EP0765213A1 - Procede de formage par etirage et par soufflage, et presse de formage par soufflage - Google Patents

Procede de formage par etirage et par soufflage, et presse de formage par soufflage

Info

Publication number
EP0765213A1
EP0765213A1 EP96901685A EP96901685A EP0765213A1 EP 0765213 A1 EP0765213 A1 EP 0765213A1 EP 96901685 A EP96901685 A EP 96901685A EP 96901685 A EP96901685 A EP 96901685A EP 0765213 A1 EP0765213 A1 EP 0765213A1
Authority
EP
European Patent Office
Prior art keywords
pressure
piston
compressed air
air
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96901685A
Other languages
German (de)
English (en)
Inventor
Ronald Siegrist
Bruno Stillhard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ProControl AG
Original Assignee
ProControl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ProControl AG filed Critical ProControl AG
Publication of EP0765213A1 publication Critical patent/EP0765213A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C49/783Measuring, controlling or regulating blowing pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C49/783Measuring, controlling or regulating blowing pressure
    • B29C2049/7832Blowing with two or more pressure levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4284Means for recycling or reusing auxiliaries or materials, e.g. blowing fluids or energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4284Means for recycling or reusing auxiliaries or materials, e.g. blowing fluids or energy
    • B29C49/42845Recycling or reusing of fluid, e.g. pressure
    • B29C49/42855Blowing fluids, e.g. reducing fluid consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4284Means for recycling or reusing auxiliaries or materials, e.g. blowing fluids or energy
    • B29C49/4287Means for recycling or reusing auxiliaries or materials, e.g. blowing fluids or energy for use outside the blow-moulding apparatus, e.g. generating power or as pressurized plant air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to a method for blowing, in particular for controlled stretch blow molding of a thin-walled bottle body from a preform, a first blowing phase being carried out with compressed air at low pressure and a second blowing phase with high pressure blowing air.
  • the invention further relates to a blow molding press.
  • Stretch blow molding is a rational method to produce extremely thin-walled hollow bodies.
  • the best known are bottles of 1 to 2 liters for mineral water.
  • a thermoplastic material such as e.g. Pet is used, from which a preform is produced in a previous step.
  • the preform is heated to 150 to 180 ° C and introduced into a blow mold while hot.
  • the compressed air is usually blown into two stages, first at a low pressure of about 10 bar and then at about 40 bar into the finished mold. After a short solidification phase, the compressed air is released from the bottle, the mold is opened and the finished bottle is removed.
  • An entire manufacturing cycle takes two to three seconds. Attempts have already been made to reduce at least part of the compression energy by taking back the blown air into a container system. However, the considerable effort and relatively small profit prevented this type of pressure energy recovery from being used more widely. It was not recognized that dynamic processes were not mastered to the extent required. Presentation of the invention
  • the invention was based on the object of optimizing the energy balance for stretch blow molding in relation to the provision of the blowing air with the least possible investment in equipment.
  • the method according to the invention is characterized in that the compression and decompression of the blown air takes place adiabatically in the phase with higher pressure to optimize the energy balance and energy conversion.
  • the pressure generator for the higher pressure preferably works alternately as a compressor gas pressure motor.
  • the invention further relates to a blow molding press for blowing, in particular for controlled stretch blow molding of hollow bodies made of plastic, in particular PET, from a preform or hose by means of compressed air, the compressed air system consisting of a preferably isothermally operating low-pressure air system and a high-pressure system, characterized in that the compressed air system for the high pressure blowing air is designed as an adiabatically operating pressure generator and for energy recovery, preferably as a compressor gas pressure motor.
  • the compressed air of the lower pressure level e.g. pre-compressed to 8 to 12 bar and cooled with the practice known per se, and the heat of compression is removed.
  • an enclosed high-pressure air cushion is moved back and forth and compressed or expanded.
  • the upper pressure stage for example. from about 10 to 40 bar performed adiabatically without air cooling.
  • the air compression is particularly preferably carried out by a single piston movement for the compression and vice versa with the corresponding backward movement.
  • the high-pressure part takes place in the manner of a spring or air pressure spring, but with precisely controlled movements.
  • the temperature increases during compression by about 80 to 140 ° C.
  • the air thus approximates the temperature of the preheated molding.
  • the first blow molding of the preform is advantageously carried out with the isothermally generated compressed air. Compressed air is blown into the preform at approximately 8 to 12 bar.
  • the adiabatically generated compressed air can then be fed continuously without pressure jump via corresponding valve controls and the pressure increased accordingly to the aforementioned 40 bar.
  • a reversing control for the compressor piston then expands the compressed air again by means of a backward movement or return movement of the piston.
  • the compression heat is recovered during the backward movement because the temperature increase during the adiabatic compression and expansion is brought back to the initial temperature. There is only little heat loss. Since a full cycle time only lasts two to three seconds, the heat loss during the short period of high pressure remains low. Any heating over several cycles of the recovered air is essentially compensated for by mixing with the cooler air of the lower pressure level. Due to the excellent dynamics or control dynamics of the servo motors, the actual high-pressure blowing phase can now be controlled very precisely. So it is possible to regulate any pressure curve, e.g. between a complete pre-compression of the high pressure blowing air or any pressure increase during the high pressure blowing process.
  • the invention also allows a number of particularly advantageous configurations, the energy being recovered to the maximum.
  • the high-pressure blowing air for a single blowing phase is generated by only one feed movement of a compressor piston and is supported by a compressed air cushion on the piston side.
  • the compressor piston will driven by an electric motor, in the phase of decompression of the high-pressure blowing air the piston-side compressed air cushion is compressed as an energy store, and during the high-pressure blowing phase the drive of the compressor piston takes place both electromotively and from the energy store. This means that two energy potentials can be used in both directions of movement of the compressor piston.
  • the piston-side compressed-air cushion can also be connected to an additional high-pressure accumulator, so that the compressed-air cushion is decompressed or compressed in counter-stroke with the compression / decompression of the blown air.
  • the expansion of the high-pressure blowing air is used until the low pressure of the first phase is reached to support the backward-controlled drive of the compressor pistons.
  • the compressor piston can thus be driven in a controlled manner in both directions in the manner of a dynamic spring.
  • the energy is alternately used via the electromotive drive of the pressure generator and the piston-side compressed air cushion and when the blown air flows back, the expansion pressure of the return flow air and the electromotive compressor drive. It is also possible to additionally provide a mechanical spring at least on the piston rear side.
  • the blowing pressure for the lower pressure phase is usually generated isothermally in several stages.
  • the ratio of the adiabatically and the isothermally generated compressed air can be determined by the choice of the respective maximum pressure, in particular on the basis of the desired final temperature of the blown compressed air.
  • the system is preferably designed such that the pressure at the end of the backflow corresponds to, or at least approximates, the pressure of the isothermal pressure stage. After closing a valve between the compressor piston and the finished mold, the residual compressed air from the finished bottle can be blown outside.
  • the effective piston volume and possibly the blow-off pressure e.g. through the piston travel is selectable. It is possible to increase the initial pressure for the adiabatic pressure stage with the compressed air of the isothermal pressure stage.
  • the compressed air system for the high-pressure blowing air preferably has a compressor piston which is electrically controllable in both directions, the compressor piston being designed as a spring, in particular as a gas pressure spring, in cooperation with the electromotive drive.
  • the pressure generator for the high pressure is preferably driven by an AC servo motor or a vector-controlled motor. However, any other motor can also be used, provided that it has sufficient control behavior. Very short, rapid and large changes to the rules are particularly required.
  • the compressor piston is preferably driven by a servo motor, the overdriving from the servo motor to the piston rod being effected by a rack and pinion gear or a ball roller or planetary roller spindle.
  • a container collecting device is provided for taking over the low-pressure blow-off air from the finished mold, after the phase of energy recovery of the adiabatic pressure stage.
  • FIG. 1 shows a preform and a finished PET bottle, which is known per se;
  • FIG. 2 shows schematically the basic structure of an entire blow press device according to the invention;
  • FIG. 3 schematically shows a solution according to the invention with a concept of the course of forces and pressure for the high pressure phase; 4 shows the course of the cycle in relation to the shape movement and the course of pressure.
  • a preform 1 has a given filling volume vol. 1 according to an inner diameter d and its length lv.
  • the finished bottle 2 has a filling volume vol. 2 according to the inner diameter D and the length LF.
  • At the end of the stretch blow molding process there is bottle 2 Compressed air according to Vol. 2 and e.g. 40 bar, which are blown into the open in the prior art.
  • a two-stage isothermal compressed air generator 3 has two air coolers 4.
  • the low pressure air VN is in a container 5 with, for example. pressed up to 12 bar.
  • a bottle 2 is shown fully pressed.
  • Compressed air of the lower pressure level is fed via a compressed air line 7 and jointly pressure line 8 into the opening 9 of the bottle 2.
  • the common pressure line 8 can either be opened or closed in the main line by means of valve 10 or in an outflow or blow-off line 12 by means of valve 11.
  • a compressed air recovery is indicated, from which the low pressure air e.g. again an inlet valve de compressed air generator 3 can be supplied.
  • a compressor piston 14 is de high pressure of, for example, a piston or a piston rod 15 de 30 to 40 bar generated.
  • Arrow 16 indicates the blowing pressure generation for the high pressure and arrow 17 indicates the expansion of the high pressure blowing air.
  • the compressor piston 14 is driven via an AC servo motor 18 via a double-rack gearbox 19. Electrical energy can be generated during the backward movement (arrow 17) and can be done in some way via a rectifier and an electrical memory 20 or directly back into the network .
  • the system is controlled by a control ST, by means of which all process parameters such as start, stop, valves etc. can be set and optimized during stretch blow molding.
  • the low pressure system consists essentially of the low pressure air generator 3 and the pressure vessel 5.
  • the high pressure system has a, designed as a compressor gas pressure motor 25 High pressure generator with the compressor piston 14.
  • the high-pressure blowing air is generated in the pressure chamber 21 on the front side of the compressor piston 14, for which purpose the piston rod 15 is moved in the direction of the arrow 16 at the given time.
  • the high pressure builds up in the bottle interior 22, following the blowing phase of the low pressure.
  • At the back of the piston there is a compressed air cushion 23 which is directly connected to an additional high-pressure accumulator 24.
  • the pressure ratios can be selected depending on special requirements. In particular, the values determined in practice as optimal (low pressure e.g. 8 to 12 bar, high pressure e.g. 8 to 40 bar) can be set.
  • the piston 14 is clamped, as it were, between the pressure in the pressure chamber 21 and the pressure in the compressed air cushion 23.
  • the exact movement of the compressor piston is controlled via the servo motor 18 or the corresponding control signals from the control ST.
  • Two important sections are the two end positions, at the end of the injection of high pressure air when the piston is far left, and after the blowing process is completed when the piston is far right. In normal operation, the electromotive drive must also be used to ensure that the piston is held in position in the end positions or that it maintains the respective pressure and that the piston pushes when necessary.
  • the form movement FBew is vertical, the time Zt horizontally.
  • the movement of the mold halves is shown in the upper half of the figure.
  • Prg means press closed.
  • the pressure curve of the blowing air is recorded directly below. Vertical the pressure D.
  • the pressure curve is a theoretical curve, whereby with a lower limit line 35 the upper value of the low pressure air, with an upper limit line 36 the upper pressure of the high pressure air is indicated.
  • the first blowing phase 37 takes place via a low pressure system.
  • the second blowing phase 38 from a high pressure system.
  • the high static pressure must be maintained for a short time (pressure maintenance phase 39). Then, by reversing the compressor piston, the high-pressure air from the now finished PET bottle is lowered (40) until the cut with boundary line 35. After the lower boundary line 35 has been reached, the high-pressure system is separated by closing a corresponding valve. The low-pressure air remaining in the PET bottle can be discharged outside (curve 41). The time between two blowing phases is required to take the finished bottle out of the mold and insert a new preform. A complete cycle is shown with Zyi, Zy2.
  • FIG. 3 schematically shows a blow molding press according to the invention with an associated displacement pressure diagram (center of the picture).
  • the given values show a calculation example.
  • Pl is the pressure curve in the pressure chamber 21
  • P2 is the pressure curve in the compressed air cushion 23.
  • the (+) and (-) designate the energy gradient which is greatest in the respective end positions. Only in the sense of a pictorial model below the path pressure diagram. a spring mass oscillator is shown. Since the compressed air is locked in on both piston sides, resp. the pressure and the corresponding force drop depending on the position.
  • the area designated by Ek represents the kinematic energy which is temporarily stored in the moving mass M. Since, as schematically indicated with Ek, part of the potential energy is temporarily stored as kinetic energy, less electrical energy is generated for intermediate storage.
  • Figure 3 shows a two-cavity shape. It can simultaneously stucco 2 1 - liter bottles, a servoeletrischen Blasstation- be made per module.
  • the high-pressure air is "generated" at the time of blowing by a single-acting piston pump driven by a servo motor and then recovered again.
  • the supply takes place via an 8 bar low-pressure supply.
  • the servo cylinder with e.g. 120 mm diameter and 800 mm stroke, 9 liters of air under 8 bar is compressed to 40 bar or 3 liters volume without heat loss. After blowing, the same air is decompressed and largely recovered. In order to ensure that the cycle time is at least not extended, but rather becomes shorter, you can count on 6 liters of recovered air and 2 liters of air to be replaced per blowing cycle and module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

Il est proposé, selon l'invention, que le palier supérieur de l'air de soufflage comprimé soit atteint de façon adiabatique au lieu de l'être de façon isothermique, comme c'était le cas jusqu'à maintenant, cela permettant de réaliser le processus de soufflage avec la plus petite quantité d'énergie possible, et de récupérer la plus grande quantité possible d'énergie par l'intermédiaire d'une pompe à piston (14), par exemple, après le formage par soufflage. De préférence, pendant une première phase, un air de soufflage à basse pression (N), pression comprise entre 8 et 12 bars, est généré de façon isothermique en un ou deux paliers, puis un air de soufflage à haute pression (H), pression comprise entre 30 et 40 bars, produit de façon adiabatique atteint le palier de compression proprement dit. La récupération d'énergie peut également se faire électriquement par les mêmes moyens que ceux utilisés pour entraîner la pompe à piston (14). Une partie très importante de l'énergie est économisée grâce au fait que le palier supérieur de l'air comprimé est atteint de façon adiabatique, qu'il y a un coussin d'air comprimé à l'arrière du piston et un réservoir d'air haute pression complémentaire. Une exploitation optimale est faite du cycle dynamique des mouvements de va-et-vient du piston. Toutes les séquences sont coordonnées par un système central de commande (ST).
EP96901685A 1995-02-17 1996-02-19 Procede de formage par etirage et par soufflage, et presse de formage par soufflage Withdrawn EP0765213A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH462/95 1995-02-17
CH46295 1995-02-17
PCT/CH1996/000054 WO1996025285A1 (fr) 1995-02-17 1996-02-19 Procede de formage par etirage et par soufflage, et presse de formage par soufflage

Publications (1)

Publication Number Publication Date
EP0765213A1 true EP0765213A1 (fr) 1997-04-02

Family

ID=4187572

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96901685A Withdrawn EP0765213A1 (fr) 1995-02-17 1996-02-19 Procede de formage par etirage et par soufflage, et presse de formage par soufflage

Country Status (3)

Country Link
EP (1) EP0765213A1 (fr)
DE (1) DE19680085D2 (fr)
WO (1) WO1996025285A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2766406B1 (fr) * 1997-07-25 1999-09-17 Sidel Sa Procede et installation de fabrication de recipients par soufflage d'ebauches en materiau thermoplastique
FR2781716B1 (fr) * 1998-07-29 2000-09-29 Sidel Sa Procede de fabrication par soufflage de corps creux en matiere plastique, dispositif et installation pour sa mise en oeuvre
DE20111443U1 (de) * 2001-07-10 2001-09-20 Mauser Werke Gmbh & Co Kg Vorrichtung zur Herstellung von blasgeformten Hohlkörpern
FR2827541B1 (fr) 2001-07-20 2005-07-01 Technoplan Engineering S A Dispositif de soufflage d'emballages
ITRM20050431A1 (it) * 2005-08-05 2007-02-06 Sipa Societa Industrializzazio Dispositivo di recupero e trasformazione di energia.
FR2889993B1 (fr) 2005-08-23 2007-12-28 Technoplan Engineering S A Sa Procede de soufflage au moyen d'un gaz d'un emballage et installation de mise en oeuvre.
DE102005042926B4 (de) * 2005-09-08 2015-02-05 Krones Aktiengesellschaft Verfahren und Vorrichtung zur Steuerung und Regelung einer Hohlkörperherstellungseinheit
DE102006039962B4 (de) * 2006-08-25 2016-02-18 Khs Corpoplast Gmbh Verfahren und Vorrichtung zur Blasformung von Behältern
FR2902366A1 (fr) * 2007-05-14 2007-12-21 Dixi Proc Procede de fabrication par soufflage de corps creux en matiere plastique,dispositif et installation pour sa mise en oeuvre
DE202008005257U1 (de) * 2008-04-17 2008-11-20 Krones Ag Vorrichtung zum Blasformen
DE102009019008A1 (de) * 2009-04-16 2010-10-21 Khs Corpoplast Gmbh & Co. Kg Verfahren und Vorrichtung zur Blasformung von Behältern
DE102010011244A1 (de) * 2010-03-08 2011-09-08 Khs Corpoplast Gmbh Verfahren und Vorrichtung zur Blasformung von Behältern
DE102010028255A1 (de) 2010-04-27 2011-10-27 Krones Ag Streckblasmaschine
DE102011101259A1 (de) * 2011-05-11 2012-11-15 Krones Aktiengesellschaft Vorrichtung und Verfahren zum Umformen von Kunststoffvorformlingen
DE102011106652A1 (de) * 2011-07-05 2013-01-10 Krones Aktiengesellschaft Blasmaschine mit Druckzylinder mit Kraftausgleich für Kolbenkompressor
FR2984210B1 (fr) 2011-12-14 2014-06-27 Technoplan Engineering Sa Vanne pour machine de soufflage
CN102962983A (zh) * 2012-09-06 2013-03-13 林世鸿 外置式回收气贮罐高节能型全自动吹瓶机
DE102012110071A1 (de) * 2012-10-22 2014-04-24 Krones Ag Vorrichtung und Verfahren zum Expandieren von Vorformlingen zu Behältnissen
DE102015110204A1 (de) * 2015-06-25 2017-01-12 Krones Ag Adiabate Hochdruckerzeugung
DE102020115854A1 (de) 2020-06-16 2021-12-16 Khs Corpoplast Gmbh Verfahren zur Herstellung von Behältern aus Vorformlingen mittels einer Vorrichtung zur Herstellung von Behältern

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3400636A (en) * 1966-04-12 1968-09-10 Ervin J. Schneider Pneumatic circuit for rapidly transferring fluid under pressure from a work cylinderto a storage tank for subsequent use
JPS6036932B2 (ja) * 1978-05-26 1985-08-23 大日本インキ化学工業株式会社 中空容器の成形方法
US4488863A (en) * 1981-02-23 1984-12-18 The Continental Group, Inc. Recycling of blow air
DE3111925A1 (de) * 1981-03-26 1982-10-07 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und vorrichtung zum einsparen von druckluft, insbesondere bei thermoformmaschinen
GB2095759A (en) * 1981-03-26 1982-10-06 Rexnord Inc Energy-conserving apparatus for a piston cylinder arrangement
DE4340290A1 (de) * 1993-11-26 1995-06-01 Krupp Corpoplast Masch Mehrfachnutzung von Arbeitsluft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9625285A1 *

Also Published As

Publication number Publication date
WO1996025285A1 (fr) 1996-08-22
DE19680085D2 (de) 1997-04-17

Similar Documents

Publication Publication Date Title
WO1996025285A1 (fr) Procede de formage par etirage et par soufflage, et presse de formage par soufflage
DE60314627T2 (de) Verfahren zur herstellung eines behälters aus polyesterharz und vorrichtung zur durchführung desselben
EP1974892B2 (fr) Procédé destiné au moulage par soufflage
EP3109031A1 (fr) Production de haute pression adiabatique
WO1991017344A1 (fr) Procede pour l'entrainement d'un moteur pneumatique et dispositif pour la mise en ×uvre du procede
WO2017084792A1 (fr) Système d'accumulation d'énergie
EP2729293A2 (fr) Machine de moulage par soufflage pourvue d'un vérin pneumatique à compensation de force pour compresseur à piston
WO2016107677A1 (fr) Procédé de fabrication de récipients contenant une matière de charge liquide à partir d'ébauches constituées d'une matière thermoplastique et dispositif à cet effet
DE102013103543A1 (de) Vorrichtung und Verfahren zum Umformen von Kunststoffvorformlingen zu Kunststoffbehältnissen
EP3536479B1 (fr) Dispositif et procédé d'expansion et de remplissage simultané de récipients
DE1130151B (de) Verfahren und Vorrichtung zum Herstellen von Flaschen und anderen Hohlkoerpern im Blasverfahren aus plastifiziertem Material, insbesondere thermoplastischen Kunststoffen
DE102019002370A1 (de) Hydraulische Kolbeneinrichtung, welche mindestens zum Zwecke einer Gasverdichtung verwendbar ist, Druckgasenergiewandlungseinrichtung, Druckgasenenergiewandlungs-Wärmetauscher-Einrichtung, Druckgasenergiewandlungs-Wärmetauscher-Einrichtungs-Vorstufeneinrichtung und Druckgasenenergiewandlungsvorrichtung
AT410648B (de) Vorrichtung zum spritzgiessen von kunststoff
EP0360114B1 (fr) Procédé et dispoitif de fabrication de corps creux en matière thermoplastique
DE2423503A1 (de) Vorrichtung zum herstellen von hohlkoerpern aus thermoplastischem kunststoff
EP0127564B1 (fr) Dispositif pour la fabrication des corps en verre creux
WO2007041873A1 (fr) Systeme de distribution pour machines de soufflage de corps creux
WO2007101768A1 (fr) Compresseur à plusieurs étages
EP3536480B1 (fr) Dispositif et procédé d'expansion et de remplissage simultané de récipients
DE2842552A1 (de) Antrieb fuer hydraulische spindelpressen
DE10242289B4 (de) Verfahren und Spritzeinheit zum gesteuerten Anlegen der Spritzdüse
EP2722150B1 (fr) Dispositif et procédé d'expansion de préformes pour former des récipients
EP3864289A1 (fr) Appareil à piston hydraulique utilisable au moins aux fins d'une compression des gaz, appareil de conversion d'énergie en gaz sous pression, appareil de conversion d'énergie en gaz sous pression échangeur de chaleur, appareil précurseur de conversion d'énergie en gaz sous pression échangeur de chaleur et dispositif de conversion d'énergie en gaz sous pression
DE1452163A1 (de) Einrichtung zum hydraulischen Entzundern von Bloecken,insbesondere Hohlbloecken
EP4173797A1 (fr) Dispositif et procédé de formage d'ébauches en plastique en récipients en plastique dotés d'un étranglement réglable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19961113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 19980827

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20000609