EP0761859A1 - Textiler Verbundstoff, Verfahren zu dessen Herstellung, dessen Verwendung sowie Gelege enthaltend Hybridgarne - Google Patents

Textiler Verbundstoff, Verfahren zu dessen Herstellung, dessen Verwendung sowie Gelege enthaltend Hybridgarne Download PDF

Info

Publication number
EP0761859A1
EP0761859A1 EP96112431A EP96112431A EP0761859A1 EP 0761859 A1 EP0761859 A1 EP 0761859A1 EP 96112431 A EP96112431 A EP 96112431A EP 96112431 A EP96112431 A EP 96112431A EP 0761859 A1 EP0761859 A1 EP 0761859A1
Authority
EP
European Patent Office
Prior art keywords
fibers
scrim
composite
composite according
textile fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96112431A
Other languages
English (en)
French (fr)
Other versions
EP0761859B1 (de
Inventor
Josef Geirhos
Michael DI. Schöps
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johns Manville
Original Assignee
Hoechst Trevira GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Trevira GmbH and Co KG filed Critical Hoechst Trevira GmbH and Co KG
Publication of EP0761859A1 publication Critical patent/EP0761859A1/de
Application granted granted Critical
Publication of EP0761859B1 publication Critical patent/EP0761859B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/04Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/12Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with filaments or yarns secured together by chemical or thermo-activatable bonding agents, e.g. adhesives, applied or incorporated in liquid or solid form
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/06Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by welding-together thermoplastic fibres, filaments, or yarns
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/902High modulus filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/184Nonwoven scrim
    • Y10T442/197Including a nonwoven fabric which is not a scrim
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3065Including strand which is of specific structural definition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3472Woven fabric including an additional woven fabric layer
    • Y10T442/3602Three or more distinct layers
    • Y10T442/3667Composite consisting of at least two woven fabrics bonded by an interposed adhesive layer [but not two woven fabrics bonded together by an impregnation which penetrates through the thickness of at least one of the woven fabric layers]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition

Definitions

  • the invention relates to a textile composite material which is particularly suitable as a carrier insert for the production of roofing membranes or as a tarpaulin or surface.
  • Textile composites for the production of roofing membranes have to meet a wide range of requirements.
  • sufficient mechanical stability is required, such as good perforation resistance and good tensile strength, in order, for example, to withstand the mechanical loads during further processing, such as bituminization or laying.
  • a high level of resistance to thermal stress for example when bituminizing or to radiant heat, and resistance to flying flames are required.
  • DE-A-3,417,517 discloses a textile interlining material with anisotropic properties and a process for its production.
  • the interlining material consists of a substrate with a surface melting below 150 ° C, and thus connected reinforcement filaments melting over 180 ° C, which are fixed on this surface parallel to each other.
  • the substrate can be a nonwoven fabric, on one surface of which there are hot-melt adhesive fibers or threads, which are provided for producing a bond between the reinforcing fibers arranged in parallel with the nonwoven fabric.
  • DE-A-3,941,189 also discloses a combination of reinforcing fibers in the form of a thread chain with nonwovens based on synthetic fibers, which can be connected to one another in a wide variety of ways, including through the use of adhesive fibers.
  • EP-A-0,281,643 discloses a combination of reinforcing fibers in the form of a network of bicomponent fibers with nonwovens based on synthetic fibers, the weight fraction of the network of bicomponent fibers being at least 15% by weight.
  • the present invention relates to a composite comprising at least one textile fabric made of fibers made of synthetic polymers and hybrid yarn, which is made up of reinforcing fibers and low-melting binding fibers.
  • fibers is to be understood in its broadest meaning within the scope of this description. This includes both fibers of limited length (staple fibers) and the yarns made from them, as well as continuous fibers, so-called filaments, which are in the form of a monofilament, preferably in the form of multifilament yarns.
  • textile fabric is also to be understood in its broadest meaning within the scope of this description. These can be all structures made of fibers from synthesized polymers or from inorganic fibers that have been produced using a surface-forming technique.
  • textile fabrics are fabrics, scrims, knits and knitted fabrics, and preferably nonwovens.
  • spunbonded fabrics which are produced by randomly depositing freshly melt-spun filaments are preferred. They consist of continuous synthetic fibers made of melt-spinnable polymer materials.
  • Suitable polymer materials are, for example, polyamides, such as, for. B. polyhexamethylene diadipamide, polycaprolactam, aromatic or partially aromatic polyamides ("aramids"), partially aromatic or fully aromatic polyesters, polyphenylene sulfide (PPS), polymers with ether and keto groups, such as. B. polyether ketones (PEK) and polyether ether ketone (PEEK), or polybenzimidazoles.
  • PEK polyether ketones
  • PEEK polyether ether ketone
  • the spunbonded fabrics preferably consist of melt-spinnable polyesters.
  • polyester material consist predominantly of building blocks which are derived from aromatic dicarboxylic acids and from aliphatic diols.
  • Common aromatic dicarboxylic acid building blocks are the divalent residues of benzenedicarboxylic acids, especially terephthalic acid and isophthalic acid;
  • Common diols have 2 to 4 carbon atoms, with the ethylene glycol being particularly suitable.
  • Composites according to the invention are particularly advantageous, the nonwovens of which consist of a polyester material which consists of at least 85 mol% of polyethylene terephthalate.
  • dicarboxylic acid units and glycol units which act as so-called modifying agents and which allow the person skilled in the art to specifically influence the physical and chemical properties of the filaments produced.
  • dicarboxylic acid units are residues of isophthalic acid or of aliphatic dicarboxylic acid such as. B. glutaric acid, adipic acid, sebacic acid;
  • diol residues with a modifying action are those of longer-chain diols, e.g. B. of propanediol or butanediol, of di- or triethylene glycol or, if present in small quantities, of polyglycol with a molecular weight of about 500 to 2000.
  • Polyesters which contain at least 95 mol% of polyethylene terephthalate (PET), in particular those made of unmodified PET, are particularly preferred.
  • the composites according to the invention are also to have a flame-retardant effect, they particularly advantageously comprise spunbonded nonwovens which have been spun from flame-retardant modified polyesters.
  • flame-retardant modified polyesters are known. They contain additives of halogen compounds, in particular bromine compounds, or, which is particularly advantageous, they contain phosphonic compounds which are condensed into the polyester chain.
  • flame-retardant laminates according to the invention contain spunbonded nonwovens made of polyesters, which in the chain are components of the formula wherein R is alkylene or polymethylene with 2 to 6 carbon atoms or phenyl and R 1 is alkyl with 1 to 6 carbon atoms, aryl or aralkyl, contained in condensed form.
  • R is preferably ethylene and R 1 is methyl, ethyl, phenyl, or o-, m- or p-methylphenyl, in particular methyl.
  • spunbonded fabrics are used, for. B. described in DE-A-39 40 713.
  • the polyesters contained in the nonwovens have a molecular weight corresponding to an intrinsic viscosity (IV), measured in a solution of 1 g of polymer in 100 ml of dichloroacetic acid at 25 ° C., from 0.7 to 1.4.
  • IV intrinsic viscosity
  • the textile fabrics made of fibers from synthetic polymers for the production of the composites according to the invention have customary weights per unit area of 20 to 400 g / m 2 , preferably 40 to 150 g / m 2 .
  • the spunbonded nonwovens are usually subjected to chemical or thermal and / or mechanical pre-consolidation in a known manner.
  • the textile fabric made from fibers made of synthetic polymers can also be a nonwoven fabric bonded with a melt binder, which contains carrier and hot melt adhesive fibers.
  • the carrier and hot-melt adhesive fibers can be derived from any thermoplastic thread-forming polymers.
  • Carrier fibers can also be derived from non-melting thread-forming polymers.
  • polymers from which the carrier fibers can be derived are polyacrylonitrile, polyolefins, such as polyethylene, essentially aliphatic polyamides, such as nylon 6.6, essentially aromatic polyamides (aramids), such as poly (p-phenylene terephthalate) or copolymers containing a proportion on aromatic m-diamine units to improve solubility or poly (m-phenylene isophthalate), essentially aromatic polyesters, such as poly (p-hydroxybenzoate) or preferably essentially aliphatic polyesters, such as polyethylene terephthalate.
  • the proportion of the two types of fibers to one another can be chosen within wide limits, it being important to ensure that the proportion of hot-melt adhesive fibers is chosen so high that the nonwoven fabric is given sufficient strength for the desired application by bonding the carrier fibers to the hot-melt adhesive fibers.
  • the proportion of the hot melt adhesive originating from the hot melt adhesive fiber in the nonwoven fabric is usually less than 50% by weight, based on the weight of the nonwoven fabric.
  • Modified polyesters with a melting point which is lowered by 10 to 50 ° C., preferably 30 to 50 ° C., compared to the nonwoven raw material, are particularly suitable as hot-melt adhesives.
  • hot melt adhesives are polypropylene, polybutylene terephthalate or by condensing in longer-chain diols and / or isophthalic acid or aliphatic dicarboxylic acids modified polyethylene terephthalate.
  • the hot melt adhesives are preferably introduced into the nonwovens in fiber form.
  • Carrier and hot-melt adhesive fibers are preferably constructed from one polymer class. This means that all fibers used are selected from one class of substance so that they can be easily recycled after the fleece has been used. If the carrier fibers consist of polyester, for example, the hot melt adhesive fibers are also made of polyester or a mixture of polyesters, e.g. B. selected as a bicomponent fiber with PET in the core and a lower melting polyethylene terephthalate copolymer as a sheath.
  • the individual fiber titers of the carrier and hot melt adhesive fibers can be selected within wide limits. Examples of common titer ranges are 1 to 16 dtex, preferably 2 to 6 dtex.
  • composites according to the invention with flame-retardant properties are additionally bound, they preferably contain flame-retardant hotmelt adhesives.
  • flame retardant hot melt adhesive z. B. a modified by incorporation of chain links of the formula (I) indicated polyethylene terephthalate in the laminate according to the invention.
  • the filaments or staple fibers that make up the nonwovens can have a practically round cross section or can also have other shapes, such as dumbbell, kidney-shaped, triangular or tri or multilobal cross sections. Hollow fibers can also be used. Furthermore, the hot-melt adhesive fiber can also be used in the form of bi- or multicomponent fibers.
  • the fibers forming the textile fabric can be modified by conventional additives, for example by antistatic agents such as carbon black.
  • Hybrid yarns reinforced These textile fabrics described above are used according to the invention Hybrid yarns reinforced. These hybrid yarns contain reinforcing fibers and deep-melting binding fibers, which can be in the form of endless filaments or as staple fibers of finite length.
  • the hybrid yarns are preferably in the form of a textile fabric or as a warp thread group. It is particularly advantageous to use the hybrid yarns in the form of a scrim, which consist of hybrid yarns at least in one direction. Such fabrics are also the subject of the present invention.
  • the hybrid yarns can consist of reinforcing and binding fibers from the same or different chemical classes.
  • the reinforcing fiber can be constructed from individual filaments that have an initial modulus of more than 50 GPa, and the binding fiber can be constructed from individual filaments made of low-melting thermoplastic material.
  • Preferred reinforcing fibers in this embodiment consist of glass, carbon or aramid.
  • reinforcing and binding fibers consist of polymeric materials, preferably of polymeric materials from one polymer class, in particular from the same polymer class as the fibers that make up the textile fabric.
  • the individual filaments of the reinforcing fibers have an initial modulus of more than 10 GPa.
  • Reinforcing fibers for this embodiment consist for example of polyphenylene sulfide (PPS), polyether ether ketone (PEEK) or polyether imide (PEI).
  • Preferred reinforcing fibers for this embodiment are high-strength and low-shrink polyester fibers.
  • Binding fibers in the reinforcing threads to be used according to the invention consist of thermoplastic polymer materials, the melting point of which lies below the thermoplastic material contained in the textile fabric.
  • polymer materials are preferably polyolefins or modified polyesters which have a lower melting point than the unmodified polyester.
  • polyolefins are polyethylene or polypropylene.
  • modified polyesters are the types of polybutylene terephthalate already mentioned and polyethylene terephthalate modified by the condensation of longer-chain diols and / or isophthalic acid or aliphatic dicarboxylic acids.
  • the hybrid yarns from reinforcing and binding fibers of the first embodiment described above are preferably produced by means of a special warm intermingling process, which is described in EP-B-0,455,193.
  • the filaments are warmed to near the softening point before swirling (approx. 600 ° C for glass).
  • the heating can be carried out by means of godets and / or heating tubes, while the low-melting thermoplastic individual filaments are fed to the superordinate intermingling nozzle without preheating.
  • This smooth, high-thread-lock hybrid yarn is easy to weave.
  • Suitable hybrid yarns are u. a. 68 tex glass / 420 dtex PET yarns.
  • hybrid yarns of the second embodiment described above are produced by intermingling techniques which are customary per se, for example by intermingling or commingling techniques.
  • the hybrid yarns are preferably used in the form of a scrim, which are also the subject of the present invention.
  • the thread density of the scrims according to the invention can vary within wide limits depending on the desired property profile.
  • the thread densities can be the same in all directions;
  • the scrims can have a thread density between 0.5, for example in the direction of the hybrid yarns and 10 threads per cm and in the other direction a thread density between 0.5 and 1 thread / cm.
  • the thread density is measured perpendicular to the respective thread running direction, the thread density being the same for all existing thread groups, or different thread densities can be selected depending on the expected load.
  • the hybrid yarns can have a wide range of maximum tensile strength expansions, for example from about 2.5 to 25%.
  • the fineness-related strength of the hybrid yarns can be selected within wide limits depending on the desired requirement profile, for example in the range from 20 to 150 cN / tex.
  • the titer of the hybrid yarns in the composite is advantageously 30 to 3000 dtex.
  • laid scrims are thread grids which are formed from parallel sets of threads lying at an angle to one another, the threads being fixed to one another at their crossing points and at least one set of threads containing hybrid yarns.
  • the threads are preferably fixed at their crossing points by melting or melting the binding fibers, in particular without the use of further adhesives.
  • the threads are fixed at their crossing points by partially melting the binding fibers so that the majority of the binding fibers retain their fiber shape. This embodiment allows the hot melt adhesive to be distributed as uniformly as possible when the composite is subsequently formed.
  • the angle at which the sheets of thread cross is usually between 10 ° and 90 °.
  • a clutch can of course contain more than two sets of threads. The number and direction of the thread groups depends on any special requirements.
  • Non-woven fabrics consist of two sets of threads crossing at an angle of preferably 90 °.
  • a particularly high mechanical stability in one direction e.g. B. the longitudinal direction of the layered fabric required, it is recommended to install a scrim that has a thread family in the longitudinal direction with a smaller thread spacing, the z. B. is stabilized by a transverse thread sheet or by two thread sheets which form with the first angle of approximately + 40 ° to + 70 ° or - 40 ° to - 70 °.
  • the composites according to the invention are usually produced by separate production of the individual layers, subsequent combination of these layers and subsequent gluing of the layer by heating, if necessary using pressure, so that the low-melting thermoplastic filaments of the binding fibers melt or melt and adhere to the surface of the textile Fabric made of synthetic polymer fibers form a connection.
  • the composites according to the invention show no tendency to delamination and no formation of waves and cracks, even under high thermal mechanical stress.
  • bituminizers of the composites according to the invention show a surprisingly small increase in width compared to conventional webs.
  • a composite of nonwoven / laid fabric / nonwoven is advantageously used.
  • the composites according to the invention can be used for the production of bituminized roofing and waterproofing membranes.
  • the carrier material is treated with bitumen in a manner known per se and then optionally sprinkled with a granular material, for example with sand.
  • the roofing and waterproofing membranes produced in this way are easy to process.
  • Spunbonding is carried out by means of spinning apparatus known per se.
  • the melted polymer is alternately fed with polymers, which form the carrier fiber and the hot-melt adhesive fibers, by means of a plurality of rows of spinnerets or groups of spinneret rows connected in series.
  • the spun polymer streams are stretched in a conventional manner and z. B. using a rotating baffle in scattering texture on a Conveyor belt put down.
  • the primary fleece produced in this way is then thermally pre-consolidated in a manner known per se by z. B. is treated in a pre-consolidation device with a hot roller, so that at least a portion of the hot melt adhesive fibers which may be present melts, whereby the primary fleece solidifies to the extent that it can be handled without the conveyor belt.
  • This type of pre-consolidation is e.g. B. described in DE-PS-3,322,936.
  • the scrim of yarns, which consists of hybrid yarn at least in one yarn direction, is then applied to the surface of the primary nonwoven obtained.
  • the lower-melting binding filament contained in the hybrid yarn is melted or melted on by the action of elevated temperature and / or pressure, so that an adhesive layer forms between the two flat structures and the composite material undergoes its final consolidation.
  • the hybrid yarn can be fed in the form of a scrim on one or both sides. Instead of two nonwovens, a nonwoven can be added to the combination nonwoven / nonwoven. The finished laminate is then wound up in a manner known per se.
  • the method described above can be varied in many ways without departing from the basic idea of the present invention.
  • different sequences of carrier and hot-melt adhesive polymers can be specified and different spunbonded nonwovens can be produced.
  • a laminate of nonwoven fabric and fabric applied on one side can also be provided, so that a sandwich structure is created.
  • several alternating layers [fleece (laid fleece) x ] can also be combined to form a sandwich construction.
  • the described method can also be carried out in separate steps by z. B. is interrupted after the final consolidation of the spunbond and the combination with the flat structure and an adhesive bonding of the layers is carried out in a separate operation.
  • Type A had a basis weight of 60 g / m 2 , a tensile force of 13.0 daN / tex per 5 cm width and a maximum tensile force elongation of 24.5%;
  • Type B had a basis weight of 60 g / m 2 , a tensile force of 15.7 daN / 5 cm width and a maximum tensile force elongation of 15.7%.
  • the laminate obtained was processed by calendering to give a composite according to the invention. Manufacturing conditions and properties of the products obtained can be found in the table below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)

Abstract

Beschrieben wird ein Verbundstoff umfassend mindestens ein textiles Flächengebilde aus Fasern aus synthetischen Polymeren und Hybridgarn, das aus Verstärkungsfasern und tieferschmelzenden Bindefasern aufgebaut wird. Des weiteren wird ein Gelege beschrieben, das zumindestens in einer Richtung Hybridgarne aus Verstärkungs- und Bindefasern enthält. Die Verbundstoffe lassen sich zur Herstellung von bituminierten Dach- und Dichtungsbahnen einsetzen.

Description

  • Die Erfindung betrifft einen textilen Verbundstoff, der sich insbesondere als Trägereinlage zur Herstellung von Dachbahnen oder als Plane oder Fläche eignet.
  • Textile Verbundstoffe zur Herstellung von Dachbahnen müssen vielfältigen Anforderungen genügen. So ist einerseits eine ausreichende mechanische Stabilität gefordert, wie gute Perforationsfestigkeit und gute Zugfestigkeit, um beispielsweise den mechanischen Belastungen bei der Weiterverarbeitung, wie Bituminierung oder Verlegen, standzuhalten. Außerdem wird eine hohe Beständigkeit gegen thermische Belastung, beispielsweise beim Bituminieren oder gegen strahlende Wärme, und Widerstandsfähigkeit gegen Flugfeuer verlangt. Es hat daher nicht an Versuchen gefehlt, bestehende textile Verbundstoffe zu verbessern.
  • So ist es bereits bekannt, Verbundstoffe auf der Basis von Synthesefaservliesen mit Verstärkungsfasern, beispielsweise mit Glasfasern zu kombinieren. Beispiele für solche Dichtungsbahnen findet man in den GB-A-1,517,595, DE-Gbm-77-39,489, EP-A-160,609, EP-A-176,847, EP-A-403,403 und EP-A-530,769. Die Verbindung zwischen Faservlies und Verstärkungsfasern erfolgt nach diesem Stand der Technik entweder durch Verkleben mittels eines Bindemittel oder durch Vernadeln der Schichten aus unterschiedlichem Material.
  • Es ist ferner bekannt, Verbundstoffe durch Wirk- oder Nähwirktechniken herzustellen. Beispiele dafür finden sich in den DE-A-3,347,280, US-A-4,472,086, EP-A-333,602 und EP-A-395,548.
  • Aus der DE-A-3,417,517 sind ein textiler Einlagestoff mit anisotropen Eigenschaften und ein Verfahren zu dessen Herstellung bekannt. Der Einlagestoff besteht aus einem Substrat, das eine unter 150 °C schmelzende Oberfläche besitzt, und damit verbundenen über 180 °C schmelzenden Verstärkungsfilamenten, die auf dieser Oberfläche parallel zueinander fixiert sind. Gemäß einer Ausführungsform kann es sich bei dem Substrat um einen Vliesstoff handeln, auf dessen einer Oberfläche sich Schmelzklebefasern oder -fäden befinden, die zur Herstellung einer Verklebung der parallel angeordneten Verstärkungsfasern mit dem Vliesstoff vorgesehen sind.
  • Auch aus der DE-A-3,941,189 ist eine Kombination von Verstärkungsfasern in Form einer Fadenkette mit Vliesstoffen auf der Basis von Synthesefasern bekannt, die auf verschiedenste Arten miteinander verbunden werden können, so auch durch die Verwendung von Klebefasern. Die beschriebenen Verbunde zeigen, wie auch die aus der DE-A-3,417,517 bekannten Einlagestoffe, anisotrope Eigenschaften auf.
  • Aus der US-A-4,504,539 ist eine Kombination von Verstärkungsfasern in Form von Bikomponentenfasern mit Vliesstoffen auf der Basis von Synthesefasern bekannt.
  • Aus der EP-A-0,281,643 ist eine Kombination von Verstärkungsfasern in Form eines Netzes aus Bikomponentenfasern mit Vliesstoffen auf der Basis von Synthesefasern bekannt, wobei der Gewichtsanteil des Netzes aus Bikomponentenfasern mindestens 15 Gew.-% beträgt.
  • Aus der JP-A-81-5879 ist ein Verbundstoff bekannt, der mit einem netzförmigen Verstärkungsmaterial versehen ist. Mischgarne kommen dabei nicht zum Einsatz.
  • Es besteht immer noch ein Bedürfnis nach verstärkten Schichtstoffen, die sich durch erhöhte Festigkeit auszeichnen und die sich insbesondere als Trägermaterialien zur Herstellung von bituminierten Dach- oder Dichtungsbahnen eignen, die einen verbesserten Widerstand gegen thermische Belastung bei der Bituminierung aufweisen, sich durch eine gute Flammfestigkeit auszeichnen, hervorragende mechanische Eigenschaften, wie z. B. hohe Zugfestigkeiten aufweisen, und deren gewichtsbezogene Zugfestigkeit deutlich über den Werten entsprechender herkömmlicher Trägermaterialien liegt.
  • Ferner hat sich bei der praktischen Ausführung der Verbindung von Vliesstoffen mit textilen Flächengebilden gezeigt, daß beim Nadeln der Schichten im allgemeinen eine Schädigung der Einzelfasern erfolgt, so daß der Verbund keine optimale Festigkeit aufweist. Auch bei Verkleben von Vliesstoffen mit Flächengebilden, beispielsweise durch Kalandrieren des noch nicht verfestigen Verbundes, können Probleme auftreten. So hat sich herausgestellt, daß die einzelnen Schichten durch den beim Kalandrieren ausgeübte Druck geschädigt werden können, so daß auch diese Verbindungen keine optimale Festigkeit aufweisen.
  • Es bestand daher noch die Aufgabe, Schichtstoffe mit verbesserter Festigkeit zu entwickeln, welche die oben beschriebenen Nachteile nicht mehr aufweisen und die insbesondere als Trägermaterialien zur Herstellung von Dach- oder Dichtungsbahnen mit den gewünschten Vorteilen geeignet sind. Darüber hinaus bestand die Aufgabe, ein Trägermaterial zu finden, bei welchem die Verbindung der Verstärkungsfasern mit dem Vliesstoff ohne zusätzliche Bindemittel erfolgen kann.
  • Gegenstand der vorliegenden Erfindung ist ein Verbundstoff umfassend mindestens ein textiles Flächengebilde aus Fasern aus synthetischen Polymeren und Hybridgarn, das aus Verstärkungsfasern und tieferschmelzenden Bindefasern aufgebaut wird.
  • Der Begriff "Fasern" ist im Rahmen dieser Beschreibung in seiner breitesten Bedeutung zu verstehen. Dazu zählen also sowohl Fasern mit begrenzter Länge (Stapelfasern) und die daraus hergestellten Garne, als auch Endlosfasern, sogenannte Filamente, die in Form eines Monofilaments, vorzugsweise in Form von Multifilamentgarnen vorliegen.
  • Der Begriff "textiles Flächengebilde" ist im Rahmen dieser Beschreibung ebenfalls in seiner breitesten Bedeutung zu verstehen. Dabei kann es sich um alle Gebilde aus Fasern aus synthetisierten Polymeren oder aus anorganischen Fasern handeln, die nach einer flächenbildenden Technik hergestellt worden sind.
  • Beispiele für solche textilen Flächengebilde sind Gewebe, Gelege, Gestricke und Gewirke, sowie vorzugsweise Vliese.
  • Von den Vliesen aus Fasern aus synthetischen Polymeren sind Spinnvliese, sogenannte Spunbonds, die durch eine Wirrablage frisch schmelzgesponnener Filamente erzeugt werden, bevorzugt. Sie bestehen aus Endlos-Synthesefasern aus schmelzspinnbaren Polymermatierialien. Geeignete Polymermaterialien sind beispielsweise Polyamide, wie z. B. Polyhexamethylen-diadipamid, Polycaprolactam, aromatische oder teilaromatische Polyamide ("Aramide"), teilaromatische oder vollaromatische Polyester, Polyphenylensulfid (PPS), Polymere mit Ether- und Keto-gruppen, wie z. B. Polyetherketone (PEK) und Polyetheretherketon (PEEK), oder Polybenzimidazole.
  • Bevorzugt bestehen die Spinnvliese aus schmelzspinnbaren Polyestern. Als Polyestermaterial kommen im Prinzip alle zur Faserherstellung geeigneten bekannten Typen in Betracht. Derartige Polyester bestehen überwiegend aus Bausteinen, die sich von aromatischen Dicarbonsäuren und von aliphatischen Diolen ableiten. Gängige aromatische Dicarbonsäurebausteine sind die zweiwertigen Reste von Benzoldicarbonsäuren, insbesondere der Terephthalsäure und der Isophthalsäure; gängige Diole haben 2 bis 4 C-Atome, wobei das Ethylenglycol besonders geeignet ist. Besonders vorteilhaft sind erfindungsgemäße Verbundstoffe, deren Vliese aus einem Polyestermaterial bestehen, das zu mindestens 85 mol % aus Polyethylenterephthalat besteht. Die restlichen 15 mol % bauen sich dann aus Dicarbonsäureeinheiten und Glycoleinheiten auf, die als sogenannte Modifizierungsmittel wirken und die es dem Fachmann gestatten, die physikalischen und chemischen Eigenschaften der hergestellten Filamente gezielt zu beeinflussen. Beispiele für solche Dicarbonsäureeinheiten sind Reste der Isophthalsäure oder von aliphatischen Dicarbonsäure wie z. B. Glutarsäure, Adipinsäure, Sebazinsäure; Beispiele für modifizierend wirkende Diolreste sind solche von längerkettigen Diolen, z. B. von Propandiol oder Butandiol, von Di- oder Triethylenglycol oder, sofern in geringer Menge vorhanden, von Polyglycol mit einem Molgewicht von ca. 500 bis 2000.
  • Besonders bevorzugt sind Polyester, die mindestens 95 mol % Polyethylenterephthalat (PET) enthalten, insbesondere solche aus unmodifiziertem PET.
  • Sollen die erfindungsgemäßen Verbundstoffe zusätzlich eine flammhemmende Wirkung haben, so enthalten sie mit besonderem Vorteil Spinnvliese, die aus flammhemmend modifizierten Polyestern ersponnen wurden. Derartige flammhemmend modifizierte Polyester sind bekannt. Sie enthalten Zusätze von Halogenverbindungen, insbesondere Bromverbindungen, oder, was besonders vorteilhaft ist, sie enthalten Phosphonverbindungen, die in die Polyesterkette einkondensiert sind.
  • Besonders bevorzugte, flammhemmende erfindungsgemäße Schichtstoffe enthalten Spinnvliese aus Polyestern, die in der Kette Baugruppen der Formel
    Figure imgb0001
    worin R Alkylen oder Polymethylen mit 2 bis 6 C-Atomen oder Phenyl und R1 Alkyl mit 1 bis 6 C-Atomen, Aryl oder Aralkyl bedeutet, einkondensiert enthalten. Vorzugsweise bedeuten in der Formel (I) R Ethylen und R1 Methyl, Ethyl, Phenyl, oder o-, m- oder p-Methyl-phenyl, insbesondere Methyl. Derartige Spinnvliese werden z. B. in der DE-A-39 40 713 beschrieben.
  • Die in den Vliesen enthaltenen Polyester haben ein Molekulargewicht entsprechend einer intrinsischen Viskosität (IV), gemessen in einer Lösung von 1 g Polymer in 100 ml Dichloressigsäure bei 25 °C, von 0,7 bis 1,4.
  • Die textilen Flächengebilde aus Fasern aus synthetischen Polymeren zur Herstellung der erfindungsgemäßen Verbundstoffe weisen übliche Flächengewichte von 20 bis 400 g/m2 auf, vorzugsweise 40 bis 150 g/m2.
  • Üblicherweise werden die Spinnvliese nach ihrer Herstellung in bekannter Weise einer chemischen oder thermischen und/oder mechanischen Vorverfestigung unterworfen.
  • In einer weiteren Ausführungsform der Erfindung kann das textile Flächengebilde aus Fasern aus synthetischen Polymeren auch ein schmelzbinderverfestigter Vliesstoff sein, welcher Träger- und Schmelzklebefasern enthält. Die Träger- und Schmelzklebefasern können sich von beliebigen thermoplastischen fadenbildenden Polymeren ableiten. Trägerfasern können sich darüber hinaus auch von nicht schmelzenden fadenbildenden Polymeren ableiten.
  • Beispiele für Polymere, von denen sich die Trägerfasern ableiten können, sind Polyacrylnitril, Polyolefine, wie Polyethylen, im wesentlichen aliphatische Polyamide, wie Nylon 6.6, im wesentlichen aromatische Polyamide (Aramide), wie Poly-(p-phenylenterephthalat) oder Copolymere enthaltend einen Anteil an aromatischen m-Diamineinheiten zur Verbesserung der Löslichkeit oder Poly-(m-phenylenisophthalat), im wesentlichen aromatische Polyester, wie Poly-(p-hydroxybenzoat) oder vorzugsweise im wesentlichen aliphatische Polyester, wie Polyethylenterephthalat.
  • Der Anteil der beiden Faserntypen zueinander kann in weiten Grenzen gewählt werden, wobei darauf zu achten ist, daß der Anteil der Schmelzklebefasern so hoch gewählt wird, daß der Vliesstoff durch Verklebung der Trägerfasern mit den Schmelzklebefasern eine für die gewünschte Anwendung ausreichende Festigkeit erhält. Der Anteil des aus der Schmelzklebefaser stammenden Schmelzklebers im Vliesstoff beträgt üblicherweise weniger als 50 Gew.-%, bezogen auf das Gewicht des Vliesstoffes.
  • Als Schmelzkleber kommen insbesondere modifizierte Polyester mit einem gegenüber dem Vliesstoff-Rohstoff um 10 bis 50°C, vorzugsweise 30 bis 50°C abgesenkten Schmelzpunkt in Betracht. Beispiele für einen derartigen Schmelzkleber sind Polypropylen, Polybutylenterephthalat oder durch Einkondensieren längerkettiger Diole und/oder von Isophthalsäure oder aliphatischen Dicarbonsäuren modifiziertes Polyethylenterephthalat.
  • Die Schmelzkleber werden vorzugsweise in Faserform in die Vliese eingebracht.
  • Vorzugsweise sind Träger- und Schmelzklebefasern aus einer Polymerklasse aufgebaut. Darunter ist zu verstehen, daß alle eingesetzten Fasern aus einer Substanzklasse so ausgewählt werden, daß diese nach Gebrauch des Vlieses problemlos recycled werden können. Bestehen die Trägerfasern beispielsweise aus Polyester, so werden die Schmelzklebefasern ebenfalls aus Polyester oder aus einer Mischung von Polyestern, z. B. als Bikomponentenfaser mit PET im Kern und einem niedriger schmelzenden Polyethylenterephthalat-Copolymeren als Mantel ausgewählt.
  • Die Einzelfasertiter der Träger- und der Schmelzklebefasern können innerhalb weiter Grenzen gewählt werden. Beispiele für übliche Titerbereiche sind 1 bis 16 dtex, vorzugsweise 2 bis 6 dtex.
  • Sofern erfindungsgemäße Verbundstoffe mit flammhemmenden Eigenschaften zusätzlich gebunden sind, enthalten sie vorzugsweise flammhemmende Schmelzkleber. Als flammhemmender Schmelzkleber kann z. B. ein durch Einbau von Kettengliedern der oben angegebenen Formel (I) modifiziertes Polyethylenterephthalat in dem erfindungsgemäßen Schichtstoff vorhanden sein.
  • Die die Vliesstoffe aufbauenden Filamente oder Stapelfasern können einen praktisch runden Querschnitt besitzen oder auch andere Formen aufweisen, wie hantel-, nierenförmige, dreieckige bzw. tri- oder multilobale Querschnitte. Es sind auch Hohlfasern einsetzbar. Ferner läßt sich die Schmelzklebefaser auch in Form von Bi- oder Mehrkomponentenfasern einsetzen.
  • Die das textile Flächengebilde bildenden Fasern können durch übliche Zusätze modifiziert sein, beispielsweise durch Antistatika, wie Ruß.
  • Diese oben beschriebenen textilen Flächengebilde werden erfindungsgemäß mit Hybridgarnen verstärkt. Diese Hybridgarne enthalten Verstärkungsfasern und tieferschmelzende Bindefasern, wobei diese in Form von endlosen Filamenten oder als Stapelfasern endlicher Länge vorliegen können. Vorzugsweise liegen die Hybridgarne in Form eines textilen Flächengebildes oder als Kettfadenschar vor. Besonders vorteilhaft ist es die Hybridgarne in Form eines Geleges einzusetzen, die zumindest in einer Richtung aus Hybridgarnen bestehen. Derartige Gelege sind ebenfalls Gegenstand der vorliegenden Erfindung.
  • Die Hybridgarne können aus Verstärkungs- und Bindefasern aus gleichen oder aus unterschiedlichen chemischen Stoffklassen bestehen.
  • So kann in einer Ausführungsform beispielsweise die Verstärkungsfaser aus Einzelfilamenten aufgebaut sein, die einen Anfangsmodul von mehr als 50 GPa aufweisen, und die Bindefaser kann aus Einzelfilamenten aus tieferschmelzendem thermoplastischen Material aufgebaut sein.
  • Bevorzugte Verstärkungsfasern bei dieser Ausführungsform bestehen aus Glas, Kohlenstoff oder Aramid.
  • In einer weiteren Ausführungsform bestehen Verstärkungs- und Bindefasern aus polymeren Materialien, vorzugsweise aus polymeren Materialien aus einer Polymerklasse, insbesondere aus der gleichen Polymerklasse wie die Fasern, die das textile Flächengebilde aufbauen.
  • In dieser Ausführungsform weisen die Einzelfilamente der Verstärkungsfasern einen Anfangsmodul von mehr als 10 GPa auf. Verstärkungsfasern für diese Ausführungsform bestehen beispielsweise aus Polyphenylensulfid (PPS), Polyetheretherketon (PEEK) oder Polyetherimid (PEI).
  • Bevorzugte Verstärkungsfasern für diese Ausführungsform sind hochfeste und schrumpfarme Polyesterfasern.
  • Bindefasern in den erfindungsgemäß einzusetzenden Verstärkungsfäden bestehen aus thermoplastischen Polymermaterialien, deren Schmelzpunkt unterhalb des im textilen Flächengebilde enthaltenen thermoplastischen Materials liegt. Beispiele für solche Polymermaterialien sind vorzugsweise Polyolefine oder modifizierte Polyester, die einen im Vergleich zum unmodifizierten Polyester niedrigeren Schmelzpunkt haben. Beispiele für Polyolefine sind Polyethylen oder Polypropylen. Beispiele für modifizierte Polyester sind die bereits genannten Polybutylenterephthalat-Typen sowie durch Einkondensieren von längerkettigen Diolen und/oder Isophthalsäure oder aliphatischen Dicarbonsäuren modifiziertes Polyethylenterephthalat.
  • Die Herstellung der Hybridgarne aus Verstärkungs- und Bindefasern der oben beschriebenen ersten Ausführungsform erfolgt vorzugsweise mittels eines speziellen Warm-Verwirbelungsverfahrens, das in EP-B-0,455,193 beschrieben ist. Hierbei werden zur Vermeidung von Filamentbrüchen beim Verwirbeln die Filamente vor dem Verwirbeln bis nahe dem Erweichungspunkt erwärmt (bei Glas ca. 600°C). Die Erwärmung kann durch Galetten und/oder Heizrohr erfolgen, während die niedrigschmelzenden thermoplastischen Einzelfilamente ohne Vorerwärmung der übergeordneten Verwirbelungsdüse zugeführt werden. Diese glatte mit hohem Fadenschluß ausgestattete Hybridgarn ist problemlos webtauglich.
  • Geeignete Hybridgarne sind u. a. Garne des Typs 68 tex Glas/420 dtex PET.
  • Die Herstellung der Hybridgarne der oben beschriebenen zweiten Ausführungsform erfolgt nach an sich üblichen Verwirbelungstechniken, beispielsweise durch Intermingling- oder Commingling-Techniken. Wie bereits dargelegt werden die Hybridgarne vorzugsweise in Form eines Geleges eingesetzt, die ebenfalls Gegenstand der vorliegenden Erfindung sind.
  • Die Fadendichte der erfindungsgemäßen Gelege kann in Abhängigkeit vom gewünschten Eigenschaftsprofil in weiten Grenzen schwanken. Einerseits können die Fadendichten in alle Richtungen gleich groß sein; Andererseits können die Gelege beispielsweise in Richtung der Hybridgarne eine Fadendichte zwischen 0,5 und 10 Fäden pro cm und in der anderen Richtung eine Fadendichte zwischen 0,5 und 1 Faden/cm aufweisen. Die Fadendichte wird senkrecht zu der jeweiligen Fadenlaufrichtung gemessen, wobei die Fadendichte bei allen vorhandenen Fadenscharen gleich sein oder es können je nach der zu erwartenden Beanspruchung unterschiedliche Fadendichten gewählt werden.
  • Die Hybridgarne können in Abhängigkeit vom gewünschten Anforderungsprofil einen weiten Bereich von Höchstzugkraftdehnungen aufweisen, beispielsweise von etwa 2,5 bis 25 %.
  • Die feinheitsbezogene Festigkeit der Hybridgarne kann in Abhängigkeit vom gewünschten Anforderungsprofil in weiten Grenzen gewählt werden, beispielsweise im Bereich von 20 bis 150 cN/tex.
  • Der Titer der Hybridgarne im Verbundstoff beträgt zweckmäßigerweise 30 bis 3000 dtex.
  • Gelege im Sinne der Erfindung sind Fadengitter, die aus im Winkel zueinander liegenden parallelen Fadenscharen gebildet werden, wobei die Fäden an ihren Kreuzungspunkten aneinander fixiert sind und wobei mindestens eine Fadenschar Hybridgarne enthält.
  • Das Fixieren der Fäden an ihren Kreuzungspunkten erfolgt vorzugsweise durch An- oder Aufschmelzen der Bindefasern, insbesondere ohne Einsatz weiterer Klebemittel. In einer bevorzugten Ausführungsform erfolgt das Fixieren der Fäden an ihren Kreuzungspunkten durch teilweises Aufschmelzen der Bindefasern, so daß der überwiegende Anteil der Bindefasern seine Faserform behält. Diese Ausführungsform gestattet eine möglichst gleichmäßige Verteilung des Schmelzklebers bei der späteren Bildung des Verbundstoffes.
  • Der Winkel, unter dem die Fadenscharen sich kreuzen, liegt in der Regel zwischen 10 ° und 90 °. Ein Gelege kann selbstverständlich mehr als nur zwei Fadenscharen enthalten. Die Anzahl und Richtung der Fadenscharen richtet sich nach eventuellen besonderen Anforderungen.
  • Bevorzugt sind Gelege, die aus einem aus zwei im Winkel von vorzugsweise 90 ° sich kreuzenden Fadenscharen bestehen. Ist eine besonders hohe mechanische Stabilität in einer Richtung, z. B. der Längsrichtung des Schichtsoffes erforderlich, so empfiehlt sich der Einbau eines Geleges, das in der Längsrichtung eine Fadenschar mit geringerem Fadenabstand aufweist, die z. B. durch eine querverlaufende Fadenschar oder durch zwei Fadenscharen, die mit dem ersten Winkel von ca. + 40 ° bis + 70 ° bzw. - 40 ° bis - 70 ° bilden, stabilisiert wird.
  • Besondere Stabilitätsanforderungen in allen Richtungen können durch ein Gelege mit 4 oder 5 Fadenscharen, die in verschiedenen Richtungen übereinander liegen und an den Fadenkreuzungspunkten miteinander verbunden sind, erfüllt werden. Ein Beispiel für ein solches spezielles Gelege ist EP-A-572,891 aufgezeigt.
  • Die Herstellung der erfindungsgemäßen Verbundstoffe erfolgt üblicherweise durch getrennte Herstellung der einzelnen Schichten, nachfolgende Kombination dieser Schichten und anschließendes Verkleben der Schicht durch Erhitzen gegebenenfalls unter Anwendung von Druck, so daß die niedrigschmelzenden thermoplastischen Filamenten der Bindfasern an- oder aufschmelzen und mit der anliegenden Oberfläche des textilen Flächengebildes aus Fasern aus synthetischen Polymeren eine Verbindung eingehen.
  • Die erfindungsgemäßen Verbundstoffe zeigen keine Delaminierungsneigung und keine Bildung von Wellen und Rissen, selbst nicht bei hoher thermischmechanischer Belastung.
  • Die erfindungsgemäßen Verbundstoffe zeigen bei Bituminieren einen überraschend geringen Breiteneinsprung im Vergleich zu herkömmlichen Bahnen.
  • Ferner zeigt sich, daß man mit dem erfindungsgemäßen Verbundstoff auch bei rauhen Bituminierungsbedingungen ebene, flächenstabile, blasenfreie Bitumenbahnen erhält. Weiterhin steigt die Durchstoßfestigkeit, wie sich in der Stempeldurchdrückprüfung nach DIN 54307 zeigt. Hierdurch ergibt sich eine deutlich verbesserte Verarbeitbarkeit und eine erhöhte Arbeitssicherheit beim Verlegen der erfindungsgemäßen bituminierten Dachbahn auf dem Dach.
  • Vorteilhafterweise kommt ein Verbundstoff aus Vlies/Gelege/Vlies zum Einsatz.
  • Die erfindungsgemäßen Verbundstoffe lassen sich zur Herstellung von bituminierten Dach- und Dichtungsbahnen verwenden. Dies ist ebenfalls ein Gegenstand der vorliegenden Erfindung. Dazu wird das Trägermaterial in an sich bekannter Weise mit Bitumen behandelt und anschließend gegebenenfalls mit einem körnigen Material, beispielsweise mit Sand, bestreut. Die auf diese Weise hergestellten Dach- und Dichtungsbahnen zeichnen sich durch gute Verarbeitbarkeit aus.
  • Die Herstellung des erfindungsgemäßen Verbundstoffes umfaßt die Maßnahmen:
    • a) Herstellung eines textilen Flächengebildes in an sich bekannte Weise,
    • b) Zuführen von Hybridgarn auf eine gemäß a) erhaltene Oberfläche des textilen Flächengebildes,
    • c) gegebenenfalls Zuführen eines weiteren textilen Flächengebildes auf die andere Seite des Hybridgarns, und
    • d) Ausüben von erhöhter Temperatur und/oder Druck, so daß das tieferschmelzende Bindefilament des Hybridgarns an- oder aufschmilzt und sich eine Klebeschicht zwischen den Flächengebilden ausbildet und der Verbundstoff seine Endverfestigung erfährt.
  • Im folgenden wird die Herstellung des erfindungsgemäßen Verbundstoffes am Beispiel eines Spinnvlieses als textiles Flächengebilde erläutert.
  • Die Spinnvliesbildung erfolgt mittels an sich bekannter Spinnapparate. Hierzu wird das geschmolzene Polymer durch mehrere hintereinander geschaltete Reihen von Spinndüsen bzw. Gruppen von Spinndüsenreihen abwechselnd mit Polymeren beschickt, die die Trägerfaser und die Schmelzklebefasern bilden. Die ausgesponnenen Polymerströme werden in an sich bekannter Weise verstreckt und z. B. unter Verwendung einer rotierenden Prallplatte in Streutextur auf einem Transportband abgelegt.
  • Das auf diese Weise erzeugte Primärvlies wird anschließend in an sich bekannter Weise thermisch vorverfestigt, indem es z. B. in einer Vorverfestigungseinrichtung mit einer heißen Walze behandelt wird, so daß zumindest ein Teil der gegebenenfalls vorhandenen Schmelzklebefasern aufschmilzt, wodurch sich das Primärvlies soweit verfestigt, daß es ohne das Transportband gehandhabt werden kann. Diese Art der Vorverfestigung ist z. B. in der DE-PS-3,322,936 beschrieben. Anschließend wird das Gelege aus Garnen, das zumindest in einer Garnrichtung aus Hybridgarn besteht, auf die erhaltene Oberfläche des Primärvlieses, aufgebracht. Anschließend wird durch Einwirken von erhöhter Temperatur und/oder Druck das im Hybridgarn enthaltene tieferschmelzende Bindefilament an- oder aufgeschmolzen, so daß sich eine Klebeschicht zwischen beiden Flächengebilden ausbildet und der Verbundstoff seine Endverfestigung erfährt. Die Zuführung des Hybridgarns in Form eines Geleges kann ein- oder beidseitig erfolgen. Anstelle zweier Gelege kann auch ein Vlies zur Kombination Vlies/Gelege zugeführt werden. Anschließend wird der fertige Schichtstoff in an sich bekannter Weise aufgewickelt.
  • Das vorstehend beschriebene Verfahren kann auf viele Arten variiert werden, ohne daß der Grundgedanke der vorliegenden Erfindung dabei verlassen wird. So lassen sich beispielsweise verschiedene Abfolgen von Träger- und Schmelzklebepolymeren vorgeben und dadurch unterschiedlich geschichtete Spinnvliese herstellen. Auch läßt sich anstelle des Flächengebildes ein Schichtstoff aus Vliesstoff und einseitig aufgebrachten Flächengebilde vorlegen, so daß eine Sandwichstruktur entsteht. Desweiteren können auch mehrere alternierende Schichten [Vlies-(Gelege-Vlies)x] zu einer Sandwich-Konstruktion vereinigt werden. Es ist auch ohne weiteres möglich, mehr als zwei Typen von Polymeren bei der Herstellung des Vliesstoffes einzusetzen oder die Schmelzklebefasern in Form von Bi- oder Mehrkomponenten-Fasern einzusetzen. Ferner läßt sich das geschilderte Verfahren auch in getrennten Schritten durchführen, indem dieses z. B. nach der Endverfestigung des Spinnvlieses unterbrochen wird und die Kombination mit dem Flächengebilde und eine Verklebung der Schichten in einem getrennten Arbeitsgang durchgeführt wird.
  • Die nachfolgenden Beispiele erläutern die Erfindung ohne diese einzuschränken.
  • Beispiele 1 - 7
  • Es wurden Verbundstoffe von Spinnvlies mit Gelegen enthaltend verschiedene Mischgarne hergestellt und untersucht.
  • In einer Spundbond-Anlage wurden Spinnvliese auf Basis von Polyethylenterephthalat-Filamenten hergestellt. Typ A wies ein Flächengewicht von 60 g/m2 auf, eine Zugkraft von 13,0 daN/tex pro 5 cm Breite und eine Höchstzugkraftdehnung von 24,5 %; Typ B wies ein Flächengewicht von 60 g/m2 auf, eine Zugkraft von 15,7 daN/5 cm Breite und eine Höchstzugkraftdehnung von 15,7 %. Zu dem Primärvlies wurden unterschiedliche Gelege, deren Aufbau aus der nachfolgenden Tabelle zu entnehmen ist, zugeführt. Der erhaltene Schichtstoff wurde durch Kalandrieren zu einem erfindungsgemäßen Verbundstoff verarbeitet. Herstellungsbedingungen und Eigenschaften der erhaltenen Produkte sind der nachfolgenden Tabelle zu entnehmen.
    Figure imgb0002

Claims (29)

  1. Verbundstoff umfassend mindestens ein textiles Flächengebilde aus Fasern aus synthetischen Polymeren und Hybridgarn das aus Verstärkungsfasern und tieferschmelzenden Bindefasern aufgebaut wird.
  2. Verbundstoff Anspruch 1, dadurch gekennzeichnet, daß das textile Flächengebilde ein Vlies, insbesondere ein Spinnvlies aus Endlosfilamenten, ist.
  3. Verbundstoff nach Anspruch 1, dadurch gekennzeichnet, daß das textile Flächengebilde Polyesterfasern, insbesondere Polyethylenterephthalatfasern, enthält.
  4. Verbundstoff nach Anspruch 1, dadurch gekennzeichnet, daß das textile Flächengebilde flammhemmende Eigenschaften aufweist.
  5. Verbundstoff nach Anspruch 1, dadurch gekennzeichnet, daß das textile Flächengebilde ein Flächengewicht von 20 bis 400 g/m2 besitzt.
  6. Verbundstoff nach Anspruch 1, dadurch gekennzeichnet, daß das textile Flächengebilde ein schmelzbinderverfestigter Vliesstoff ist.
  7. Verbundstoff nach Anspruch 1, dadurch gekennzeichnet, daß das Hybridgarn aus Filamenten aufgebaut sind.
  8. Verbundstoff nach Anspruch 1, dadurch gekennzeichnet, daß die Einzelfilamente der Verstärkungsfasern einen Anfangsmodul von mehr als 50 GPa aufweisen.
  9. Verbundstoff nach Anspruch 8, dadurch gekennzeichnet, daß die Verstärkungsfasern Glas-, Kohlenstoff- und/oder Aramid-Fasern enthalten.
  10. Verbundstoff nach Anspruch 1, dadurch gekennzeichnet, daß die Hybidgarne aus polymeren Materialien bestehen.
  11. Verbundstoff nach Anspruch 10, dadurch gekennzeichnet, daß die Verstärkungsfasern aus Polyester, bevorzugt aus Polyethylenterephthalat bestehen.
  12. Verbundstoff nach Anspruch 11, dadurch gekennzeichnet, daß die Hybridgarne aus polymeren Materialien der gleichen chemischen Stoffklasse bestehen.
  13. Verbundstoff nach Anspruch 1, dadurch gekennzeichnet, daß das Hybridgarn in Form einer Kettfadenschar vorliegt.
  14. Verbundstoff nach Anspruch 1, dadurch gekennzeichnet, daß das Hybridgarn in Form eines Geleges vorliegt.
  15. Verbundstoff nach Anspruch 1, dadurch gekennzeichnet, daß das Hybridgarn in Form eines Gewebes vorliegt.
  16. Verbundstoff nach Anspruch 13, dadurch gekennzeichnet, daß die Kettfadenschar eine Fadendichte zwischen 0,5 und 10 Fäden pro cm besitzt.
  17. Verbundstoff nach Anspruch 14, dadurch gekennzeichnet, daß das Gelege eine Fadendichte zwischen 0,5 und 10 Fäden pro cm besitzt.
  18. Verfahren zur Herstellung des Verbundstoffes nach Anspruch 1, umfassend die Maßnahmen:
    a) Herstellung eines textilen Flächengebildes in an sich bekannter Weise;
    b) Zuführen von Hybridgarn auf eine gemäß a) erhaltene Oberfläche des textilen Flächengebildes,
    c) gegebenenfalls Zuführen eines weiteren textilen Flächengebildes auf die andere Seite des Hybridgarns, und
    d) Ausüben von erhöhter Temperatur und/oder Druck, so daß das tieferschmelzende Bindefilament des Hybridgarns an- oder aufschmilzt und sich eine Klebeschicht zwischen den Flächengebilden ausbildet und der Verbundstoff seine Endverfestigung erfährt.
  19. Gelege, das zumindestens in einer Richtung Hybridgarne aus Verstärkungs- und Bindefasern enthält.
  20. Gelege nach Anspruch 19, dadurch gekennzeichnet, daß die Bindefasern teilweise aufgeschmolzen sind und das Gelege an den Kreuzungspunkten der das Gelege bildenden Fadenscharen verfestigen.
  21. Gelege nach Anspruch 19, dadurch gekennzeichent, daß die Verstärkungs- und Bindefasern aus Filamenten bestehen.
  22. Gelege nach Anspruch 21, dadurch gekennzeichnet, daß die Einzelfilamente der Verstärkungsfasern einen Anfangsmodul von mehr als 50 GPa aufweisen.
  23. Gelege nach Anspruch 22, dadurch gekennzeichnet, daß die Verstärkungsfasern Glas-, Kohlenstoff- und/oder Aramid-Fasern enthalten.
  24. Gelege nach Anspruch 19, dadurch gekennzeichnet, daß die Verstärkungsfasern und die Bindefasern aus polymeren Materialien bestehen.
  25. Gelege nach Anspruch 24, dadurch gekennzeichnet, daß die Verstärkungsfasern aus Polyester, bevorzugt aus Polyethylenterephthalat bestehen.
  26. Gelege nach Anspruch 25, dadurch gekennzeichnet, daß Verstärkungs- und Bindefasern aus polymeren Materialien einer chemischen Stoffklasse bestehen.
  27. Gelege nach Anspruch 19, dadurch gekennzeichnet, daß das Gelege eine Fadendichte zwischen 0,5 und 10 Fäden pro cm besitzt.
  28. Verwendung des Geleges gemäß Anspruch 19 zur Herstellung von Verbundstoffen.
  29. Verwendung des Verbundstoffes gemäß Anspruch 1 zur Herstellung von bituminierten Dach- und Dichtungsbahnen.
EP96112431A 1995-08-23 1996-08-01 Textiler Verbundstoff, Verfahren zu dessen Herstellung, dessen Verwendung sowie Gelege enthaltend Hybridgarne Expired - Lifetime EP0761859B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19531001 1995-08-23
DE19531001A DE19531001A1 (de) 1995-08-23 1995-08-23 Textiler Verbundstoff, Verfahren zu dessen Herstellung, dessen Verwendung sowie Gelege enthaltend Mischgarne

Publications (2)

Publication Number Publication Date
EP0761859A1 true EP0761859A1 (de) 1997-03-12
EP0761859B1 EP0761859B1 (de) 2004-04-28

Family

ID=7770186

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96112431A Expired - Lifetime EP0761859B1 (de) 1995-08-23 1996-08-01 Textiler Verbundstoff, Verfahren zu dessen Herstellung, dessen Verwendung sowie Gelege enthaltend Hybridgarne

Country Status (4)

Country Link
US (1) US5856243A (de)
EP (1) EP0761859B1 (de)
CA (1) CA2183947A1 (de)
DE (2) DE19531001A1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29616943U1 (de) * 1996-09-28 1996-11-21 Recytex-Textilaufbereitung GmbH & Co. KG, 41751 Viersen Textiles Flächengebilde
US7047607B2 (en) * 1996-12-30 2006-05-23 Wattex Process for manufacturing a band-shaped non-woven product with increased tensile strength
US20050170125A1 (en) * 2000-09-26 2005-08-04 Building Materials Investment Corporation Aluminum faced self adhering membrane
DE10052431B4 (de) * 2000-10-23 2004-07-15 Elsayed Elsaftawi Verfahren zur Abdichtung von Natursteinmauerwerksfugen gegen Feuchtigkeit
US6820406B2 (en) 2001-05-14 2004-11-23 Cargill, Incorporated Hybrid yarns which include plant bast fiber and thermoplastic fiber, reinforcement fabrics made with such yarns and thermoformable composites made with such yarns and reinforcement fabrics
US20030157323A1 (en) * 2001-05-14 2003-08-21 Mikhail Khavkine Hybrid yarns which include oil seed flax plant bast fiber and other fibers and fabrics made with such yarns
US6833399B2 (en) 2001-09-21 2004-12-21 Cargill, Limited Flowable flax bast fiber and flax shive blend useful as reinforcing agent
EP1507910B1 (de) * 2002-05-29 2006-04-19 C Gex Systems C Gex, S.à.R.L. Verfahren und maschine zur herstellung einer sich nicht auflösenden naht
US20040242095A1 (en) * 2003-05-27 2004-12-02 Amit Prakash Composites reinforced by wire net or mesh for lightweight, strength and stiffness
US7521386B2 (en) * 2004-02-07 2009-04-21 Milliken & Company Moldable heat shield
US7153794B2 (en) * 2004-05-07 2006-12-26 Milliken & Company Heat and flame shield
MXPA06012600A (es) 2004-05-07 2007-01-31 Milliken & Co Escudo contra el calor y las llamas.
US7428803B2 (en) * 2005-05-17 2008-09-30 Milliken & Company Ceiling panel system with non-woven panels having barrier skins
US7709405B2 (en) * 2005-05-17 2010-05-04 Milliken & Company Non-woven composite
US7341963B2 (en) * 2005-05-17 2008-03-11 Milliken & Company Non-woven material with barrier skin
US7696112B2 (en) * 2005-05-17 2010-04-13 Milliken & Company Non-woven material with barrier skin
US7605097B2 (en) * 2006-05-26 2009-10-20 Milliken & Company Fiber-containing composite and method for making the same
US7651964B2 (en) * 2005-08-17 2010-01-26 Milliken & Company Fiber-containing composite and method for making the same
US7825050B2 (en) * 2006-12-22 2010-11-02 Milliken & Company VOC-absorbing nonwoven composites
US20080233825A1 (en) 2007-03-21 2008-09-25 Mohamed Walid Gamaleldin Articles Including High Modulus Fibrous Material
US7871947B2 (en) * 2007-11-05 2011-01-18 Milliken & Company Non-woven composite office panel
US20100112881A1 (en) * 2008-11-03 2010-05-06 Pradip Bahukudumbi Composite material and method for manufacturing composite material
US8342213B2 (en) * 2009-07-30 2013-01-01 Lumite, Inc. Method for manufacturing a turf reinforcement mat
US8752592B2 (en) * 2009-07-30 2014-06-17 Lumite, Inc. Method for manufacturing a turf reinforcement mat
US9243356B2 (en) * 2009-07-30 2016-01-26 Lumite, Inc. Method for manufacturing a turf reinforcement mat
US8298969B2 (en) * 2009-08-19 2012-10-30 Milliken & Company Multi-layer composite material
IT1402753B1 (it) * 2010-11-15 2013-09-18 Politex S A S Di Freudenberg Politex S R L Supporto tessile rinforzato con filamenti longitudinali di fibre cellulosiche, particolarmente per membrane bituminose.
WO2013190149A1 (en) * 2012-06-22 2013-12-27 Katholieke Universiteit Leuven, KU LEUVEN R&D Hybrid self-reinforced composite material
EP2679713A1 (de) * 2012-06-26 2014-01-01 O.R.V. Ovattificio Resinatura Valpadana S.p.a. Stütze in mit Fäden verstärktem Vliesstoff und Verfahren zur Herstellung solch einer Stütze
CA2920543A1 (en) * 2013-08-09 2015-02-12 Bonar B.V. Vinyl floor covering
TWI663311B (zh) * 2014-04-29 2019-06-21 Low & Bonar B. V. 乙烯地板覆蓋物用之載體材料及包含其之複合材料產品
US9777455B2 (en) 2015-06-01 2017-10-03 Lumite, Inc. Water-permeable woven geotextile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0138294A2 (de) * 1983-09-06 1985-04-24 Textile Products Incorporated Verfahren und Vorrichtung zum Herstellen thermoplastischer Kunststoffasermischungen und damit hergestellte geschichtete Strukturen
EP0435001A2 (de) * 1989-12-23 1991-07-03 Akzo Nobel N.V. Schichtstoff
JPH05209301A (ja) * 1991-10-03 1993-08-20 Kasuga Shokai:Kk 夏季塗装用ヤッケ
EP0717133A2 (de) * 1994-12-16 1996-06-19 Hoechst Aktiengesellschaft Hybridgarn und daraus hergestelltes schrumpffähiges und geschrumpftes, permanent verformbares Textilmaterial, seine Herstellung und Verwendung

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1517595A (en) * 1977-03-31 1978-07-12 Bp Aquaseal Ltd Bituminous material
JPS565879A (en) * 1979-06-27 1981-01-21 Furukawa Electric Co Ltd:The Earthquake-proof and fire-proof putty composition
US4472086A (en) * 1981-02-26 1984-09-18 Burlington Industries Inc. Geotextile fabric construction
US4504539A (en) * 1983-04-15 1985-03-12 Burlington Industries, Inc. Warp yarn reinforced ultrasonic web bonding
US4564720A (en) * 1983-05-13 1986-01-14 The United States Of America As Represented By The United States Department Of Energy Pure silver ohmic contacts to N- and P- type gallium arsenide materials
GB8316704D0 (en) * 1983-06-20 1983-07-20 Bondina Ltd Interlinings
DE3347280A1 (de) * 1983-12-28 1985-07-11 VEB Kombinat Glasseide Oschatz, DDR 7260 Oschatz Verfahren zur herstellung von traegermaterialien
FR2562472B1 (fr) * 1984-04-06 1986-06-06 Chomarat & Cie Materiau a base d'une nappe textile comportant un non-tisse en polyester qui sert de support a des fibres de verre implantees par aiguilletage, utilisable comme armature de renforcement de revetement d'etancheite bitumineux
DE3435643A1 (de) * 1984-09-28 1986-04-10 Hoechst Ag, 6230 Frankfurt Schichtstoff
EP0281643B1 (de) * 1987-03-09 1991-11-27 Chisso Corporation Verstärkter Vliesstoff
EP0326409B1 (de) * 1988-01-29 1992-05-13 Ube Industries, Ltd. Hybridgarn, einseitig gerichtetes Hybrid-Prepreg und Schichtstoff davon
FR2628448B1 (fr) * 1988-03-14 1990-11-16 Chomarat & Cie Armature textile utilisable pour la realisation de complexes stratifies et complexes stratifies en forme comportant une telle armature
FR2640288B1 (fr) * 1988-12-13 1993-06-18 Rhone Poulenc Fibres Support a base de nappe non tissee en textile chimique et son procede de fabrication
FR2646442B1 (fr) * 1989-04-28 1993-04-02 Chomarat & Cie Armature textile utilisable pour la realisation de materiaux composites et articles en forme comportant une telle armature
FR2648482B1 (fr) * 1989-06-16 1992-05-15 Chomarat & Cie Complexes textiles multicouches a base de nappes fibreuses ayant des caracteristiques differentes et procede pour leur obtention
DE4129188A1 (de) * 1991-09-03 1993-03-04 Spinnstoffabrik Zehlendorf Ag Schmelzfaserverklebter schichtstoff, verfahren und zwischenprodukt zu dessen herstellung und dessen verwendung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0138294A2 (de) * 1983-09-06 1985-04-24 Textile Products Incorporated Verfahren und Vorrichtung zum Herstellen thermoplastischer Kunststoffasermischungen und damit hergestellte geschichtete Strukturen
EP0435001A2 (de) * 1989-12-23 1991-07-03 Akzo Nobel N.V. Schichtstoff
JPH05209301A (ja) * 1991-10-03 1993-08-20 Kasuga Shokai:Kk 夏季塗装用ヤッケ
EP0717133A2 (de) * 1994-12-16 1996-06-19 Hoechst Aktiengesellschaft Hybridgarn und daraus hergestelltes schrumpffähiges und geschrumpftes, permanent verformbares Textilmaterial, seine Herstellung und Verwendung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 9338, Derwent World Patents Index; Class A83, AN 93-297980 *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 655 (C - 1136) 6 December 1993 (1993-12-06) *

Also Published As

Publication number Publication date
DE59610999D1 (de) 2004-06-03
CA2183947A1 (en) 1997-02-24
US5856243A (en) 1999-01-05
DE19531001A1 (de) 1997-02-27
EP0761859B1 (de) 2004-04-28

Similar Documents

Publication Publication Date Title
EP0761859B1 (de) Textiler Verbundstoff, Verfahren zu dessen Herstellung, dessen Verwendung sowie Gelege enthaltend Hybridgarne
EP0572891B1 (de) Schichtstoff aus Vlies und Gelege
EP0806509B2 (de) Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung
DE60031546T2 (de) Verbundvliesmaterial
EP1939342B1 (de) Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung
EP0530769A1 (de) Schmelzfaserverklebter Schichtstoff, Verfahren und Zwischenprodukt zu dessen Herstellung und dessen Verwendung
DE2922427A1 (de) Spinnvlies mit hoher dimensionsstabilitaet und verfahren zu seiner herstellung
EP0806510B1 (de) Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung
EP0656254A1 (de) Textiler Verbundstoff, Verfahren zu dessen Herstellung und dessen Verwendung
EP0603633B1 (de) Dreikomponenten-Schichtstoff
DE3940713A1 (de) Flammhemmendes vlies mit bindefilamenten
DE202008010258U1 (de) Trägereinlage und beschichtete Dachbahnen
DE19521838A1 (de) Textiler Kompakt-Verbundstoff, Verfahren zu dessen Herstellung und dessen Verwendung
EP0506051A1 (de) Filamentverstärkte Polyestereinlage
DE4428939A1 (de) Faserverstärkter Schichtstoff, seine Herstellung und Verwendung
DE19935408B4 (de) Mehrlagenschichtstoff
DE19952432B4 (de) Schichtstoff
DE3821011A1 (de) Mehrschichtige traegerbahn
DE19950057A1 (de) Zwei- oder Mehrlagenschichtstoffe aus Polyesterfilamentvliesen und Glasfasergeweben oder -gelegen
DE4337984A1 (de) Textiler Verbundstoff, Verfahren zu dessen Herstellung und dessen Verwendung
DE19935531C2 (de) Zweilagenschichtstoff
DE202006021073U1 (de) Trägereinlage und deren Verwendung
EP2360304B1 (de) Vorkonfektionierte Trägereinlage und beschichtete Dachbahnen
DE9207368U1 (de) Schichtstoff aus Vlies und Gelege
DE2536955C3 (de) Verfahren zum Herstellen eines in Längs- und Querrichtung verstärkten nicht-gewebten Erzeugnisses

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19970912

17Q First examination report despatched

Effective date: 19980818

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: JOHNS MANVILLE INTERNATIONAL, INC.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59610999

Country of ref document: DE

Date of ref document: 20040603

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040716

Year of fee payment: 9

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040728

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040819

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040930

Year of fee payment: 9

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060301

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831