WO1998048228A1 - Procede de fusion d'alliages a base de fer dans un four electrique - Google Patents

Procede de fusion d'alliages a base de fer dans un four electrique Download PDF

Info

Publication number
WO1998048228A1
WO1998048228A1 PCT/EP1998/000401 EP9800401W WO9848228A1 WO 1998048228 A1 WO1998048228 A1 WO 1998048228A1 EP 9800401 W EP9800401 W EP 9800401W WO 9848228 A1 WO9848228 A1 WO 9848228A1
Authority
WO
WIPO (PCT)
Prior art keywords
based alloys
furnace
melting iron
oven
nozzles
Prior art date
Application number
PCT/EP1998/000401
Other languages
English (en)
Inventor
Jean-Luc Roth
Dominique Rocchi
Original Assignee
Paul Wurth S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Wurth S.A. filed Critical Paul Wurth S.A.
Priority to AU60973/98A priority Critical patent/AU6097398A/en
Publication of WO1998048228A1 publication Critical patent/WO1998048228A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • C21C5/5217Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace equipped with burners or devices for injecting gas, i.e. oxygen, or pulverulent materials into the furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/18Arrangements of devices for charging
    • F27B3/183Charging of arc furnaces vertically through the roof, e.g. in three points
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/22Arrangements of air or gas supply devices
    • F27B3/225Oxygen blowing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for melting iron-based alloys in an electric furnace.
  • European patent application EP 0 723 129 describes an electric arc furnace with alternative sources of energy for the melting of iron-based alloys and a melting process for operating such an electric furnace.
  • the oven includes:
  • burners positioned against the cooled side walls of the furnace near the upper edge of the refractory material, oriented downwards and supplying oxygen-based gases and combustible substances.
  • This oven aims to induce and control chemical reactions in a very specific area of the oven so as to make maximum use of the energy potential, of alternative energy made available by the various means listed above.
  • the submerged nozzles pass through the casing and the refractory lining of the oven, flush with the latter.
  • Each nozzle has an inner pipe and a concentric outer pipe defining between them an annular space.
  • These immersed nozzles are useful for carburizing and decarburizing the bath of liquid steel contained in the furnace and cause homogenization of the bath by mixing of gases.
  • the use of such submerged nozzles leads to accelerated wear of the sole and of the refractory lining in general.
  • the risk of liquid metal splashes when the nozzles are only slightly or not at all submerged is significant. These splashes of liquid metal are dangerous and may damage the cover or the oven electrodes.
  • Supersonic oxygen lances are used to inject oxygen or oxygen plus carbon-containing materials into the furnace. Such lances are used for the carburetion / decarburization of the liquid metal and for the foaming of the slag.
  • the commonly used supersonic oxygen lances are consumable lances or water-cooled lances. In general, these lances have the disadvantages of being bulky, of having limited and irregular carburetion / decarburization yields. In addition, they are difficult to position correctly inside the oven.
  • post-combustion burners have been installed in the electric oven.
  • This type of burner is mounted in the upper part of the furnace and is used above all to oxidize the carbon monoxide formed during the decarburization of the liquid metal to carbon dioxide to further heat the bath of liquid metal.
  • the duration of use and the efficiency of these burners are limited. Indeed, heat is generated in the upper part of the oven and therefore serves rather to heat the cover than the liquid metal contained in the bottom of the oven.
  • the object of the present invention is to provide a process for melting iron-based alloys in an electric furnace in which alternative energies are used which do not have the disadvantages mentioned above.
  • this objective is achieved by a method of melting iron-based alloys in an electric furnace in which the furnace is charged with scrap, in which at least a portion of the charged scrap is cut with inside said furnace by means of at least one emerging nozzle opening into a side wall of the furnace and in which the bath of liquid metal is decarburized by means of this nozzle emerging when the scrap is partially melted.
  • This process can be applied to any kind of electric furnace for the melting of iron-based alloys including in particular direct current furnaces, alternating current furnaces, electric furnaces in which a certain quantity of liquid metal is kept in the permanent oven or electric ovens which are supplied exclusively by scrap, or by scrap and pre-reduced material.
  • the electric oven is simpler to build and costs less since a single device fulfills two distinct functions.
  • the space around the oven is reduced.
  • the nozzles emerged according to the present invention are very compact and can replace conventional burners, oxygen lances and possibly submerged nozzles.
  • Another advantage is that premature wear of the bottom of the electric oven is not to be feared since the emerging nozzles are not in contact with the bottom of the oven.
  • the emerging nozzles are of simpler construction and smaller in size than conventional supersonic oxygen lances. Indeed, these lances are generally removable so that they can be introduced into the oven only when necessary. These lances being cooled with water, they have a larger diameter than the nozzles emerged from the present invention. There is a real risk of air being drawn in via the inlet opening for conventional lances, which is detrimental to the proper functioning of the oven.
  • the emerging nozzle operates in two different regimes depending on the phase of the melting process in which we are. After loading the electric furnace with scrap, a substantially stoichiometric amount of fuel is injected and oxygen is injected so that the emerged nozzle operates as a burner or torch. The scrap that is piled up in front of the nozzle is cut. In the second phase, the oxygen content is increased to between approximately three and approximately five times so that one is in the presence of a significant excess of oxygen and that the emerged nozzle then functions as a lance with oxygen to decarburize the liquid metal bath.
  • the carbon monoxide is then transformed into carbon dioxide.
  • the carbon contained in the bath comes either from scrap metal or from loose coal mixed with the scrap or from devices for injecting carbon-containing substances such as powdered coal.
  • the emerging nozzles comprise a central tube as an oxygen injector surrounded by an annular supplied with gas or oil.
  • the nose of the emerging nozzle is protected against heat by the cracking of hydrocarbons from the gas or fuel oil respectively.
  • Emerged nozzles do not require a water cooling system.
  • the emerged nozzle is operated in sonic mode, that is to say. that the speed of the gases leaving the nozzle corresponds to the speed of sound.
  • This operating mode guarantees a uniform distribution of flow rates between all the nozzles installed in the oven and supplied by a single supply line.
  • the oxygen jet is adjusted so as to obtain good penetration of the liquid metal bath during the decarburization phase.
  • good penetration of the bath is meant a depth of penetration of the gas jet of between 10 cm and 50 cm.
  • the penetration depth of a gas jet can be estimated using the following formula:
  • A 63 (Q / d) 0.6 7 in which: P represents the penetration depth of the jet (mm),
  • H represents the distance from the injector nose to the surface of the bath in the axis of the bath (mm)
  • Q represents the oxygen flow rate (m 3 / h) and d represents the diameter of the orifice (mm).
  • the present invention makes it possible to inject larger volumes of oxygen per charge than conventional means.
  • the angle of the nozzle emerging with the horizontal is greater than 25 °. This makes it possible to limit the splashes of liquid metal.
  • the oxygen flow rate injected during the decarburization phase is preferably between 500 and 1500 m 3 / h per nozzle.
  • the maximum flow rate varies depending on the capacity of the oven and the number of nozzles installed.
  • the maximum oxygen flow depending on the capacity of the oven can be calculated from the following formula:
  • the emerging nozzles are arranged tangentially to a circle whose diameter is approximately half that of the furnace.
  • at least one of the emerging nozzles causes localized heating of the tap hole.
  • Fig.1 a schematic section in an electric oven
  • Fig. 2 a top view of an electric oven
  • FIG. 1 schematically shows an electric furnace for melting iron-based alloys, generally designated by the reference 10, comprising a hearth 11 made of a refractory material surmounted by a tank 12 and a cover 13.
  • the cover 13 is removed, then the scrap is poured into the tank 12 of the oven 10.
  • the cover 13 is replaced on the tank 12 and at least one electrode (not shown) mounted on a mast (not shown) via an arm (not shown) is introduced into the oven 10 through an opening 14 (Fig. 2) made in the cover 13.
  • the arm can slide on the mast so that you can go up and down with the electrode.
  • the scrap is melted, the liquid steel is poured via a taphole 15 (Fig. 2) into a steel ladle and is brought below said taphole 15.
  • the slag is discharged through a side scrub door 16.
  • the furnace is fitted with emerging nozzles T3 which are installed in the side wall of the furnace, above the hearth of the furnace.
  • These emerging nozzles are of the same type as conventional submerged nozzles. The advantage that their use provides is due to their position and their mode of operation rather than their particular construction.
  • FIG. 2 shows a top view of the furnace 10.
  • the nozzles T3 are arranged tangentially to a circle whose diameter is equal to about half that of the furnace.
  • a synergistic effect of rotating the bath of liquid metal is obtained which contributes to distribute the heat in a regular manner in the bath.
  • One of the T3 nozzles is installed so that the heating zone is located near the tap hole, a cold zone where a certain overheating is always useful.
  • Fig. 3 shows the oxygen flow rates passing through each nozzle emerging during a melting cycle of iron-based alloys.
  • the nozzle is supplied with oxygen and a combustible gas such as methane, propane or butane.
  • a combustible gas such as methane, propane or butane.
  • the two gases are in stoichiometric relationship so as to obtain a very hot flame to cut the pieces of scrap stacked in front of the nozzles and to heat the oven and its contents at the same time.
  • the amount of oxygen in the mixture is increased.
  • the fuel gas supply is maintained to protect the nose of the emerging nozzle against heat.
  • the oxygen-rich jet thus obtained enters the bath of liquid metal which has formed in the bottom of the hearth. This jet of oxidizing gas makes it possible to decarburize the bath of liquid metal.
  • a second one is added and the emerging nozzles are again used as burners to release the scrap opposite the nozzles. Then, the 0 2 concentration of the gas jet is increased to operate the emerging nozzles as a sonic oxygen lance. While waiting between two flows, the methane and oxygen supply is cut off and only nitrogen is injected through the nozzles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

Procédé de fusion d'alliages à base de fer dans un four électrique (10) dans lequel le four est chargé en la ferraille, dans lequel au moins une partie de la ferraille chargée est découpée à l'intérieur dudit four par l'intermédiaire d'au moins une tuyère (T3) émergée débouchant dans une paroi latérale (12) du four et dans lequel le bain de métal liquide est décarburé par l'intermédiaire de cette tuyère émergée lorsque la ferraille est au moins partiellement fondue.

Description

Procédé de fusion d'alliages à base de fer dans un four électrique
La présente invention concerne un procédé de fusion d'alliages à base de fer dans un four électrique.
La demande de brevet européen EP 0 723 129 décrit un four électrique à arc avec des sources alternatives d'énergie pour la fusion d'alliages à base de fer et un procédé de fusion pour opérer un tel four électrique.
Le four comprend:
• des tuyères à oxygène positionnées dans le fond du four et introduisant de l'oxygène dans le four,
• des tuyères pour injecter des produits contenant du carbone dans la zone située entre le bain de métal liquide et la couche de laitier recouvrant le bain,
• des lances à oxygène supersoniques,
• des lances injectant du charbon pulvérulent dans le four et coopérant avec les lances à oxygène et
• des brûleurs positionnés contre les parois latérales refroidies du four à proximité du bord supérieur du matériau réfractaire, orientés vers le bas et fournissant des gaz à base d'oxygène et des substances combustibles.
Ce four vise à induire et à contrôler des réactions chimiques dans une zone bien spécifique du four de sorte à utiliser au maximum le potentiel énergétique, de l'énergie alternative mise à disposition par les différents moyens énumères ci-dessus.
Les tuyères immergées traversent l'enveloppe et le garnissage réfractaire du four en affleurant ce dernier. Chaque tuyère comporte une conduite intérieure et une conduite extérieure concentrique définissant entre-elles un espace annulaire. Ces tuyères immergées sont utiles pour carburer et décarburer le bain d'acier liquide contenu dans le four et provoquent une homogénéisation du bain par brassage de gaz. Cependant, l'utilisation de telles tuyères immergées conduit à une usure accélérée de la sole et du garnissage réfractaire en général. De plus, le risque de projections de métal liquide lorsque les tuyères ne sont que peu ou pas du tout immergées est important. Ces projections de métal liquide sont dangereuses et risquent d'endommager le couvercle ou les électrodes du four.
Les lances à oxygène supersoniques sont utilisées pour injecter dans le four de l'oxygène ou de l'oxygène plus des matériaux contenant du carbone. On utilise de telles lances pour la carburation/décarburation du métal liquide et pour le moussage du laitier. Les lances à oxygène supersoniques couramment utilisées sont des lances consommables ou bien des lances refroidies à l'eau. En général, ces lances ont le désavantages d'être encombrantes, d'avoir des rendements de carburation/décarburation limités et irréguliers. De plus, elles sont difficiles à positionner correctement à l'intérieur du four.
Les brûleurs fixes refroidis à l'eau travaillent en général à des vitesses subsoniques et sont refroidis à l'eau. Ces brûleurs sont utilisés en tant que découpe ferraille tout de suite après le chargement du four ainsi que pour le réchauffage des zones froides dans le four. Leur durée d'utilisation efficace est très limitée, environ cinq minutes par panier de ferraille. Comme ces brûleurs sont refroidis à l'eau, ils sont encombrants et peuvent induire des entrées d'air dans le four.
Depuis quelques années, on installe dans le four électrique des brûleurs de postcombustion. Ce type de brûleur est monté dans la partie supérieure du four et est utilisé surtout pour oxyder le monoxyde de carbone formé lors de la décarburation du métal liquide en dioxyde carbone pour réchauffer davantage le bain de métal liquide. Cependant, la durée d'utilisation et l'efficacité de ces brûleurs sont limitées. En effet, la chaleur est générée dans la partie supérieure du four et sert dès lors plutôt à réchauffer le couvercle que le métal liquide contenu dans le fond du four.
Un des gros désavantages d'un tel four électrique est sa complexité. Effectivement, il comprend de nombreux accessoires qui traversent soit la sole du four soit les parois latérales du four. L'objet de la présente invention est de proposer un procédé de fusion d'alliages à base de fer dans un four électrique dans lequel on utilise des énergies alternatives qui ne présentent pas les désavantages cités ci-dessus.
Conformément à l'invention, cet objectif est atteint par un procédé de fusion d'alliages à base de fer dans un four électrique dans lequel le four est chargé de ferraille, dans lequel au moins une partie de la ferraille chargée est découpée à l'intérieur dudit four par l'intermédiaire d'au moins une tuyère émergée débouchant dans une paroi latérale du four et dans lequel le bain de métal liquide est décarburé par l'intermédiaire de cette tuyère émergée lorsque la ferraille est partiellement fondue.
Ce procédé peut s'appliquer à tout genre de four électrique pour la fusion d'alliages à base de fer dont notamment des fours à courant continu, des fours à courant alternatif, des fours électriques dans lesquels une certaine quantité de métal liquide est maintenue dans le four en permanence ou des fours électriques qui sont alimentés exclusivement par de la ferraille, ou par de la ferraille et des matériau pré-réduits.
Un des avantages de la présente invention réside dans le fait que le four électrique est plus simple à construire et revient moins cher vu qu'un seul dispositif remplit deux fonctions distinctes. L'encombrement autour du four est réduit. En effet, les tuyères émergées selon la présente invention sont très compactes et peuvent remplacer les brûleurs classiques, les lances à oxygène et éventuellement les tuyères immergées.
Un autre avantage est qu'une usure prématurée de la sole du four électrique n'est pas à craindre puisque le tuyères émergées ne sont pas en contact avec la sole du four.
Les tuyères émergées sont de construction plus simple et de dimensions inférieures à celle des lances à oxygène supersoniques classiques. En effet, ces lances sont généralement amovibles de façon à pouvoir être introduites dans le four uniquement en cas de besoin. Ces lances étant refroidies à l'eau, elles ont un diamètre plus important que les tuyères émergées de la présente invention. Le risque d'appel d'air via l'orifice d'introduction des lances classiques est réel et nuit au bon fonctionnement du four.
La tuyère émergé fonctionne en deux régimes différents selon la phase du procédé de fusion dans laquelle on se trouve. Après le chargement en ferraille du four électrique, on injecte une quantité sensiblement stoechiométrique de combustible et d'oxygène est injecté de sorte que la tuyère émergée fonctionne en tant que brûleur ou chalumeau. La ferraille qui s'entasse devant la tuyère est découpée. Dans la deuxième phase, la teneur en oxygène est augmentée jusqu'à entre environ trois et environ cinq fois de sorte que l'on se trouve en présence d'un important excès d'oxygène et que la tuyère émergée fonctionne alors en tant que lance à oxygène pour décarburer le bain de métal liquide.
Dans cette deuxième phase, l'oxygène injecté est plutôt utilisé pour décarburer le bain d'alliages à base de fer et ce selon les réactions suivantes:
Fe + O → FeO FeO + C →Fe + CO
Le monoxyde de carbone est ensuite transformé en dioxyde de carbone.
Le carbone contenu dans le bain provient soit de la ferraille soit de charbon en vrac mélangé à la ferraille soit de dispositifs d'injection de substances contenant du carbone comme p.ex. du charbon pulvérulent. Les tuyères émergées comprennent un tube central en tant qu'injecteur d'oxygène entouré d'un annulaire alimenté en gaz ou en fuei-oil. Le nez de la tuyère émergée est protégé contre la chaleur par le cracking des hydrocarbures du gaz respectivement du fuel-oil. Les tuyères émergées n'ont pas besoin d'un système de refroidissement à l'eau. Selon un premier mode de réalisation avantageux, la tuyère émergée est opérée en mode sonique, c.-à-d. que la vitesse des gaz à la sortie de la tuyère correspond à la vitesse du son. Ce mode de fonctionnement garantit une répartition uniforme des débits entre toutes les tuyères installées dans le four et alimentées par une seule conduite d'alimentation. De préférence, le jet d'oxygène est réglé de sorte à obtenir une bonne pénétration du bain de métal liquide pendant la phase de décarburation.
Par bonne pénétration du bain, on entend une profondeur de pénétration du jet de gaz comprise entre 10 cm et 50 cm. La profondeur de pénétration d'un jet de gaz peut être estimée à l'aide de la formule suivante:
P= A e (-0.78 H/A)
où A = 63 (Q/d)0.67 dans laquelle : P représente la profondeur de pénétration du jet (mm),
H représente la distance du nez de l'injecteur à la surface du bain dans l'axe du bain (mm),
Q représente le débit d'oxygène(m3/h) et d représente le diamètre de l'orifice(mm). La présente invention permet d'injecter de plus grand volumes d'oxygène par charge que les moyens classiques.
Avantageusement, l'angle de la tuyère émergée avec l'horizontal est supérieur à 25°. Ceci permet de limiter les projections de métal liquide.
Le débit d'oxygène injecté en phase de décarburation est de préférence compris entre 500 et 1500 m3/h par tuyère.
Le débit maximal varie en fonction de la capacité du four et du nombre de tuyères installées.
Le débit maximal d'oxygène en fonction de la capacité du four peut être calculé à partir de la formule suivante :
Figure imgf000007_0001
dans laquelle :
5< k < 15, de préférence k = 10 Qmax est le débit maximal d'oxygène en m3/h et C la capacité du four en t.
Selon un autre mode de réalisation avantageux, les tuyères émergées sont disposées tangentiellement à un cercle dont le diamètre est d'environ la moitié de celui du four. De préférence, au moins une des tuyères émergées provoque un chauffage localisé du trou de coulée.
D'autres particularités et caractéristiques de l'invention ressortiront de la description détaillée de quelques modes de réalisation avantageux présentés ci-dessous, à titre d'illustration, en référence aux dessins annexés. Ceux-ci montrent:
Fig.1 : une coupe schématique dans un four électrique; Fig.2: une vue de dessus d'un four électrique et
Fig.3: un diagramme montrant l'évolution des différents débits de gaz dans une tuyère émergée. La Figure 1 montre schematiquement un four électrique de fusion d'alliages à base de fer, désigné globalement par la référence 10, comprenant une sole 11 en un matériau réfractaire surmontée d'une cuve 12 et d'un couvercle 13.
Pour charger le four en ferraille, le couvercle 13 est retiré, puis la ferraille est déversée dans la cuve 12 du four 10. Lorsque la cuve 12 est remplie de ferraille, le couvercle 13 est replacé sur la cuve 12 et au moins une électrode (non représentée) montée sur un mât (non représenté) par l'intermédiaire d'un bras (non représenté) est introduite dans le four 10 à travers une ouverture 14 (Fig. 2) pratiquée dans le couvercle 13. Le bras peut coulisser sur le mât de façon à pouvoir monter et descendre avec l'électrode. Lorsque la ferraille est fondue, l'acier liquide est déversé via un trou de coulée 15 (Fig. 2) dans une poche à acier et est amené en-dessous dudit trou de coulée 15.
Les scories sont évacuées par une porte 16 de décrassage latérale.
Selon la présente invention, on équipe le four de tuyères émergées T3 qui sont installées dans la paroi latérale du four, au-dessus de la sole du four. Ces tuyères émergées sont du même type que les tuyères immergées classiques. L'avantage que procure leur usage est dû à leur position et à leur mode de fonctionnement plutôt qu'à leur construction particulière.
La Figure 2 montre une vue de dessus du four 10. Sur cette figure on voit la position du trou de coulée 15. Les tuyères T3 sont disposées tangentiellement à un cercle dont le diamètre est égal à environ la moitié de celui du four. Par cette disposition des tuyères T3, on obtient un effet synergique de mise en rotation du bain de métal liquide qui contribue à répartir la chaleur d'une manière régulière dans le bain. Une des tuyères T3 est installée de sorte que la zone de chauffage se situe à proximité du trou de coulée, zone froide où une certaine surchauffe est toujours utile.
La Fig. 3 montre les débits d'oxygène traversant chaque tuyère émergée pendant un cycle de fusion d'alliages à base de fer. Après la phase d'attente, c.-à-d. après le chargement du four en ferraille, la tuyère est alimenté en oxygène et un gaz combustible tel que le méthane, le propane ou le butane. Dans cette phase, les deux gaz sont en rapport stoechiométrique de façon à obtenir une flamme très chaude pour découper les morceaux de ferraille empilée en face des tuyères et à réchauffer en même temps le four et son contenu.
Une fois que la ferraille entassée devant les tuyères est dégagée, la quantité d'oxygène dans le mélange est augmentée. L'alimentation en gaz combustible est maintenue pour protéger le nez de la tuyère émergée contre la chaleur. Le jet riche en oxygène ainsi obtenu pénètre dans le bain de métal liquide qui s'est formé dans le fond de la sole. Ce jet de gaz oxydant permet de décarburer le bain de métal liquide. Lorsque le premier panier de ferraille est fondu, on en rajoute un deuxième et les tuyères émergées sont à nouveaux utilisées en tant que brûleurs pour dégager la ferraille en regard des tuyères. Puis, la concentration en 02 du jet de gaz est augmentée pour faire fonctionner les tuyères émergées en tant que lance à oxygène soniques. En phase d'attente entre deux coulées, l'alimentation en méthane et en oxygène est coupée et on n'injecte que de l'azote à travers les tuyères.

Claims

Revendications
1. Procédé de fusion d'alliages à base de fer dans un four électrique dans lequel le four est chargé de ferraille, dans lequel au moins une partie de la ferraille chargée est découpée à l'intérieur dudit four par l'intermédiaire d'au moins une tuyère émergée débouchant dans une paroi latérale du four, et dans lequel le bain de métal liquide est décarburé par l'intermédiaire de cette tuyère émergée lorsque la ferraille est au moins partiellement fondue.
2. Procédé de fusion d'alliages à base de fer selon la revendication 1 , caractérisé en ce que la tuyère émergée est opérée en mode sonique.
3. Procédé de fusion d'alliages à base de fer selon l'une quelconque des revendications précédentes, caractérisé en ce que le rapport des débits d'oxygène et de combustible injecté par une ou plusieurs tuyères émergées est variable et est compris entre 1 : 1 et 5: 1.
4. Procédé de fusion d'alliages à base de fer selon la revendication 4, caractérisé en ce que le rapport des débits d'oxygène et de combustible injecté par une ou plusieurs tuyères émergées est de 1 : 1 dans la phase de découpe et est compris entre 3: 1 et 5: 1 dans la phase de décarburation.
5. Procédé de fusion d'alliages à base de fer selon l'une quelconque des revendications précédentes, caractérisé en ce que le jet de gaz est réglé de façon à obtenir une bonne pénétration du bain de métal liquide pendant la phase de décarburation.
6. Procédé de fusion d'alliages à base de fer selon la revendication 5, caractérisé en ce que la profondeur de pénétration du jet de gaz est comprise entre 10 et 50 cm.
7. Procédé de fusion d'alliages à base de fer selon l'une quelconque des revendications précédentes, caractérisé en ce que l'angle d'injection de la tuyère émergée avec l'horizontal est supérieur à 25°.
8. Procédé de fusion d'alliages à base de fer selon l'une quelconque des revendications précédentes, caractérisé en ce que les tuyères émergées sont disposées tangentiellement à un cercle dont le diamètre est environ égal à la moitié de celui du four.
9. Procédé de fusion d'alliages à base de fer selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins une tuyère émergée est orientée de manière à provoquer un chauffage localisé du trou de coulée.
10. Four électrique pour la fusion d'alliages à base de fer pour la mise en oeuvre du procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le four comprenant une ou plusieurs tuyères émergées débouchant dans une paroi latérale du four et peut ou peuvent fonctionner à au moins deux régimes distincts, à savoir en tant que brûleur dans la phase de démarrage et en tant que lance à oxygène dans la phase de décarburation.
PCT/EP1998/000401 1997-04-24 1998-01-24 Procede de fusion d'alliages a base de fer dans un four electrique WO1998048228A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU60973/98A AU6097398A (en) 1997-04-24 1998-01-24 Method for smelting iron-based alloys in an electric furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU90055 1997-04-24
LU90055A LU90055B1 (fr) 1997-04-24 1997-04-24 Procédé de fusion d'alliages à base de fer dans un four électrique

Publications (1)

Publication Number Publication Date
WO1998048228A1 true WO1998048228A1 (fr) 1998-10-29

Family

ID=19731678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/000401 WO1998048228A1 (fr) 1997-04-24 1998-01-24 Procede de fusion d'alliages a base de fer dans un four electrique

Country Status (3)

Country Link
AU (1) AU6097398A (fr)
LU (1) LU90055B1 (fr)
WO (1) WO1998048228A1 (fr)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4077614A (en) * 1975-09-17 1978-03-07 Toshin Seiko Kabushiki Kaisha Steelmaking apparatus
EP0160185A1 (fr) * 1984-03-31 1985-11-06 Fried. Krupp Gesellschaft mit beschränkter Haftung Carcasse de four basculant métallurgique
EP0257450A2 (fr) * 1986-08-27 1988-03-02 Klöckner Cra Patent Gmbh Procédé pour augmenter l'énergie alimentant les fours à arc électrique
EP0625685A1 (fr) * 1993-05-17 1994-11-23 DANIELI &amp; C. OFFICINE MECCANICHE S.p.A. Four électrique à arc alternant les sources d'énergie et méthode pour le fonctionnement d'un tel four
EP0721990A1 (fr) * 1995-01-16 1996-07-17 KCT Technologie GmbH Procédé pour la production d'aciers alliés
EP0723129A2 (fr) * 1995-01-17 1996-07-24 DANIELI &amp; C. OFFICINE MECCANICHE S.p.A. Méthode de fusion pour four électrique à arc utilisant des sources d'énergie alternatives et four à arc pour la réalisation
EP0737754A2 (fr) * 1995-04-14 1996-10-16 ELTI S.r.l. Lance pour l'insufflation de substances fluides dans les fours, en particulier dans les fours pour la fabrication d'acier
US5599375A (en) * 1994-08-29 1997-02-04 American Combustion, Inc. Method for electric steelmaking
DE19625537C1 (de) * 1996-06-26 1997-04-30 Messer Griesheim Gmbh Verfahren zum Herstellen von Stahl aus festen Einsatzstoffen
US5635130A (en) * 1995-06-07 1997-06-03 Berry Metal Co. Combined oxygen blowing/fuel burner lance assembly

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4077614A (en) * 1975-09-17 1978-03-07 Toshin Seiko Kabushiki Kaisha Steelmaking apparatus
EP0160185A1 (fr) * 1984-03-31 1985-11-06 Fried. Krupp Gesellschaft mit beschränkter Haftung Carcasse de four basculant métallurgique
EP0257450A2 (fr) * 1986-08-27 1988-03-02 Klöckner Cra Patent Gmbh Procédé pour augmenter l'énergie alimentant les fours à arc électrique
EP0625685A1 (fr) * 1993-05-17 1994-11-23 DANIELI &amp; C. OFFICINE MECCANICHE S.p.A. Four électrique à arc alternant les sources d'énergie et méthode pour le fonctionnement d'un tel four
US5599375A (en) * 1994-08-29 1997-02-04 American Combustion, Inc. Method for electric steelmaking
EP0721990A1 (fr) * 1995-01-16 1996-07-17 KCT Technologie GmbH Procédé pour la production d'aciers alliés
EP0723129A2 (fr) * 1995-01-17 1996-07-24 DANIELI &amp; C. OFFICINE MECCANICHE S.p.A. Méthode de fusion pour four électrique à arc utilisant des sources d'énergie alternatives et four à arc pour la réalisation
EP0737754A2 (fr) * 1995-04-14 1996-10-16 ELTI S.r.l. Lance pour l'insufflation de substances fluides dans les fours, en particulier dans les fours pour la fabrication d'acier
US5635130A (en) * 1995-06-07 1997-06-03 Berry Metal Co. Combined oxygen blowing/fuel burner lance assembly
DE19625537C1 (de) * 1996-06-26 1997-04-30 Messer Griesheim Gmbh Verfahren zum Herstellen von Stahl aus festen Einsatzstoffen

Also Published As

Publication number Publication date
AU6097398A (en) 1998-11-13
LU90055B1 (fr) 1998-10-26

Similar Documents

Publication Publication Date Title
CA2198901C (fr) Procede et dispositif de production electrique d&#39;acier
US6372010B1 (en) Method for metal melting, refining and processing
JP4563583B2 (ja) 金属融液の製造方法ならびにその方法において使用される多機能ランス
US5714113A (en) Apparatus for electric steelmaking
JP5551086B2 (ja) 電気アーク炉用のバーナー及びランス複合装置
EP0081448B1 (fr) Procédé et dispositif pour l&#39;affinage d&#39;un bain de métal contenant des matières refroidissantes solides
RU2015170C1 (ru) Способ непрерывного плавления металлошихты и устройство для его осуществления
CA2437254C (fr) Procede de production de fonte liquide dans un four electrique
JPH0726318A (ja) 製鋼用電気炉の操業方法
US8420009B2 (en) Gas cupola for melting metal
EP1200634B1 (fr) Procede d&#39;optimisation du fonctionnement d&#39;un four electrique du type a arc submerge
WO1998048228A1 (fr) Procede de fusion d&#39;alliages a base de fer dans un four electrique
EP0760868B1 (fr) Procede d&#39;elaboration de l&#39;acier dans un four electrique a arc, et four electrique a arc pour sa mise en oeuvre
EP0769125A1 (fr) Procede de fusion d&#39;une charge metallique dans un four rotatif et four rotatif pour la mise en uvre d&#39;un tel procede
FR2525755A1 (fr) Four electrique a arc muni de moyens de brassage du bain metallique
CA1087859A (fr) Procede d&#39;elaboration d&#39;aciers allies au four a arcs, avec chargement continu
JPH10510880A (ja) 複数の容器を有する傾動式冶金ユニット
EP0834049B1 (fr) Procede de fusion d&#39;une charge dans un four electrique a arc
CA2003155A1 (fr) Four de fusion et mode d&#39;exploitation
EP0536185B1 (fr) Procede de rechauffage d&#39;un bain d&#39;acier liquide
WO2000073515A1 (fr) Procede de production de metal liquide a partir de particules prereduites et dispositif de fusion couple a un four de traitement thermique par un dispositif de transfert de particules
JP2002121612A (ja) 冷鉄源の溶解方法
JP2000154387A (ja) 無機の物質を溶融するための方法
BE685875A (fr)
BE677811A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998544779

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA