EP0769125A1 - Procede de fusion d'une charge metallique dans un four rotatif et four rotatif pour la mise en uvre d'un tel procede - Google Patents
Procede de fusion d'une charge metallique dans un four rotatif et four rotatif pour la mise en uvre d'un tel procedeInfo
- Publication number
- EP0769125A1 EP0769125A1 EP95923393A EP95923393A EP0769125A1 EP 0769125 A1 EP0769125 A1 EP 0769125A1 EP 95923393 A EP95923393 A EP 95923393A EP 95923393 A EP95923393 A EP 95923393A EP 0769125 A1 EP0769125 A1 EP 0769125A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- oxygen
- charge
- burner
- oven
- lance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/08—Manufacture of cast-iron
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B7/00—Rotary-drum furnaces, i.e. horizontal or slightly inclined
- F27B7/20—Details, accessories, or equipment peculiar to rotary-drum furnaces
- F27B7/2083—Arrangements for the melting of metals or the treatment of molten metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S266/00—Metallurgical apparatus
- Y10S266/90—Metal melting furnaces, e.g. cupola type
Definitions
- the present invention relates to methods of melting metal charges in a rotary kiln equipped with at least one oxy-burner.
- the oxy-burner adjusted under stoichiometric conditions, ensures the melting of the metallic charge possibly containing, and for purely metallurgical considerations, small quantities of solid fuels, generally not exceeding 1% of the charge metallic to limit the formation of undesirable unburned volatile compounds which, also at the level of the use of the oxy-burner, limit the conditions under which combustion is carried out and, consequently, the rate of melting of the charge in the furnace .
- the object of the present invention is to compose an improved process making it possible to significantly increase the speed and efficiency of melting in a given furnace while reducing overall energy consumption.
- the method comprises the steps of adding to the metallic charge to melt a charge of solid fuel and of injecting at least one jet of oxygen in the direction of the combined charge into the oven.
- the proportion of solid fuel charge in the metallic charge is between 1.5 and 9%, advantageously between 2 and 6%;
- the present invention also relates to a rotary oven for the implementation of such a method, comprising, in addition to an oxy-burner, at least one oxygen lance arranged to direct at least one jet of oxygen towards the bottom of the oven.
- combustion is extended in the charge itself, where the oxygen injected by the lance comes to interact with the solid fuel which burns in direct contact with the metal, thus increasing the surface of reaction and thus promoting accelerated melting without affecting the temperature conditions at the refractory level of the furnace and therefore not reducing the lifetime of the latter.
- a significant part, exceeding 35% of the total energy of combustion, being provided in the load, by the solid fuel, the power of the burner, and therefore its cost, can be reduced significantly.
- Figure 1 is a schematic view in longitudinal section of an embodiment of an oven metal melting according to the invention
- Figures 2 and 3 are respectively side and sectional views of an embodiment of a multi-tube oxygen lance
- FIG. 4 is a partial view in longitudinal section of an integrated lance burner according to the invention.
- FIG. 5 is an end view of the burner of Figure 4.
- FIG. 6 is a longitudinal sectional view of another embodiment of an integrated lance burner according to the invention.
- FIG. 7 is an end view of the burner of Figure 6;
- - Figures 8 to 11 are graphs illustrating operating parameters according to the conditions of Tables 1 to 3;
- FIG. 12 is a graph illustrating the relationships between the melting rate and the percentage of combustion energy in the combined charge of the furnace.
- FIG 1 there is shown a rotary oven 1 in the end door 4 of which are mounted an oxy-burner 5 oriented towards the load and an oxygen lance 2 adjustable position by means of a guide device 3.
- the lance 2 is oriented so as to direct, in the furnace 1, a jet of high speed oxygen, typically supersonic, towards a combined charge of metal, typically of steel, to melt and of a solid fuel in proportions typically greater than 2% of the metallic charge.
- This solid fuel is typically anthracite, graphite, in particular an electrode, or other products containing carbon and hydrogen, in particular solid polyolefins. Examples of operating conditions are given below in relation to Tables 1 to 3 and Figures 8 to 12.
- an oxygen lance 2 comprising an upper main oxygen supply 7 and two lower oxygen supplies 6 for ejecting differentiated oxygen jets in direction of the charge and below the burner flame 5.
- the lance body 2 has a groove 8a cooperating with a rib 8b of the guide device 3 for maintaining the correct orientation of the tubes 6 and 7 during the adjustments forward or backward of lance 2 in furnace 1.
- FIGS. 4 and 5 show an oxy-burner comprising a central supply 12 of combustible gas into a shell forming a channel 9a of oxygen introduced by an inlet 9, the combustible gas being ejected by injectors 10 extending into oxygen outlet orifices in the burner nose, here angularly distributed around the axis of the burner.
- the combined oxygen / gaseous fuel ejection orifices are replaced by at least one lance 2 as described in relation to FIGS. 2 and 3 and the upstream part of which extends into the central fuel supply 12 11 shows the end of a central cooling circuit of the burner nose.
- FIGS. 6 and 7 show a cooled oxy-burner comprising a peripheral jacket 11 for the circulation of water introduced at 13 and discharged at 14.
- the burner comprises a central supply 12 of combustible gas extending in an oxygen ejection channel 9a and opening outwards through a series of ejectors 10, here angularly and regularly distributed.
- at least one, in this case two oxygen lances 2 extend in the lower part of the main oxygen channel 9a and open to the outside of the burner below the ejectors 10.
- the main oxygen in the channel 9a, cooled by the lining 11, participates in the cooling of the oxygen lances 2.
- the oxygen lance is adjusted so as to eject the oxygen jets in the direction towards the load at an angle between 5 and 25 ° relative to the axis of the furnace.
- the flow rate of the oxygen jets ejected by the lance is chosen between 25 and 150% of the oxygen flow rate of the oxygen burner.
- a second oxygen lance can also be provided, also directed towards the load, in the end of the furnace opposite the burner.
- the feed oxygen, both of the lance and of the oxygen burner, is advantageously oxygen at a purity between 88 and 95% supplied on site by a unit for the separation of gas from air by adsorption of the so-called type. PSA.
- the solid fuel in proportions of 3.2% of the steel load, in this case approximately 5.3 tonnes, is anthracite and the oxygen injected by the lance 2 is ejected at supersonic speed at an angle of approximately 10 ° relative to the axis of the furnace.
- references 1 to 18 correspond to fusion processes without oxygen injection with reduced charges of anthracite
- the references 19 to 22 implementing an oxygen injection directed towards a metal charge containing 1, 5% anthracite, increased to 3% in references 23 to 28.
- Tables 1 to 3 The values indicated in Tables 1 to 3 are as follows: anthracite: weight in kg for a metal charge, time: respectively: melting / temperature maintenance / total time, temperature: "C, melting speed: ° C / minute / 5.3 tonne load total consumption: propane / oxygen, specific consumption: m 3/100 ° C / 5.3 T (+ burner lance), steel analysis: Ce / C / Si. Table 1
- FIG. 8 which illustrates the melting rates in ° C / minute for a charge of 5.3 T for each of the references 1 to 29 of the preceding Tables, shows that the speed goes from above 15 to more than 20 for the references 28 and 29, which reduces the discontinuous rotation time of the oven from 55 minutes to 33 minutes and the pause between rotations from 5 to 3 minutes.
- Figure 9 which illustrates the consumption of propane (bottom curve) and oxygen (top curve) for each of the references 1 to 29, shows that the specific consumption of propane can drop to 4.6m 3 for consumption substantially stable oxygen.
- Figure 10 shows that the melting efficiency goes from a little more than 50% to more than 60-65%.
- Figure 11 shows that the energy consumption, in K h can be reduced from around 700 KWh to less than 600 K h.
- Figure 12 shows that, according to references 1 to 29, the energy percentage in the charge goes from less than 20 to more than 40 with, correspondingly, an increase in the melting speed from 15 to 22 ° C / minute.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Muffle Furnaces And Rotary Kilns (AREA)
- Furnace Charging Or Discharging (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
- Gasification And Melting Of Waste (AREA)
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES9401366 | 1994-06-16 | ||
ES09401366A ES2114388B1 (es) | 1994-06-16 | 1994-06-16 | Procedimiento para la fusion de metales en hornos rotativos y horno de fusion rotativo para la aplicacion de este procedimiento. |
PCT/FR1995/000791 WO1995034791A1 (fr) | 1994-06-16 | 1995-06-15 | Procede de fusion d'une charge metallique dans un four rotatif et four rotatif pour la mise en ×uvre d'un tel procede |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0769125A1 true EP0769125A1 (fr) | 1997-04-23 |
EP0769125B1 EP0769125B1 (fr) | 1998-09-09 |
Family
ID=8286673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95923393A Expired - Lifetime EP0769125B1 (fr) | 1994-06-16 | 1995-06-15 | Procede de fusion d'une charge metallique dans un four rotatif et four rotatif pour la mise en uvre d'un tel procede |
Country Status (14)
Country | Link |
---|---|
US (1) | US6039786A (fr) |
EP (1) | EP0769125B1 (fr) |
JP (1) | JPH10501610A (fr) |
KR (1) | KR100370632B1 (fr) |
CN (1) | CN1150837A (fr) |
AT (1) | ATE170970T1 (fr) |
AU (1) | AU691628B2 (fr) |
BR (1) | BR9508013A (fr) |
CA (1) | CA2192953A1 (fr) |
DE (1) | DE69504680T2 (fr) |
DK (1) | DK0769125T3 (fr) |
ES (2) | ES2114388B1 (fr) |
TW (1) | TW257793B (fr) |
WO (1) | WO1995034791A1 (fr) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0982407B1 (fr) * | 1998-08-24 | 2003-01-22 | Alstom | Procédé pour la fusion de substances inorganiques |
EP2080973A1 (fr) | 2008-01-10 | 2009-07-22 | L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Fours rotatifs |
DE102008047489B4 (de) * | 2008-09-17 | 2010-05-12 | Messer Group Gmbh | Brenner und Verfahren zum Betreiben eines Brenners |
US8632621B2 (en) * | 2010-07-12 | 2014-01-21 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for melting a solid charge |
US8262983B2 (en) | 2010-08-05 | 2012-09-11 | Altek, L.L.C. | Tilting rotary furnace system and methods of aluminum recovery |
US8915733B2 (en) * | 2010-11-11 | 2014-12-23 | Air Products And Chemicals, Inc. | Selective adjustment of heat flux for increased uniformity of heating a charge material in a tilt rotary furnace |
EP2626628B1 (fr) * | 2012-02-09 | 2014-04-09 | Linde Aktiengesellschaft | Conduite d'un four industriel et brûleur associé |
CN104704309B (zh) * | 2012-10-08 | 2017-07-14 | 乔治洛德方法研究和开发液化空气有限公司 | 用于改善回转窑中副燃料的燃烧的方法和设备以及用于使用燃烧器组件改装回转窑的方法 |
CN103090665B (zh) * | 2012-11-30 | 2014-10-15 | 沈光林 | 用于回转窑的局部增氧助燃装置 |
CN103175394A (zh) * | 2013-03-01 | 2013-06-26 | 大连易世达新能源发展股份有限公司 | 用于水泥窑节能减排的局部增氧助燃装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB952507A (en) * | 1961-07-07 | 1964-03-18 | British Oxygen Co Ltd | Process for the treatment of metal and jet for use therein |
FR1442523A (fr) * | 1965-05-07 | 1966-06-17 | Soc Metallurgique Imphy | Four tournant pour l'obtention continue de fonte, d'acier ou de fer liquide |
US4414026A (en) * | 1981-07-30 | 1983-11-08 | Nippon Kokan Kabushiki Kaisha | Method for the production of ferrochromium |
DE3518555C1 (de) * | 1985-05-23 | 1986-01-09 | Fried. Krupp Gmbh, 4300 Essen | Verfahren zur Reduktion von eisenhaltigen Chromerzen |
US4865297A (en) * | 1986-11-21 | 1989-09-12 | Gitman Grigory M | Apparatus for melting and refining metals |
US5123364A (en) * | 1989-11-08 | 1992-06-23 | American Combustion, Inc. | Method and apparatus for co-processing hazardous wastes |
US5163997A (en) * | 1991-02-08 | 1992-11-17 | Sherwood William L | High-production rotary furnace steelmaking |
DE4142401C2 (de) * | 1991-12-20 | 1999-01-21 | Linde Ag | Verfahren zum Betrieb einer auf einem oder mehreren Brennern basierenden Beheizung eines Ofens |
DE4202827A1 (de) * | 1992-01-31 | 1993-08-05 | Linde Ag | Geregelter betrieb von industrieoefen |
FR2694802B1 (fr) * | 1992-08-12 | 1994-09-16 | Air Liquide | Four de maintien en température d'une charge métallique fondue et procédé de mise en Óoeuvre. |
US5714113A (en) * | 1994-08-29 | 1998-02-03 | American Combustion, Inc. | Apparatus for electric steelmaking |
-
1994
- 1994-06-16 ES ES09401366A patent/ES2114388B1/es not_active Expired - Fee Related
-
1995
- 1995-02-10 TW TW084101163A patent/TW257793B/zh not_active IP Right Cessation
- 1995-06-15 JP JP8501744A patent/JPH10501610A/ja active Pending
- 1995-06-15 CN CN95193625A patent/CN1150837A/zh active Pending
- 1995-06-15 AU AU27963/95A patent/AU691628B2/en not_active Ceased
- 1995-06-15 DE DE69504680T patent/DE69504680T2/de not_active Expired - Lifetime
- 1995-06-15 KR KR1019960707176A patent/KR100370632B1/ko active IP Right Grant
- 1995-06-15 BR BR9508013A patent/BR9508013A/pt not_active IP Right Cessation
- 1995-06-15 US US08/750,559 patent/US6039786A/en not_active Expired - Lifetime
- 1995-06-15 WO PCT/FR1995/000791 patent/WO1995034791A1/fr active IP Right Grant
- 1995-06-15 DK DK95923393T patent/DK0769125T3/da active
- 1995-06-15 AT AT95923393T patent/ATE170970T1/de not_active IP Right Cessation
- 1995-06-15 CA CA002192953A patent/CA2192953A1/fr not_active Abandoned
- 1995-06-15 ES ES95923393T patent/ES2120755T3/es not_active Expired - Lifetime
- 1995-06-15 EP EP95923393A patent/EP0769125B1/fr not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
See references of WO9534791A1 * |
Also Published As
Publication number | Publication date |
---|---|
DK0769125T3 (da) | 1999-03-01 |
ATE170970T1 (de) | 1998-09-15 |
TW257793B (en) | 1995-09-21 |
CA2192953A1 (fr) | 1995-12-21 |
WO1995034791A1 (fr) | 1995-12-21 |
EP0769125B1 (fr) | 1998-09-09 |
ES2120755T3 (es) | 1998-11-01 |
BR9508013A (pt) | 1997-09-02 |
US6039786A (en) | 2000-03-21 |
DE69504680T2 (de) | 1999-03-18 |
DE69504680D1 (de) | 1998-10-15 |
CN1150837A (zh) | 1997-05-28 |
AU691628B2 (en) | 1998-05-21 |
ES2114388A1 (es) | 1998-05-16 |
JPH10501610A (ja) | 1998-02-10 |
KR100370632B1 (ko) | 2003-04-11 |
ES2114388B1 (es) | 1998-12-16 |
AU2796395A (en) | 1996-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0769125B1 (fr) | Procede de fusion d'une charge metallique dans un four rotatif et four rotatif pour la mise en uvre d'un tel procede | |
CA2053129A1 (fr) | Bruleur pour la combustion de combustibles solides de la fourchette a grain fin jusqu'a poudreux | |
AU9325798A (en) | Coherent jet injector lance | |
FR2495178A1 (fr) | Procede de gazeification d'une matiere carbonee solide | |
CA2437254C (fr) | Procede de production de fonte liquide dans un four electrique | |
LU83814A1 (fr) | Procede et dispositif pour l'affinage d'un bain de metal contenant des matieres refroidissantes solides | |
US5163997A (en) | High-production rotary furnace steelmaking | |
EP0834049B1 (fr) | Procede de fusion d'une charge dans un four electrique a arc | |
BE1004481A6 (fr) | Procede et dispositif pour le traitement pyrometallurgique d'une matiere pulverulente contenant un compose d'un ou de plusieurs metaux. | |
EP0319505B1 (fr) | Procédé de réduction des minerais dans un four à cuve | |
EP1154825B1 (fr) | Procede d'optimisation du fonctionnement d'un haut four | |
RU2796917C1 (ru) | Способ производства расплавленного чугуна в электродуговой печи | |
FR2532327A1 (fr) | Procede pour fournir de la chaleur dans un convertisseur siderurgique | |
JPH0625727A (ja) | 鉄浴式溶融還元炉における炭素質固体の燃焼方法 | |
BE889021A (fr) | Dispositif de reduction des matieres ferreuses | |
FR2615930A1 (fr) | Foyer de chaudiere | |
BE833326A (fr) | Procede et appareil de fabrication d'acier | |
LU84113A1 (fr) | Dispositif de reduction des matieres ferreuses | |
WO1998048228A1 (fr) | Procede de fusion d'alliages a base de fer dans un four electrique | |
FR2459835A1 (fr) | Procede de traitement de fontes liquides permettant d'accroitre la proportion de riblons dans le convertisseur | |
FR2822939A1 (fr) | Procede d'injection d'oxygene dans un four | |
FR2822940A1 (fr) | Procede, lance et tuyere d'injection d'oxygene radialement dans un four | |
FR2585725A1 (fr) | Procede d'elaboration d'acier dans un convertisseur a lance a oxygene et acier obtenu par ledit procede | |
BE888631A (fr) | Dispositif de reduction des matieres ferreuses, | |
JPH10121119A (ja) | 微粉炭吹き込み羽口 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19970116 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19970819 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980909 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980909 |
|
REF | Corresponds to: |
Ref document number: 170970 Country of ref document: AT Date of ref document: 19980915 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69504680 Country of ref document: DE Date of ref document: 19981015 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2120755 Country of ref document: ES Kind code of ref document: T3 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19981020 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: FRENCH |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 19980914 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20010517 Year of fee payment: 7 Ref country code: CH Payment date: 20010517 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010518 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20010522 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20010604 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20010628 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030101 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020615 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20030101 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20021231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140619 Year of fee payment: 20 Ref country code: ES Payment date: 20140624 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20140620 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140619 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20140630 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69504680 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20150925 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20150616 |