns en
évaporateurs, les autres en condenseurs.In cases where the condensing capacities of
Le concept proposé pour deux sources de chaleur peut
être étendu à un concept multi-sources (on peut avoir une
source différente par "évaporateur-condenseur", le système
s'auto-adaptera). Il n'est pas non plus nécessaire que les
évaporateurs capillaires 1A, 1B ou les condenseurs 2A, 2B
des sources A et B soient identiques en nombre ou en
performances, ni que le nombre des ensembles évaporateur-condenseur
soit le même dans toutes les sources.The concept proposed for two heat sources can
be extended to a multi-source concept (we can have a
different source by "evaporator-condenser", the system
will self-adapt). Nor is it necessary for
Dans le domaine spatial, le système selon l'invention peut être utilisé pour réaliser un transfert thermique entre les différentes parties d'un véhicule spatial soumises à des flux thermiques différents en fonction du temps (ensoleillement journalier ou saisonnier, dissipation thermique, ..). Les avantages de ce type de boucle par rapport au concept actuel consistent essentiellement en la possibilité de réaliser des transferts thermiques bidirectionnels avec une seule boucle, ce qui contribue à une simplification et à une réduction du bilan de masse.In the space domain, the system according to the invention can be used to transfer heat between the different parts of a spacecraft subject to different heat fluxes as a function of time (daily or seasonal sunshine, dissipation thermal, ..). The advantages of this type of loop by compared to the current concept basically consist of the possibility of heat transfers bidirectional with a single loop, which contributes to simplification and reduction of the mass balance.
Claims (4)
- A system for transfer of energy between a hot source (A) and a cold source (B), the system including a capillary evaporator situated in the hot source, and in which a fluid is introduced in the liquid state and changes integrally into the vapor state inside capillary passages, a vapor conduit (3), a condenser (2) situated in the cold source where the fluid changes back into the liquid state while condensing on surfaces of large radius of curvature, and a liquid conduit (5) which returns the fluid to the capillary evaporator, the fluid circulating in closed circuit under the effect of the pressure generated at the meniscus constituting the liquid/vapor interfaces in the capillary passages of the evaporator,
in which:the closed fluid circuit includes two units each formed by a capillary evaporator connected to the liquid conduit and by a condenser inserted between the capillary evaporator and the vapor conduit, one of the units being placed in the hot source and the other in the cold source;and the quantity of fluid is calculated in such a way that the evaporation takes place integrally in the capillary passages of the capillary evaporator situated in the hot source and that the condensation takes place in the condenser situated in the cold source. - The system as claimed in claim 1, wherein the quantity of fluid is calculated in order that, in all the conditions of operation, at least one liquid-vapor interface is present, it being nevertheless possible for a bubble of vapor without communication with the vapor conduit to be present, possibly on the liquid side of the capillary evaporator.
- The system as claimed in claim 1, wherein the capillary evaporator consists of a mass with controlled porosity in which the liquid can be vaporized with formation of menisci (15) of small radius or equivalent radius, this mass being placed in a vessel between two chambers (13, 14), one being connected to the liquid conduit and the other to the vapor conduit (3), and the condenser of the cold source consists at least partially of that one (14) of said chambers which is connected to the vapor conduit (3).
- The system as claimed in claim 1, wherein there are a number of hot sources and/or a number of cold sources, and at least one of said units formed by a capillary evaporator and by a condenser is provided in each hot source and each cold source.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9409459A FR2723187B1 (en) | 1994-07-29 | 1994-07-29 | ENERGY TRANSFER SYSTEM BETWEEN A HOT SOURCE AND A COLD SOURCE |
FR9409459 | 1994-07-29 | ||
PCT/FR1995/001004 WO1996004517A1 (en) | 1994-07-29 | 1995-07-26 | Energy transfer system between a hot source and a cold source |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0772757A1 EP0772757A1 (en) | 1997-05-14 |
EP0772757B1 true EP0772757B1 (en) | 1998-08-26 |
Family
ID=9465913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95926430A Expired - Lifetime EP0772757B1 (en) | 1994-07-29 | 1995-07-26 | Energy transfer system between a hot source and a cold source |
Country Status (7)
Country | Link |
---|---|
US (1) | US5842513A (en) |
EP (1) | EP0772757B1 (en) |
JP (1) | JPH10503580A (en) |
CA (1) | CA2196045A1 (en) |
DE (2) | DE772757T1 (en) |
FR (1) | FR2723187B1 (en) |
WO (1) | WO1996004517A1 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL122859A0 (en) | 1995-07-06 | 1998-08-16 | Univ Leland Stanford Junior | Cell-free synthesis of polyketides |
FR2752291B1 (en) | 1996-08-12 | 1998-09-25 | Centre Nat Etd Spatiales | HAIR EVAPORATOR FOR DIPHASIC LOOP OF TRANSFER OF ENERGY BETWEEN A HOT SOURCE AND A COLD SOURCE |
FR2783312A1 (en) | 1998-09-15 | 2000-03-17 | Matra Marconi Space France | Fluid loop for capillary pumping of heat transfer liquid in satellite has condenser with duct having curved surface |
US6938679B1 (en) * | 1998-09-15 | 2005-09-06 | The Boeing Company | Heat transport apparatus |
FR2783313A1 (en) | 1998-09-15 | 2000-03-17 | Matra Marconi Space France | HEAT TRANSFER DEVICE |
JP2000241089A (en) * | 1999-02-19 | 2000-09-08 | Mitsubishi Electric Corp | Evaporator, heat sink, and system and method for transporting heat |
US7931072B1 (en) | 2002-10-02 | 2011-04-26 | Alliant Techsystems Inc. | High heat flux evaporator, heat transfer systems |
US8047268B1 (en) | 2002-10-02 | 2011-11-01 | Alliant Techsystems Inc. | Two-phase heat transfer system and evaporators and condensers for use in heat transfer systems |
EP1684043A3 (en) * | 2000-06-30 | 2006-08-30 | Swales Aerospace | Phase control in the capillary evaporators |
US7004240B1 (en) * | 2002-06-24 | 2006-02-28 | Swales & Associates, Inc. | Heat transport system |
US7086452B1 (en) * | 2000-06-30 | 2006-08-08 | Intel Corporation | Method and an apparatus for cooling a computer |
US8136580B2 (en) * | 2000-06-30 | 2012-03-20 | Alliant Techsystems Inc. | Evaporator for a heat transfer system |
US7708053B2 (en) * | 2000-06-30 | 2010-05-04 | Alliant Techsystems Inc. | Heat transfer system |
US7251889B2 (en) * | 2000-06-30 | 2007-08-07 | Swales & Associates, Inc. | Manufacture of a heat transfer system |
US8109325B2 (en) | 2000-06-30 | 2012-02-07 | Alliant Techsystems Inc. | Heat transfer system |
US7549461B2 (en) | 2000-06-30 | 2009-06-23 | Alliant Techsystems Inc. | Thermal management system |
WO2002010661A1 (en) * | 2000-07-27 | 2002-02-07 | Advanced Technologies Limited | High-efficiency computer thermal management apparatus and method |
US6615912B2 (en) * | 2001-06-20 | 2003-09-09 | Thermal Corp. | Porous vapor valve for improved loop thermosiphon performance |
CN100449244C (en) * | 2002-10-28 | 2009-01-07 | 斯沃勒斯联合公司 | Heat transfer system |
MXPA05004443A (en) * | 2002-10-28 | 2005-10-18 | Swales & Associates Inc | Heat transfer system. |
US7013956B2 (en) * | 2003-09-02 | 2006-03-21 | Thermal Corp. | Heat pipe evaporator with porous valve |
AU2005326711B2 (en) * | 2005-02-02 | 2010-12-23 | Carrier Corporation | Parallel flow heat exchangers incorporating porous inserts |
US7661464B2 (en) * | 2005-12-09 | 2010-02-16 | Alliant Techsystems Inc. | Evaporator for use in a heat transfer system |
US10345052B2 (en) | 2016-12-21 | 2019-07-09 | Hamilton Sundstrand Corporation | Porous media evaporator |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3889096A (en) * | 1970-07-11 | 1975-06-10 | Philips Corp | Electric soldering iron delivering heat by change of state of a liquid heat transporting medium |
US4312402A (en) * | 1979-09-19 | 1982-01-26 | Hughes Aircraft Company | Osmotically pumped environmental control device |
JPS59221593A (en) * | 1983-05-31 | 1984-12-13 | Toyo Seisakusho:Kk | Heat pipe type heat exchanger |
SU1430709A1 (en) * | 1987-01-04 | 1988-10-15 | Московский энергетический институт | Heat-transferring unit |
US4903761A (en) * | 1987-06-03 | 1990-02-27 | Lockheed Missiles & Space Company, Inc. | Wick assembly for self-regulated fluid management in a pumped two-phase heat transfer system |
JPH063354B2 (en) * | 1987-06-23 | 1994-01-12 | アクトロニクス株式会社 | Loop type thin tube heat pipe |
US4899810A (en) * | 1987-10-22 | 1990-02-13 | General Electric Company | Low pressure drop condenser/heat pipe heat exchanger |
EP0351173A3 (en) * | 1988-07-14 | 1991-06-05 | Osaka Prefecture | Substance having anti-retrovirus activity |
US4869313A (en) * | 1988-07-15 | 1989-09-26 | General Electric Company | Low pressure drop condenser/evaporator pump heat exchanger |
DE3908994A1 (en) * | 1989-03-18 | 1990-09-20 | Daimler Benz Ag | PASSENGER HEATING, ESPECIALLY BUS HEATING |
US5036905A (en) * | 1989-10-26 | 1991-08-06 | The United States Of America As Represented By The Secretary Of The Air Force | High efficiency heat exchanger |
US5103897A (en) * | 1991-06-05 | 1992-04-14 | Martin Marietta Corporation | Flowrate controller for hybrid capillary/mechanical two-phase thermal loops |
US5303768A (en) * | 1993-02-17 | 1994-04-19 | Grumman Aerospace Corporation | Capillary pump evaporator |
-
1994
- 1994-07-29 FR FR9409459A patent/FR2723187B1/en not_active Expired - Fee Related
-
1995
- 1995-07-26 WO PCT/FR1995/001004 patent/WO1996004517A1/en active IP Right Grant
- 1995-07-26 EP EP95926430A patent/EP0772757B1/en not_active Expired - Lifetime
- 1995-07-26 JP JP8506241A patent/JPH10503580A/en not_active Ceased
- 1995-07-26 DE DE0772757T patent/DE772757T1/en active Pending
- 1995-07-26 DE DE69504357T patent/DE69504357T2/en not_active Expired - Lifetime
- 1995-07-26 CA CA002196045A patent/CA2196045A1/en not_active Abandoned
-
1997
- 1997-01-29 US US08/797,510 patent/US5842513A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0772757A1 (en) | 1997-05-14 |
FR2723187A1 (en) | 1996-02-02 |
DE69504357D1 (en) | 1998-10-01 |
DE69504357T2 (en) | 1999-04-22 |
DE772757T1 (en) | 1997-09-25 |
JPH10503580A (en) | 1998-03-31 |
US5842513A (en) | 1998-12-01 |
FR2723187B1 (en) | 1996-09-27 |
CA2196045A1 (en) | 1996-02-15 |
WO1996004517A1 (en) | 1996-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0772757B1 (en) | Energy transfer system between a hot source and a cold source | |
BE1009410A3 (en) | Device heat transport. | |
EP1293428B1 (en) | Heat exchanger | |
EP2795226B1 (en) | Cooling device | |
FR2752291A1 (en) | HAIR EVAPORATOR FOR DIPHASIC LOOP OF TRANSFER OF ENERGY BETWEEN A HOT SOURCE AND A COLD SOURCE | |
FR2699365A1 (en) | System for dissipating the heat energy released by an electronic component. | |
EP2032440B1 (en) | Capillary pumped diphasic fluid loop passive thermal control device with heat capacity | |
FR2783313A1 (en) | HEAT TRANSFER DEVICE | |
EP2379951A1 (en) | Radiator for domestic heating with a two-phase heat-transfer fluid | |
EP0166661A2 (en) | Device for capturing and transferring radiant energy such as solar radiation | |
JP2904199B2 (en) | Evaporator for capillary pump loop and heat exchange method thereof | |
FR2468085A1 (en) | SORPTION REFRIGERATING APPARATUS, METHOD FOR OPERATING THIS APPLIANCE AND USE THEREOF | |
FR3032027A1 (en) | DIPHASIC COOLING BUCKLE WITH SATELLITE EVAPORATORS | |
WO2012101384A1 (en) | Cooling device for an electronic power system in a vehicle | |
EP4323711B1 (en) | Two-phase heat-transfer device with liquid overflow tank | |
FR2871221A1 (en) | DEVICE FOR EXCHANGE AND HEAT TRANSFER, IN PARTICULAR FOR A MOTOR VEHICLE | |
FR2783312A1 (en) | Fluid loop for capillary pumping of heat transfer liquid in satellite has condenser with duct having curved surface | |
FR3081214A1 (en) | EVAPORATOR OF A FLUID LOOP AND FLUID LOOP COMPRISING SUCH EVAPORATOR | |
FR2756621A1 (en) | THERMO-FRIGOPOMPE | |
BE899256A (en) | Reversible cycle heat pump - has supplementary heat exchanger to pre-heat suction refrigerant gas | |
WO2014154984A1 (en) | Heat pipe comprising a cut-off gas plug | |
EP2474216A1 (en) | Cooling device for an electronic power system in a vehicle | |
FR2615276A1 (en) | Solar-type heat collector | |
BE851734A (en) | HEAT TRANSFER SYSTEM WITH HEAT TRANSFER FLUID | |
FR2628193A1 (en) | Forced convection cooling of high power electronic parts - uses pipes connected to injectors while vapour is collected by separate pipe and transmitted to condensation chamber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19970207 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB IT |
|
GBC | Gb: translation of claims filed (gb section 78(7)/1977) | ||
ITCL | It: translation for ep claims filed |
Representative=s name: STUDIO CONSUL.BREVETTUALE S.R.L. |
|
DET | De: translation of patent claims | ||
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19971127 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 69504357 Country of ref document: DE Date of ref document: 19981001 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19981005 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TQ |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20120723 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20120816 Year of fee payment: 18 Ref country code: DE Payment date: 20120713 Year of fee payment: 18 Ref country code: IT Payment date: 20120720 Year of fee payment: 18 Ref country code: BE Payment date: 20120726 Year of fee payment: 18 |
|
BERE | Be: lapsed |
Owner name: CENTRE NATIONAL D'*ETUDES SPATIALES Effective date: 20130731 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130726 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69504357 Country of ref document: DE Effective date: 20140201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140201 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130726 |