EP0765213A1 - Verfahren zum streckblasen und blasformpresse - Google Patents

Verfahren zum streckblasen und blasformpresse

Info

Publication number
EP0765213A1
EP0765213A1 EP96901685A EP96901685A EP0765213A1 EP 0765213 A1 EP0765213 A1 EP 0765213A1 EP 96901685 A EP96901685 A EP 96901685A EP 96901685 A EP96901685 A EP 96901685A EP 0765213 A1 EP0765213 A1 EP 0765213A1
Authority
EP
European Patent Office
Prior art keywords
pressure
piston
compressed air
air
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96901685A
Other languages
English (en)
French (fr)
Inventor
Ronald Siegrist
Bruno Stillhard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ProControl AG
Original Assignee
ProControl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ProControl AG filed Critical ProControl AG
Publication of EP0765213A1 publication Critical patent/EP0765213A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C49/783Measuring, controlling or regulating blowing pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C49/783Measuring, controlling or regulating blowing pressure
    • B29C2049/7832Blowing with two or more pressure levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4284Means for recycling or reusing auxiliaries or materials, e.g. blowing fluids or energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4284Means for recycling or reusing auxiliaries or materials, e.g. blowing fluids or energy
    • B29C49/42845Recycling or reusing of fluid, e.g. pressure
    • B29C49/42855Blowing fluids, e.g. reducing fluid consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4284Means for recycling or reusing auxiliaries or materials, e.g. blowing fluids or energy
    • B29C49/4287Means for recycling or reusing auxiliaries or materials, e.g. blowing fluids or energy for use outside the blow-moulding apparatus, e.g. generating power or as pressurized plant air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to a method for blowing, in particular for controlled stretch blow molding of a thin-walled bottle body from a preform, a first blowing phase being carried out with compressed air at low pressure and a second blowing phase with high pressure blowing air.
  • the invention further relates to a blow molding press.
  • Stretch blow molding is a rational method to produce extremely thin-walled hollow bodies.
  • the best known are bottles of 1 to 2 liters for mineral water.
  • a thermoplastic material such as e.g. Pet is used, from which a preform is produced in a previous step.
  • the preform is heated to 150 to 180 ° C and introduced into a blow mold while hot.
  • the compressed air is usually blown into two stages, first at a low pressure of about 10 bar and then at about 40 bar into the finished mold. After a short solidification phase, the compressed air is released from the bottle, the mold is opened and the finished bottle is removed.
  • An entire manufacturing cycle takes two to three seconds. Attempts have already been made to reduce at least part of the compression energy by taking back the blown air into a container system. However, the considerable effort and relatively small profit prevented this type of pressure energy recovery from being used more widely. It was not recognized that dynamic processes were not mastered to the extent required. Presentation of the invention
  • the invention was based on the object of optimizing the energy balance for stretch blow molding in relation to the provision of the blowing air with the least possible investment in equipment.
  • the method according to the invention is characterized in that the compression and decompression of the blown air takes place adiabatically in the phase with higher pressure to optimize the energy balance and energy conversion.
  • the pressure generator for the higher pressure preferably works alternately as a compressor gas pressure motor.
  • the invention further relates to a blow molding press for blowing, in particular for controlled stretch blow molding of hollow bodies made of plastic, in particular PET, from a preform or hose by means of compressed air, the compressed air system consisting of a preferably isothermally operating low-pressure air system and a high-pressure system, characterized in that the compressed air system for the high pressure blowing air is designed as an adiabatically operating pressure generator and for energy recovery, preferably as a compressor gas pressure motor.
  • the compressed air of the lower pressure level e.g. pre-compressed to 8 to 12 bar and cooled with the practice known per se, and the heat of compression is removed.
  • an enclosed high-pressure air cushion is moved back and forth and compressed or expanded.
  • the upper pressure stage for example. from about 10 to 40 bar performed adiabatically without air cooling.
  • the air compression is particularly preferably carried out by a single piston movement for the compression and vice versa with the corresponding backward movement.
  • the high-pressure part takes place in the manner of a spring or air pressure spring, but with precisely controlled movements.
  • the temperature increases during compression by about 80 to 140 ° C.
  • the air thus approximates the temperature of the preheated molding.
  • the first blow molding of the preform is advantageously carried out with the isothermally generated compressed air. Compressed air is blown into the preform at approximately 8 to 12 bar.
  • the adiabatically generated compressed air can then be fed continuously without pressure jump via corresponding valve controls and the pressure increased accordingly to the aforementioned 40 bar.
  • a reversing control for the compressor piston then expands the compressed air again by means of a backward movement or return movement of the piston.
  • the compression heat is recovered during the backward movement because the temperature increase during the adiabatic compression and expansion is brought back to the initial temperature. There is only little heat loss. Since a full cycle time only lasts two to three seconds, the heat loss during the short period of high pressure remains low. Any heating over several cycles of the recovered air is essentially compensated for by mixing with the cooler air of the lower pressure level. Due to the excellent dynamics or control dynamics of the servo motors, the actual high-pressure blowing phase can now be controlled very precisely. So it is possible to regulate any pressure curve, e.g. between a complete pre-compression of the high pressure blowing air or any pressure increase during the high pressure blowing process.
  • the invention also allows a number of particularly advantageous configurations, the energy being recovered to the maximum.
  • the high-pressure blowing air for a single blowing phase is generated by only one feed movement of a compressor piston and is supported by a compressed air cushion on the piston side.
  • the compressor piston will driven by an electric motor, in the phase of decompression of the high-pressure blowing air the piston-side compressed air cushion is compressed as an energy store, and during the high-pressure blowing phase the drive of the compressor piston takes place both electromotively and from the energy store. This means that two energy potentials can be used in both directions of movement of the compressor piston.
  • the piston-side compressed-air cushion can also be connected to an additional high-pressure accumulator, so that the compressed-air cushion is decompressed or compressed in counter-stroke with the compression / decompression of the blown air.
  • the expansion of the high-pressure blowing air is used until the low pressure of the first phase is reached to support the backward-controlled drive of the compressor pistons.
  • the compressor piston can thus be driven in a controlled manner in both directions in the manner of a dynamic spring.
  • the energy is alternately used via the electromotive drive of the pressure generator and the piston-side compressed air cushion and when the blown air flows back, the expansion pressure of the return flow air and the electromotive compressor drive. It is also possible to additionally provide a mechanical spring at least on the piston rear side.
  • the blowing pressure for the lower pressure phase is usually generated isothermally in several stages.
  • the ratio of the adiabatically and the isothermally generated compressed air can be determined by the choice of the respective maximum pressure, in particular on the basis of the desired final temperature of the blown compressed air.
  • the system is preferably designed such that the pressure at the end of the backflow corresponds to, or at least approximates, the pressure of the isothermal pressure stage. After closing a valve between the compressor piston and the finished mold, the residual compressed air from the finished bottle can be blown outside.
  • the effective piston volume and possibly the blow-off pressure e.g. through the piston travel is selectable. It is possible to increase the initial pressure for the adiabatic pressure stage with the compressed air of the isothermal pressure stage.
  • the compressed air system for the high-pressure blowing air preferably has a compressor piston which is electrically controllable in both directions, the compressor piston being designed as a spring, in particular as a gas pressure spring, in cooperation with the electromotive drive.
  • the pressure generator for the high pressure is preferably driven by an AC servo motor or a vector-controlled motor. However, any other motor can also be used, provided that it has sufficient control behavior. Very short, rapid and large changes to the rules are particularly required.
  • the compressor piston is preferably driven by a servo motor, the overdriving from the servo motor to the piston rod being effected by a rack and pinion gear or a ball roller or planetary roller spindle.
  • a container collecting device is provided for taking over the low-pressure blow-off air from the finished mold, after the phase of energy recovery of the adiabatic pressure stage.
  • FIG. 1 shows a preform and a finished PET bottle, which is known per se;
  • FIG. 2 shows schematically the basic structure of an entire blow press device according to the invention;
  • FIG. 3 schematically shows a solution according to the invention with a concept of the course of forces and pressure for the high pressure phase; 4 shows the course of the cycle in relation to the shape movement and the course of pressure.
  • a preform 1 has a given filling volume vol. 1 according to an inner diameter d and its length lv.
  • the finished bottle 2 has a filling volume vol. 2 according to the inner diameter D and the length LF.
  • At the end of the stretch blow molding process there is bottle 2 Compressed air according to Vol. 2 and e.g. 40 bar, which are blown into the open in the prior art.
  • a two-stage isothermal compressed air generator 3 has two air coolers 4.
  • the low pressure air VN is in a container 5 with, for example. pressed up to 12 bar.
  • a bottle 2 is shown fully pressed.
  • Compressed air of the lower pressure level is fed via a compressed air line 7 and jointly pressure line 8 into the opening 9 of the bottle 2.
  • the common pressure line 8 can either be opened or closed in the main line by means of valve 10 or in an outflow or blow-off line 12 by means of valve 11.
  • a compressed air recovery is indicated, from which the low pressure air e.g. again an inlet valve de compressed air generator 3 can be supplied.
  • a compressor piston 14 is de high pressure of, for example, a piston or a piston rod 15 de 30 to 40 bar generated.
  • Arrow 16 indicates the blowing pressure generation for the high pressure and arrow 17 indicates the expansion of the high pressure blowing air.
  • the compressor piston 14 is driven via an AC servo motor 18 via a double-rack gearbox 19. Electrical energy can be generated during the backward movement (arrow 17) and can be done in some way via a rectifier and an electrical memory 20 or directly back into the network .
  • the system is controlled by a control ST, by means of which all process parameters such as start, stop, valves etc. can be set and optimized during stretch blow molding.
  • the low pressure system consists essentially of the low pressure air generator 3 and the pressure vessel 5.
  • the high pressure system has a, designed as a compressor gas pressure motor 25 High pressure generator with the compressor piston 14.
  • the high-pressure blowing air is generated in the pressure chamber 21 on the front side of the compressor piston 14, for which purpose the piston rod 15 is moved in the direction of the arrow 16 at the given time.
  • the high pressure builds up in the bottle interior 22, following the blowing phase of the low pressure.
  • At the back of the piston there is a compressed air cushion 23 which is directly connected to an additional high-pressure accumulator 24.
  • the pressure ratios can be selected depending on special requirements. In particular, the values determined in practice as optimal (low pressure e.g. 8 to 12 bar, high pressure e.g. 8 to 40 bar) can be set.
  • the piston 14 is clamped, as it were, between the pressure in the pressure chamber 21 and the pressure in the compressed air cushion 23.
  • the exact movement of the compressor piston is controlled via the servo motor 18 or the corresponding control signals from the control ST.
  • Two important sections are the two end positions, at the end of the injection of high pressure air when the piston is far left, and after the blowing process is completed when the piston is far right. In normal operation, the electromotive drive must also be used to ensure that the piston is held in position in the end positions or that it maintains the respective pressure and that the piston pushes when necessary.
  • the form movement FBew is vertical, the time Zt horizontally.
  • the movement of the mold halves is shown in the upper half of the figure.
  • Prg means press closed.
  • the pressure curve of the blowing air is recorded directly below. Vertical the pressure D.
  • the pressure curve is a theoretical curve, whereby with a lower limit line 35 the upper value of the low pressure air, with an upper limit line 36 the upper pressure of the high pressure air is indicated.
  • the first blowing phase 37 takes place via a low pressure system.
  • the second blowing phase 38 from a high pressure system.
  • the high static pressure must be maintained for a short time (pressure maintenance phase 39). Then, by reversing the compressor piston, the high-pressure air from the now finished PET bottle is lowered (40) until the cut with boundary line 35. After the lower boundary line 35 has been reached, the high-pressure system is separated by closing a corresponding valve. The low-pressure air remaining in the PET bottle can be discharged outside (curve 41). The time between two blowing phases is required to take the finished bottle out of the mold and insert a new preform. A complete cycle is shown with Zyi, Zy2.
  • FIG. 3 schematically shows a blow molding press according to the invention with an associated displacement pressure diagram (center of the picture).
  • the given values show a calculation example.
  • Pl is the pressure curve in the pressure chamber 21
  • P2 is the pressure curve in the compressed air cushion 23.
  • the (+) and (-) designate the energy gradient which is greatest in the respective end positions. Only in the sense of a pictorial model below the path pressure diagram. a spring mass oscillator is shown. Since the compressed air is locked in on both piston sides, resp. the pressure and the corresponding force drop depending on the position.
  • the area designated by Ek represents the kinematic energy which is temporarily stored in the moving mass M. Since, as schematically indicated with Ek, part of the potential energy is temporarily stored as kinetic energy, less electrical energy is generated for intermediate storage.
  • Figure 3 shows a two-cavity shape. It can simultaneously stucco 2 1 - liter bottles, a servoeletrischen Blasstation- be made per module.
  • the high-pressure air is "generated" at the time of blowing by a single-acting piston pump driven by a servo motor and then recovered again.
  • the supply takes place via an 8 bar low-pressure supply.
  • the servo cylinder with e.g. 120 mm diameter and 800 mm stroke, 9 liters of air under 8 bar is compressed to 40 bar or 3 liters volume without heat loss. After blowing, the same air is decompressed and largely recovered. In order to ensure that the cycle time is at least not extended, but rather becomes shorter, you can count on 6 liters of recovered air and 2 liters of air to be replaced per blowing cycle and module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

Die neue Erfindung schlägt vor, die obere Stufe der Blasdruckluft anstatt wie bisher isotherm, neu adiabatisch zu führen. Dies erlaubt den ganzen Blasvorgang mit der kleinstmöglichen Energie durchzuführen und z.B. über eine Kolbenpumpe (14) nach dem Blasformen die grösstmögliche Energiemenge zurückzugewinnen. Bevorzugt wird für eine erste Phase Niederdruckblasluft (N) ein- oder zweistufig isotherm 8 bis 12 bar erzeugt und dann in der eigentlichen Pressstufe adiabatisch erzeugte Hochdruckblasluft (H) von 30 bis 40 bar verwendet. Die Energierückgewinnung kann auch elektrisch über die gleichen Mittel wie für den Antrieb der Kolbenpumpe (14) erfolgen. Ein sehr wichtiger Teil der Energiesparung liegt vor allem darin, dass die Druckluft der oberen Stufe adiabatisch erzeugt und mit einem kolbenrückseitigen Druckluftpolster und einem Hochdruckzusatzspeicher vorgesehen wird. Es wird ein dynamisches Wechselspiel aus der Vor- und Rücklaufbewegung des Kolbens optimal genutzt. Alle Abläufe werden über eine zentrale Steuerung (ST) koordiniert.

Description

Verfahren zum Streckblasen und Blasformpresse
Technisches Gebiet
Die Erfindung betrifft ein Verfahren zum Blasen, insbesondere zum gesteuerten Streckblasen eines dünnwandigen Flaschenkorpers von einem Vorformling, wobei eine erste Blasphase mit Druckluft von niederem Druck und eine zweite Blasphase mit Hochdruckblasluft durchgeführt wird. Die Erfindung betrifft ferner eine Blasformpresse.
Stand der Technik
Das Streckblasen ist eine rationelle Methode um extrem dünnwandige Hohlkörper herzustellen. Am bekanntesten sind Flaschen von 1 bis 2 Litern Inhalt für Mineralwasser. Als Rohmaterial wird ein thermoplastisches Material wie z.Bsp. Pet verwendet, aus dem in einem vorangehenden Arbeitsgang ein Vorformling hergestellt wird. Der Vorformling wird auf 150 bis 180°C erwärmt und in heisse Zustand in eine Blasform eingeführt. Die Druckluft wird üblicherweise zweistufig, zuerst mit niederem Druck von etwa 10 bar und dann mit etwa 40 bar in die fertige Form geblasen. Nach einer kurzen Verfestigungsphase wird die Druckluft aus der Flasche abgelassen, die Form geöffnet und die fertige Flasche entnommen. Ein ganzer Herstellzyklus dauert zwei bis drei Sekunden. Es ist schon versucht worden, durch eine Rücknahme der Blasluft in ein Behaltersystem wenigstens einen Teil der Kompressionsenergie zurückzuführen. Der beachtliche Aufwand und relativ kleine Gewinn verhinderte jedoch eine breitere Anwendung dieser Art der Ruckgewinnung der Druckenergie. Es wurde nicht erkannt, dass dynamische Vorgange nicht im benötigtem Masse beherrscht werden. Darstellung der Erfindung
Der Erfindung lag nun die Aufgabe zu Grunde, den Energiehaushalt für das Streckblasen in Bezug auf die Bereitstellung der Blasluft mit den geringst möglichen Anlageinvestitionen zu optimieren.
Das erfindungsgemasse Verfahren ist dadurch gekennzeichnet, dass bei der Phase mit höherem Druck zur Optimierung des Energiehaushaltes und Energieruckwandlung die Kompression und Dekompression der Blasluft adiabatisch erfolgt. Vorzugsweise arbeitet der Druckerzeuger für den höheren Druck wechselweise als Kompressor-Gasdruckmotor. Die Erfindung betrifft ferner eine Blasformpresse zum Blasen, insbesondere zum gesteuerten Streck¬ blasen von Hohlkörpern aus Kunststoff, inbesondere aus PET, von einem Vorformling oder Schlauch mittels Druckluft, wobei das Druckluftsystem aus einem vorzugsweise isotherm arbeitenden Niederdruckluftsystem sowie einem Hochdrucksystem besteht, dadurch gekennzeichnet, dass das Druckluftsystem für die Hochdruckblasluft als adiabatisch arbeitender Druckerzeuger und zur Energierückwand¬ lung vorzugsweise als Kompressor-Gasdruckmotor ausgebildet ist.
Erfindungsgemass ist erkannt worden, dass der grosste Gewinn dann möglich ist, wenn bereits bei der Drucklufterzeugung die Energieruckgewinnung dadurch berücksichtigt wird, dass in der höchsten Druckstufe die Druckluft nicht mehr gekühlt, sondern adiabatisch verdichtet und durch Ruckfluss in den Druck¬ lufterzeuger wieder expandiert wird. Es kann die Druckluft der unteren Druckstufe z.Bsp. auf 8 bis 12 bar vorverdichtet und mit der an sich bekannten Praxis gekühlt, und die Kompressionswarme abgeführt werden. Für die Hochdruckphase wird gleichsam ein eingeschlossenes Hochdruckluftpolster hin- und herbewegt und dabei komprimiert bzw. expandiert. In einem Teil der Falle ist es möglich, die hier anfallende Wärme auf bekannte Weise zurückzugewinnen. Erfindungsgemass wird nun aber die obere Druckstufe, also z.Bsp. von etwa 10 bis 40 bar adiabatisch ohne Luftkühlung durchgeführt. Die Luftverdichtung erfolgt besonders bevorzugt durch eine einzige Kolbenbewegung für die Verdichtung und umgekehrt mit der entsprechenden Ruckwartsbewegung. Der Hochdruckteil erfolgt in der Art wie eine Feder bzw. Luft¬ druckfeder jedoch mit genau gesteuerten Bewegungen. Die Temperatur erhöht sich bei der Verdichtung um etwa 80 bis 140°C. Die Luft nimmt damit angenähert die Temperatur des vorerwärmten Formlings an. Vorteilhafterweise wird die erste Blasformung des Vorformlings mit der isotherm erzeugten Druckluft gemacht. In den Vorformling wird Druckluft mit etwa 8 bis 12 bar geblasen. Es kann stetig ohne Drucksprung dann über entsprechende Ventilsteuerungen die adiabatisch erzeugte Druckluft zugeführt und der Druck entsprechend auf die genannten 40 bar gesteigert werden. Durch eine Umkehrsteuerung für den Verdichter-Kolben wird darauf die Druckluft wieder expandiert, mittels Rückwärtsbewegung bzw. Rückführungsbewegung des Kolbens. Während der Rückwärtsbewegung wird die Kompressionswärme zurückgewonnen, weil die Temperatur¬ erhöhung bei der adiabatischen Verdichtung und Expansion wiederum auf die Ausgangstemperatur zurückgebracht wird. Es entstehen nur geringe Wärmeverluste. Da eine volle Zykluszeit nur zwei bis drei Sekunden dauert, bleibt der Wärmeverlust während der kurzen Zeit des hohen Druckes gering. Eine etwaige Erwärmung über mehrere Zyklen der zurückgewonnenen Luft wird im wesentlichen durch die Vermischung mit der kühleren Luft der niederen Druckstufe kompensiert. Durch die ausgezeichnete Dynamik bzw. Regeldynamik der Servo-Motoren kann erfindungsgem ss nun vor allem die eigentliche Hochdruckblasphase sehr exakt kontrolliert werden. So ist es möglich jeden beliebigen Druckverlauf zu regeln, z.Bsp. zwischen einem völligen Vorverdichten der Hochdruckblasluft oder einer beliebigen Drucksteigerung während dem Hochdruckeinblas- vorgang.
Die Erfindung erlaubt ferner eine Anzahl besonders vorteilhafter Ausgestaltungen, dabei kann die Energie maximal zurückgewonnen werden. Gemäss bevorzugten Ausgestaltungen wird die Hochdruck¬ blasluft für eine einzige Blasphase durch nur eine Vorschubbewegung eines Verdichterkolbens erzeugt und durch ein kolbenrückseitiges Druckluftpolster unterstützt. Dies hat den grossen Vorteil, dass neben der reinen Umwandlung der Kolbenschubkraft auch der dynamische Anteil der Energie voll nutzbar bzw. umwandelbar ist. Der Verdichterkolben wird elektromotorisch angetrieben, wobei in der Phase der Dekompression der Hochdruckblasluf das kolbenrückseitige Druckluftpolster als Energiespeicher komprimiert wird, und während der Hochdruck- Blasphase der Antrieb des Verdichterkolbens sowohl elektro¬ motorisch wie aus dem Energiespeicher erfolgt. Dies bedeutet, dass in beiden Bewegungesrichtungen des Verdichterkolbens zwei Energiepotentiale nutzbar sind. Das kolbenrückseitige Druckluft¬ polster kann ferner mit einem Zusatzhochdruckspeicher verbunden werden, so dass im Gegentakt mit der Kompression/Dekompression der Blasluft das Druckluftpolster dekomprimiert bzw. komprimiert wird.
Die Expansion der Hochdruckblasluft wird bis zum Erreichen etwa des niederen Druckes der ersten Phase zur Unterstützung des ruckwartsgesteuerten Antriebes der Verdichterkolbens genutzt. Der Verdichterkolben kann so in beiden Richtungen in der Art einer dynamischen Feder gesteuert angetrieben werden. Dabei wird wechselweise beim Blasen die Energie über den elektromotorischen Antrieb des Druckerzeugers sowie des kolbenrückseitigen Druckluft¬ polsters und beim Rückströmen der Blasluft der Expansionsdruck der Rückströmluft und der elektromotorische Verdichterantrieb genutzt. Es ist ferner auch möglich, wenigstens kolbenrückseitig zusätzlich eine mechanische Feder vorzusehen. Der Blasdruck für die niedere Druckphase wird üblicherweise in mehreren Stufen isotherm erzeugt. Das Verhältnis der adiabatisch und der isotherm erzeugten Druckluft kann durch die Wahl des jeweiligen Maximaldruckes, insbesondere auf Grund der gewünschten Endtemperatur der Blasdruckluft festgelegt werden. Bevorzugt wird die Anlage so ausgelegt, dass der Druck am Ende der Rückstromung dem Druck der isothermen Druckstufe, oder wenigstens angenähert, entspricht. Nach Verschliessen eines Ventiles zwischen dem Verdichterkolben und der fertigen Form kann die Restdruckluft aus der fertigen Flasche ins Freie abgeblasen werden. Das wirksame Kolbenvolumen und gegebenenfalls der Abblasdruck z.Bsp. durch den Kolbenweg ist wahlbar. Es ist möglich, den Anfangsdruck für die adiabatische Druckstufe durch die Druckluft der isothermen Druckstufe heraufzusetzen. Das Druckluftsystem für die Hochdruckblasluft weist vorzugsweise einen in beiden Richtungen elektrisch steuerbar angetriebenen Verdichterkolben auf, wobei der Verdichterkolben als Feder, insbesondere als Gasdruckfeder zusammenwirkend mit dem elektromotorischen Antrieb ausgebildet ist. Der Antrieb des Druckerzeugers für den Hochdruck erfolgt bevorzugt über einen AC- Servomotor oder einen vektoriell geregelten Motor. Es kann aber auch irgend ein anderer Motor eingesetzt werden, vorausgesetzt, dass dieser ein genügendes Regelverhalten hat. Gefordert sind insbesondere sehr kurze, rasche und grosse Regeländerungen.
Der Verdichterkolben wird bevorzugt über einen Servomotor angetrieben, wobei der Übertrieb von dem Servmotor zu der Kolbenstange durch ein Zahnstangen-Getriebe oder eine Kugelroll¬ oder Planetenrollen-Spindel erfolgt.
Es ist ferner möglich, dass eine Behälterauffangeinrichtung vorgesehen ist, zur Übernahme der Niederdruck-Abblasluft aus der fertigen Form, anschliessend an die Phase der Energierückgewinnung der adiabatischen Druckstufe.
Kurze Beschreibung der Erfindung
Die Erfindung wird nun an Hand eines Beispieles mit weiteren Einzelheiten erläutert. Es zeigen:
die Figur 1 ineinander gezeichnet einen Vorformling sowie eine fertige PET-Flasche, die an sich bekannt ist; die Figur 2 schematisch den Grundaufbau einer ganzen, erfindungs- gemässen Blas-Presseinrichtung; die Figur 3 schematisch eine erfindungsgemässe Lösung mit einem Konzept des Kräfte- und Druckverlaufes für die Hoch¬ druckphase; die Figur 4 den Zyklusverlauf in Bezug auf die Formbewegung sowie den Druckverlauf.
Wege zur Ausführung der Erfindung Ein Vorformling 1 hat entsprechend einem inneren Durchmesser d sowie seiner Lange lv ein gegebenes Füllvolumen Vol. 1. Di fertige Flasche 2 hat entsprechend dem inneren Durchmesser D sowie der Länge LF ein Füllvolumen Vol. 2. Am Ende de Streckblasvorganges befindet sich in der Flasche 2 Druckluf entsprechend Vol. 2. und z.Bsp. 40 bar, welche im Stand de Technik ins Freie abgeblasen werden.
In der Figur 2 sind die wesentlichen Teile der Druckluftsystem gemäss der neuen Erfindung schematisch dargestellt. Ei zweistufiger isothermer Drucklufterzeuger 3 weist zwei Luftkuhle 4 auf. Die Niederdruckluft VN wird in einem Behälter 5 mit z.Bsp. bis 12 bar gepresst. In einer meistens zweiteiligen Blasform 6 is eine Flasche 2 fertig gepresst dargestellt. Druckluft der niedere Druckstufe wird über eine Pressluftleitung 7, und gemeinsam Druckleitung 8 in die Öffnung 9 der Flasche 2 geführt. Di gemeinsame Druckleitung 8 kann in der Hauptleitung durch ei Ventil 10 oder in einer Abström- bzw. Abblasleitung 12 durch ei Ventil 11 wahlweise geöffnet oder geschlossen werden. Mit de Bezugszeichen 13 ist eine Druckluftrückgewinnung angedeutet, vo der aus die Niederdruckluft z.Bsp. wieder einem Einlaufventil de Drucklufterzeugers 3 zugeführt werden kann. Mit einem Verdichter kolben 14 wird über einen Kolben bzw. eine Kolbenstange 15 de Hochdruck von z.Bsp. 30 bis 40 bar erzeugt. Mit Pfeil 16 ist di Blasdruckerzeugung für den Hochdruck und mit Pfeil 17 di Expansion der Hochdruckblasluft angedeutet. Der Antrieb de Verdichterkolbens 14 erfolgt über einen AC-Servmotor 18 über ei Doppelzahnstangen-Getriebe 19. Elektrische Energie kann wahren der Rückwartsbewegung (Pfeil 17) erzeugt und auf irgend eine Weise über einen Gleichrichter und einen elektrischen Speicher 20 oder direkt zurück in das Netz erfolgen. Die Anlage wird über ein Steuerung ST gesteuert, über welche auch alle Verfahrensparamete wie Start, Stop, Ventile usw. wahrend dem Streckblasen eingestell und optimiert werden können.
Das Niederdrucksystem besteht im wesentlichen aus dem Niederdruck lufterzeuger 3 sowie dem Druckbehälter 5. Das Hochdrucksyste weist einen, als Kompressor-Gasdruckmotor 25 ausgebildete Hochdruckerzeuger mit dem Verdichterkolben 14 auf. Auf der Vorderseite des Verdichterkolbens 14 wird die Hochdruckblasluft in der Druckkammer 21 erzeugt, wofür die Kolbenstange 15 zum gegebenen Zeitpunkt in Richtung des Pfeiles 16 bewegt wird. Es baut sich in dem Flascheninnenraum 22 der hohe Druck auf, anschliessend an die Blasphase des Niederdruckes. Kolbenrückseitig befindet sich ein Druckluftpolster 23, das direkt in Verbindung steht mit einem Zusatzhochdruckspeicher 24. Je nach besonderen Anforderungen können die Druckverhältnisse gewählt werden. Insbesondere können die in der Praxis als optimal ermittelten Werte (Niederdruck z.Bsp. 8 bis 12 bar, Hochdruck z.Bsp. 8 bis 40 bar) eingestellt werden. Dabei ist es wichtig, dass die Auslegung aller Volumen richtig ist. Das Prinzip erlaubt auch Werte ausserhalb der angegebenen Werte. Ein wichtiger Punkt ist die Grosse des Zusatzhochdruckspeichers 24, der z.Bsp. eine Grosse von 10 lt. bis 100 lt. haben kann. Während der Hochdruckphase ist der Kolben 14 gleichsam eingespannt, zwischen dem Druck in der Druckkammer 21 sowie dem Druck in dem Druckluftpolster 23. Gleichzeitig wird die exakte Bewegung des Verdichterkolbens über den Servomotor 18 bzw. die entsprechende Steuersignale der Steuerung ST kontrolliert. Zwei wichtige Abschnitte sind dabei die zwei Endlagen, am Ende des Einblasens von Hochdruckluft, wenn der Kolben weit links ist, sowie nach Abschluss des Blasvorganges, wenn der Kolben weit rechts ist. Im normalen Betrieb uss über den elektromotorischen Antrieb auch dafür gesorgt werden, dass der Kolben in den Endlagen in Position gehalten bzw. dass er den jeweiligen Druck hält, und dass der Kolben, wenn es erforderlich ist, nachstösst.
Zwei ganze Arbeitszyklen sind in der Figur 4 dargestellt. Senkrecht ist die Formbewegung FBew, horizontal die Zeit Zt. In der oberen Bildhälfte ist die Bewegung der Formhälften gezeigt. Dabei sind die wichtigsten Abschnitte: das Schliessen der Form (30), das Halten der geschlossenen Form (31), das Öffnen der Form 32 und die geöffnete Stellung der Form 33. Prg bedeutet Presse geschlossen. Im gleichen Zeitablauf ist direkt darunter der Druckverlauf der Blasluft aufgezeichnet. Senkrecht der Druck D. Die Druckkurve ist eine theoretische Kurve, wobei mit einer unteren Grenzlinie 35 der obere Wert der Niederdruckluft, mit einer oberen Grenzlinie 36 der obere Druck der Hochdruckluft angegeben ist. Die erste Blasphase 37 erfolgt über ein Niederdrucksystem. Die zweite Blasphase 38 aus einem Hochdrucksystem. Am Ende des Einblasvorganges muss der hohe statische Druck für kurze Zeit gehalten werden {Druckhaltephase 39) . Danach wird durch eine Umkehrbewegung des Kompressorkolbens die Hochdruckluft aus der nun fertigen Pet-Flasche abgesenkt (40), dies bis zum Schnitt mit Grenzlinie 35. Nach Erreichen der unteren Grenzlinie 35 wird das Hochdrucksystem durch Schliessen eines entsprechenden Ventiles abgetrennt. Die in der Pet-Flasche verbleibende Niederdruckluft kann ins Freie abgelassen werden (Kurve 41) . Die Zeit zwischen zwei Blasphasen wird benotigt um die fertige Flasche aus der Form zu nehmen und einen neuen Vorformling einzulegen. Ein vollständiger Zyklus ist mit Zyi, Zy2 dargestellt.
Die Figur 3 zeigt schematisch eine erfindungsgemasse Blasform¬ presse mit einem dazugehörigen Weg-Druckdiagramm (Bildmitte) . Die angegebenen Werte zeigen ein Rechenbeispiel. Pl ist der Druck¬ verlauf im Druckraum 21, P2 ist der Druckverlauf in dem Druck¬ luftpolster 23. Mit (+) und (-) ist das Energiegefalle bezeichnet, das in den jeweiligen Endlagen am grossten ist. Nur im Sinne eines bildlichen Modelles unterhalb dem Weg-Druckdiagramπ. ist ein Feder- Masseschwinger gezeigt. Da auf beiden Kolbenseiten die Druckluft eingesperrt ist, steigt resp. fallt der Druck und die entsprechende Kraft in Abhängigkeit der Position. Die mit Ek be¬ zeichnete Fläche gibt die kinematische Energie wieder, welche in der bewegten Masse M zwischenzeitlich gespeichert wird. Da wie schematisch mit Ek angedeutet ein Teil der potentiellen Energie kurzzeitig als kinetische Energie zwischengespeichert wird, fallt weniger elektrische Energie zur Zwischenspeicherung an. Die Figur 3 zeigt eine Zweikavitätenform. Es können gleichzeitig 2 Stuck 1 - Literflaschen , pro Modul einer servoeletrischen Blasstation- hergestellt werden. Beim neuen Verfahren wird über eine mittels Servomotor angetriebene, einfach wirkende Kolbenpumpe die Hochdruckluft zum Zeitpunkt des Blasens "erzeugt" und danach wieder zurückgewonnen. Die Versorgung erfolgt im betrachteten Beispiel über eine 8 bar Niederdruck- Versorgung. Im Servozylinder mit z.Bsp. 120 mm Durchmesser und 800 mm Hub wird 9 Liter Luft unter 8 bar ohne Wärmeverlust komprimiert auf 40 bar bzw. 3 Liter Volumen. Nach dem Blasen wird dieselbe Luft wieder dekomprimiert und grösstenteils wieder zurückgewonnen. Um sicher zu gehen, dass die Zykluszeit zumindest nicht verlängert wird, sondern eher kürzer wird, kann mit 6 Liter zurückgewonnener Luft und 2 Liter Luft die pro Blaszyklus und Modul zu ersetzen ist gerechnet werden.
Mit dem neuen System können für den Bereich des Hochdruckes etwa 90 % der Energie eingespart werden. Wobei bisher der Energiebedarf für Hochdruck 2 bis 3 mal grösser war als der Energiebedarf für Niederdruck.

Claims

Patentansprüche
1. Verfahren zum Blasen, insbesondere zum gesteuerten Streck¬ blasen, eines dünnwandigen Flaschenkörpers aus einem Vorform¬ ling, wobei eine erste Blasphase mit Druckluft von niederem Druck und eine zweite Blasphase mit Hochdruckblasluft durchgeführt wird, d a d u r c h g e k e n n z e i c h n e t, dass bei der Phase mit höherem Druck zur Optimierung des Energiehaushaltes und Energieruckwandlung die Kompression und Dekompression der Blasluft angenähert adiabatisch erfolgt.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass die Hochdruckblasluft für eine Blasphase durch eine Vorschubbewegung eines Verdichterkolbens erzeugt wird und die Dekompression durch die Ruckwärtsbewegung des Verdichterkolbens erfolgt und die Expansion der Hochdruckblasluft bis zum Erreichen etwa des niederen Druckes der ersten Phase bei ruckwarts- gesteuertem Antrieb des Verdichterkolbens genutzt wird.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass der Druckerzeuger für den höheren Druck wechselweise als Kompressor-Gasdruckmotor gekoppelt ist und mit einem Elektro¬ motor/Generator arbeitet.
4. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, dass der Verdichterkolben elektromotorisch angetrieben wird, wobei in der Phase der Dekompression der Hochdruckblasluft kolben- ruckseitig ein Druckluftpolster als Energiespeicher komprimiert wird, und wahrend der Hochdruckblasphase der Antrieb des Verdichterkolbens elektromotorisch und aus dem Energiespeicher erfolgt.
5. Verfahren nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, dass das kolbenrückseitige Druckluftpolster mit einem Zusatz¬ hochdruckspeicher verbunden ist, derart, dass im Gegentakt mit der Kompression/Dekompression der Blasluft das Druckluftpolster dekomprimiert bzw. komprimiert wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, dass der Verdichterkolben in beiden Richtungen in der Art einer dynamischen Feder gesteuert angetrieben ist, wobei wechselweise beim Blasen die Energie über den elektromotorischen Antrieb des Druckerzeugers sowie des kolbenrückseitigen Druckluftpolsters und beim Rückströmen der Blasluft der Expansionsdruck der Rückström¬ luft und der elektromotorische Verdichterantrieb genutzt wird.
7. Verfahren nach einen der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e , dass die Hochdruckphase adiabatisch erfolgt und die Druckluft für die erste niedere Druckphase isotherm erzeugt wird, wobei das Verhältnis der adiabatisch und der isotherm erzeugten Druckluft bzw. das Verhältnis von Hochdruck und Niederdruck durch die Wahl des jeweiligen Maximaldruckes bzw. des Druckes der Niederdruckluft insbesondere auf Grund der gewünschten Endtemperatur der Blasdruckluft festgelegt wird.
8. Blasformpresse zum Blasen, insbesondere zum gesteuerten Streckblasen von Hohlkörpern aus Kunststoff, inbesondere aus PET, von einem Vorformling mittels Druckluft, wobei das Druckluftsystem aus einem vorzugsweise isotherm arbeitendem Niederdruckluftsystem sowie einem Hochdrucksystem besteht, d a d u r c h g e k e n n z e i c h n e t, dass das Druckluftsystem für die Hochdruckblasluft vorzugsweise als adiabatisch arbeitenden Druckerzeuger und zur Energierück¬ wandlung als Kompressor-Gasdruckmotor ausgebildet ist.
9. Blasformpresse nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, dass das Druckluftsystem für die Hochdruckblasluft eine in beide Richtungen elektrisch steuerbar angetriebenen Verdichterkolbe aufweist, wobei der Verdichterkolben als Feder, insbesondere al Gasdruckfeder zusammenwirkend mit dem elektromotorischen Antrie ausgebildet ist.
10. Blasformpresse nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, dass der Antrieb des Druckerzeugers für den Hochdruck ein AC Servomotor oder einen vektoriell geregelter Motor aufweist.
11. Blasformpresse nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, dass der Verdichterkolben über einen AC-Servo otor antreibbar ist, und der Übertrieb von dem Servomotor zu der Kolbenstange durch ein Zahnstangen-Getriebe oder eine Kugelroll- oder Planetenrollen- Spindel erfolgt.
12. Blasformpresse nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t, dass er einen Hochdruckzusatzspeicher aufweist, der mit de kolbenrückseitigen Druckluftraum verbunden ist.
EP96901685A 1995-02-17 1996-02-19 Verfahren zum streckblasen und blasformpresse Withdrawn EP0765213A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH462/95 1995-02-17
CH46295 1995-02-17
PCT/CH1996/000054 WO1996025285A1 (de) 1995-02-17 1996-02-19 Verfahren zum streckblasen und blasformpresse

Publications (1)

Publication Number Publication Date
EP0765213A1 true EP0765213A1 (de) 1997-04-02

Family

ID=4187572

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96901685A Withdrawn EP0765213A1 (de) 1995-02-17 1996-02-19 Verfahren zum streckblasen und blasformpresse

Country Status (3)

Country Link
EP (1) EP0765213A1 (de)
DE (1) DE19680085D2 (de)
WO (1) WO1996025285A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2766406B1 (fr) * 1997-07-25 1999-09-17 Sidel Sa Procede et installation de fabrication de recipients par soufflage d'ebauches en materiau thermoplastique
FR2781716B1 (fr) 1998-07-29 2000-09-29 Sidel Sa Procede de fabrication par soufflage de corps creux en matiere plastique, dispositif et installation pour sa mise en oeuvre
DE20111443U1 (de) * 2001-07-10 2001-09-20 Mauser-Werke GmbH & Co. KG, 50321 Brühl Vorrichtung zur Herstellung von blasgeformten Hohlkörpern
FR2827541B1 (fr) 2001-07-20 2005-07-01 Technoplan Engineering S A Dispositif de soufflage d'emballages
ITRM20050431A1 (it) * 2005-08-05 2007-02-06 Sipa Societa Industrializzazio Dispositivo di recupero e trasformazione di energia.
FR2889993B1 (fr) 2005-08-23 2007-12-28 Technoplan Engineering S A Sa Procede de soufflage au moyen d'un gaz d'un emballage et installation de mise en oeuvre.
DE102005042926B4 (de) * 2005-09-08 2015-02-05 Krones Aktiengesellschaft Verfahren und Vorrichtung zur Steuerung und Regelung einer Hohlkörperherstellungseinheit
DE102006039962B4 (de) * 2006-08-25 2016-02-18 Khs Corpoplast Gmbh Verfahren und Vorrichtung zur Blasformung von Behältern
FR2902366A1 (fr) * 2007-05-14 2007-12-21 Dixi Proc Procede de fabrication par soufflage de corps creux en matiere plastique,dispositif et installation pour sa mise en oeuvre
DE202008005257U1 (de) * 2008-04-17 2008-11-20 Krones Ag Vorrichtung zum Blasformen
DE102009019008A1 (de) * 2009-04-16 2010-10-21 Khs Corpoplast Gmbh & Co. Kg Verfahren und Vorrichtung zur Blasformung von Behältern
DE102010011244A1 (de) * 2010-03-08 2011-09-08 Khs Corpoplast Gmbh Verfahren und Vorrichtung zur Blasformung von Behältern
DE102010028255A1 (de) 2010-04-27 2011-10-27 Krones Ag Streckblasmaschine
DE102011101259A1 (de) * 2011-05-11 2012-11-15 Krones Aktiengesellschaft Vorrichtung und Verfahren zum Umformen von Kunststoffvorformlingen
DE102011106652A1 (de) 2011-07-05 2013-01-10 Krones Aktiengesellschaft Blasmaschine mit Druckzylinder mit Kraftausgleich für Kolbenkompressor
FR2984210B1 (fr) 2011-12-14 2014-06-27 Technoplan Engineering Sa Vanne pour machine de soufflage
CN102962983A (zh) * 2012-09-06 2013-03-13 林世鸿 外置式回收气贮罐高节能型全自动吹瓶机
DE102012110071A1 (de) * 2012-10-22 2014-04-24 Krones Ag Vorrichtung und Verfahren zum Expandieren von Vorformlingen zu Behältnissen
DE102015110204A1 (de) * 2015-06-25 2017-01-12 Krones Ag Adiabate Hochdruckerzeugung
DE102020115854A1 (de) 2020-06-16 2021-12-16 Khs Corpoplast Gmbh Verfahren zur Herstellung von Behältern aus Vorformlingen mittels einer Vorrichtung zur Herstellung von Behältern

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3400636A (en) * 1966-04-12 1968-09-10 Ervin J. Schneider Pneumatic circuit for rapidly transferring fluid under pressure from a work cylinderto a storage tank for subsequent use
JPS6036932B2 (ja) * 1978-05-26 1985-08-23 大日本インキ化学工業株式会社 中空容器の成形方法
US4488863A (en) * 1981-02-23 1984-12-18 The Continental Group, Inc. Recycling of blow air
GB2095759A (en) * 1981-03-26 1982-10-06 Rexnord Inc Energy-conserving apparatus for a piston cylinder arrangement
DE3111925A1 (de) * 1981-03-26 1982-10-07 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und vorrichtung zum einsparen von druckluft, insbesondere bei thermoformmaschinen
DE4340290A1 (de) * 1993-11-26 1995-06-01 Krupp Corpoplast Masch Mehrfachnutzung von Arbeitsluft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9625285A1 *

Also Published As

Publication number Publication date
DE19680085D2 (de) 1997-04-17
WO1996025285A1 (de) 1996-08-22

Similar Documents

Publication Publication Date Title
WO1996025285A1 (de) Verfahren zum streckblasen und blasformpresse
DE60314627T2 (de) Verfahren zur herstellung eines behälters aus polyesterharz und vorrichtung zur durchführung desselben
EP1974892B2 (de) Verfahren zum Blasformen
DE69614202T2 (de) Weiterverwendung von Blasgas für verschiedene Antriebseinheiten in einer Steckblasformmaschine
EP3109031A1 (de) Adiabate hochdruckerzeugung
WO1991017344A1 (de) Verfahren zum antrieb eines pneumatischen motors und vorrichtung zur durchführung des verfahrens
EP2729293A2 (de) Blasmaschine mit druckzylinder mit kraftausgleich für kolben-kompressor und verfahren zum blasformen von behältern
WO2016107677A1 (de) Verfahren zum herstellen von mit einem flüssigen füllgut gefüllten behältern aus vorformlingen aus einem thermoplastischen material sowie eine vorrichtung hierfür
DE102013103543A1 (de) Vorrichtung und Verfahren zum Umformen von Kunststoffvorformlingen zu Kunststoffbehältnissen
EP3536479B1 (de) Vorrichtung und verfahren zum expandieren und gleichzeitigen befüllen von behältnissen
DE1130151B (de) Verfahren und Vorrichtung zum Herstellen von Flaschen und anderen Hohlkoerpern im Blasverfahren aus plastifiziertem Material, insbesondere thermoplastischen Kunststoffen
DE102019002370A1 (de) Hydraulische Kolbeneinrichtung, welche mindestens zum Zwecke einer Gasverdichtung verwendbar ist, Druckgasenergiewandlungseinrichtung, Druckgasenenergiewandlungs-Wärmetauscher-Einrichtung, Druckgasenergiewandlungs-Wärmetauscher-Einrichtungs-Vorstufeneinrichtung und Druckgasenenergiewandlungsvorrichtung
AT410648B (de) Vorrichtung zum spritzgiessen von kunststoff
EP0360114B1 (de) Verfahren und Vorrichtung zum Herstellen von Hohlkörpern aus thermoplastischem Kunststoff
EP3536480B1 (de) Vorrichtung und verfahren zum expandieren und gleichzeitigen befüllen von behältnissen
DE2423503A1 (de) Vorrichtung zum herstellen von hohlkoerpern aus thermoplastischem kunststoff
EP0127564B1 (de) Einrichtung zur Herstellung von Hohlglaskörpern
EP1991776A1 (de) Mehrstufiger verdichter
EP3794238A1 (de) Verfahren, systeme und geräte für die kompression, expansion und/oder speicherung eines gases
DE2842552A1 (de) Antrieb fuer hydraulische spindelpressen
DE10242289B4 (de) Verfahren und Spritzeinheit zum gesteuerten Anlegen der Spritzdüse
EP2722150B1 (de) Vorrichtung und Verfahren zum Expandieren von Vorformlingen zu Behältnissen
DE1452163A1 (de) Einrichtung zum hydraulischen Entzundern von Bloecken,insbesondere Hohlbloecken
DE102021128205A1 (de) Vorrichtung und Verfahren zum Umformen von Kunststoffvorformlingen zu Kunststoffbehältnissen mit verstellbarer Drossel
DE2636463A1 (de) Vorrichtung zum verformen von platten aus thermoplastischem kunststoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19961113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 19980827

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20000609